独立重复试验与二项分布(教学设计)

合集下载

高中数学_独立重复试验与二项分布教学设计学情分析教材分析课后反思

高中数学_独立重复试验与二项分布教学设计学情分析教材分析课后反思

栏目:基于课程标准的《独立重复试验与二项分布》的教学设计内容【课题】独立重复试验与二项分布【教学内容】高中数学人教B版选修2-3 2.2.3【课程标准】理解独立重复试验的意义,能求简单的服从二项分布的随机变量的分布列【设计思想】1.通过分解课程标准和学情分析制定表现型教学目标2.基于教学目标制定可观察可测量的评价目标3.基于教学目标和评价目标开展探究性学习【教学目标】基于对课程标准的解读和目标分解,现制定教学目标如下:①通过对几个熟悉的试验的观察和分析,学生自己说出这些试验的共同点,归纳出n次独立重复试验的定义;并能识别二点分布、独立重复试验;②通过对罚球命中次数的分布列的自主探究,讨论总结归纳得出“n次独立重复试验事件A 恰好发生k次”的概率公式,同时建构出二项分布模型,并分析推证出二项分布与二项展开式之间的联系;③通过解决实际问题,能辨析二项分布模型,能熟练求出二项分布的随机变量的分布列.【评价目标】评价设计要基于教学目标,又要先于教学设计。

评价的目的是促进学生的学习,发现学生达成目标过程中的问题和差距,从而调整教学方向,解决学生反馈的问题,达到自我完善和自我纠正。

针对目标①的评价方案:(1)通过类比“抛掷硬币”“林书豪罚球”“产品检验”三个试验,学生第一次自主探究完成表1(学生口答)(2)通过小组讨论,交流得出这三个试验的共同特点,归纳出n次独立重复试验的定义(小组讨论,师生完善)(3)设计评价样题1:判断下列试验是否是独立重复试验?(学生集体回答)针对目标②的评价方案:(1)设计《时代》榜首人物林书豪图片,简介林书豪,激起学生学习和生活的热情(2)设计5个问题串,学生通过第二次自主探究活动,通过自主填写表格、分析、类比、归纳、确认得到“n次独立重复试验事件A恰好发生k次”的概率公式以及二项分布的概率模型。

(自主探究、小组合作、交流讨论、师生共同完善)(3)设计评价样题2:判断下列随机变量X是否服从二项分布?(学生集体回答)针对目标③的评价方案:(1)设计两道比较容易的例题,检测基础知识掌握情况。

《2.2.3独立重复实验与二项分布》教案

《2.2.3独立重复实验与二项分布》教案

2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ例3.>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次 ∴从低层到顶层停不少于3次的概率 3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大. 例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2nP B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得, lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的不发生2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

独立重复试验与二项分布精品教案

独立重复试验与二项分布精品教案

二项分布。
(2)在 10 次射击中,至少有 2 次击中目标的概率为
P( X 8) P( X 8) P( X 9) P( X 10)
= C180 ×0.88×(1-0.8)10-8
2
+ C190 ×0.89×(1-0.8)10-9
+
C10 10
×0.810×(1-0.8)10-10
2.2.3 独立重复试验与二项分布
【学情分析】:
教学对象是高二理科学生,已具有一定的归纳、抽象的能力 ,研究了两点分
布、超几何分布,初步掌握概率与统计的知识,学习了离散型随机变量的分布,
但比较畏惧有实际背景的数学应用问题,分析问题、解决问题的能力比较薄
弱 ;数学建模能力不足。
【教学目标】:
1、 知识与技能
(4)要保证击中目标概率大于 0.99,至少应射击多少次?(结果保 2.计算借助计算器;
留两个有效数字)
3.计算结果的解释;
解:设 X 为击中目标的次数,则 XB(10,0.8). (1) 在 10 次射击中,恰有 8 次击中目标的概率为
4.第(3)、(4)问有 助学生更深刻理解
P( X 8) C180 ×0.88×(1-0.8)10-8≈0.30
2 定义:在 n 次独立重复试验中,事件 A 发生的次数为 X,在每次
试验中事件 A 发生的概率为 P,那么在在 n 次独立重复试验中事件 A
恰好发生 k 次的概率是
P(X
K=0,1,2,3,……n
k)
C
k n
P
k
(1

P )nk
此时称随机变量X服从二项分布,记作XB(n,p)。并称P为成功概率。 注意:n,p,k 分别表示什么意义?

独立重复试验和二项分布教学案

独立重复试验和二项分布教学案

课题:独立重复试验与二项分布BGST 运用:1、课程标准:使学生正确理解独立重复试验与二项分布的意义,解决一些简单的实 际应用问题。

2、学习目标:理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。

3、教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

4、教学难点:二项分布模型的构建。

5、考点解读:古典概型使用公式时,确定m 和n 是关键;几何概型要统一度量;会计算n 次独立重复试验中恰好发生k 次。

独立重复试验与二项分布一、复习引入(大约2分钟):1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P A B =3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =,称A 与B4. 离散型随机变量X 服从参数为p 的二点分布:如果离散型随机变量X 的分布列为 则称离散型随机变量X 服从参数为p 的二点分布。

二点分布二、概念形成(大约10分钟)实例1:将一枚均匀硬币随机掷10次,求正好出现5次正面的概率。

思考1、前一次结果是否影响后一次?也就是每次的结果是否相互独立?2、每次试验的结果有几个?结论1、各次试验结果不会受其他次试验结果影响;2、本小节涉及的每次试验,只考虑有两个可能的结果A 及 ,并且事件A 发生的概率相同。

在相同条件下,重复的做n次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验。

实例2:姚明在某场比赛中得到4次罚球机会,假设每次投篮都互不影响。

如果姚明投篮命中的概率为p,求投中X次的概率。

A表示事件“第k次投中”分析:用k一般的,事件A在n次试验中发生k次,共有种情形,由试验的独立性知道A在k 次试验中发生,而在其余次试验中不发生的概率都是(在一次试验中事件A发生的概率是p),那么,在n次独立重复试验中,事件A恰好发生k次的概率为例1、在人寿保险事业中,很重视某一年龄段的的投保人的死亡率,假如每个投保人能活到65岁的概率为0.6,试问3个投保人中:(1)全部活到65岁的概率;(2)有两个活到65岁的概率;(3)有1个活到65岁的概率;(4)都活不到65岁的概率。

独立重复试验与二项分布教案

独立重复试验与二项分布教案

"独立重复试验与二项分布"教案【教学目标】知识与技能:在了解条件概率和相互独立事件概念的前提下,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。

过程与方法:渗透由特殊到一般,由具体到抽象的数学思想方法。

通过主动探究、相互交流,培养学生的自主学习能力、数学建模能力和应用数学知识解决实际问题的能力,感受数学建模的过程中的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事的科学态度和契而不舍的钻研精神。

情感态度与价值观:培养学生对新知识的科学态度,勇于探索和敢于创新的精神,让学生了解数学来源于实际,应用于实际的唯物主义思想。

【教学重点、难点】教学重点:独立重复试验、n次独立重复试验发生K次的概率公式的推导,二项分布的理解及应用二项分布模型解决一些简单的实际问题。

教学难点: n次独立重复试验发生K次的概率公式的推导,二项分布模型的构建。

【教学方法】探究式教学与多媒体辅助教学【教学过程】•复习引入前面我们学习了许多不同关系的事件,让我们一起复习一下:什么叫互斥事件?互斥事件有一个发生的概率如何计算?什么是对立事件?必有一个发生的两个互斥事件。

什么叫相互独立事件?相互独立事件是否可以同时发生?同时发生的概率怎样计算?相互独立事件在我们生活量存在,你们能举一些例子么?二、创设情景,激发求知欲1、投掷一枚一样的硬币5次,每次正面向上的概率为0.5。

2、*同学玩射击气球游戏,每次射击击破气球的概率为0.7,现有气球10个。

3、口袋装有5个白球、3个黑球,有放回地抽取5个球。

问题1、通过完成表格,请总结出上面这些试验有什么共同的特点?发以上试验都是相互独立试验,每次试验的条件都一样,都只有两种结果即事件A成功或失败,且每次试验事件A成功的概率一样,失败的概率也一样,就是在一样条件下重复做同样的实验,这就是我们今天要研究的试验,你能抽象出这种试验的概念么?板书定义:1一样条件,2相互独立,3 两种结果 4 P(A)一样,1n次独立重复试验:一般地,在一样条件下,重复做的n次试验称为n次独立重复试验。

(完整word版)独立重复试验与二项分布(教案)

(完整word版)独立重复试验与二项分布(教案)

独立重复试验与二项分布(教案)学习目标:能说出n 次独立重复试验的模型及二项分布,能解决一些实际问题。

学习重点:独立重复试验与二项分布.学习难点:独立重复试验与二项分布的综合问题。

一:课前自主学习1. 独立重复试验一般的,在 条件下重复做的n 次试验称为 。

2. 随机变量的二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()P X k == 。

此时称随机变量X 服从 ,记作 ,并称p为 .(这一环节通过导学案了解学生的掌握情况,完全交给学生)设计这一环节的目的是:让学生自己探究新知识,挖掘教材,从而更好的了解概念,以及知识之间的联系.二:课堂合作探究1.独立重复试验的特点2.二项分布与两点分布、超几何分布有什么区别和联系?3.二项分布的概率分布列(这一环节我是以提问的形式来了解学生的掌握情况.)设计这一环节的目的是:让学生对本节课所学的知识更深的理解,在和前面学过的加以区别和联系,从而达到完全掌握的目的。

三:典型例题分析题型1 n 次独立重复试验的意义例一 甲、乙两人一起玩抛掷骰子游戏,游戏规则如下:甲先抛掷,乙后抛掷,如此间隔抛掷,问:(1)甲共抛掷了n 次,可否看做n 次独立重复试验?乙共抛掷了m 次,可否看做m 次独立重复试验?(2)在游戏的全过程中共抛掷了m n +次,则这m n +次可否看做m n +次独立重复试验?方法归纳:变式训练1 判断下列试验是不是独立重复试验?(1)依次投掷四枚质地不同的硬币,3次正面朝上。

(2)某人射击,击中目标的概率是稳定的,他连续射击了十次,其中6次击中目标。

(3)口袋中装有5个白球、3个红球、2个黑球,依次从中抽取5个球,恰好抽到4个白球。

题型2 n 次独立重复试验的概率公式例二 某气象站天气预报的准确率为80%,求:(1)5次预报中恰有四次准确的概率;(2)5次预报中至少有四次准确的概率。

高二数学(选修-人教B版)-独立重复试验与二项分布-1教案

高二数学(选修-人教B版)-独立重复试验与二项分布-1教案
(4)在逐步增加试验次数和将固定次数改为任意 次的过程中,体会独立重复试验的过程,逐步形成 次独立重复试验的概念,并得出概率计算公式.
给出数学概念的规范定义和概率计算公式.
概念辨析.
应用数学概念和公式,解决问题.
通过生活实例,进一步理解 次独立重复试验的概念,熟悉概率计算公式,建立二项分布模型.
建立二项分布模型,规范数学语言.
0
1
···
···
···
···
由于表中的第二行恰好是二项式展开式
各项对应的值,所以称这样的离散型随机变量 服从参数为 , 的二项分布,记作 .
(五)模型应用,深化理解
例2. 100件产品中有3件不合格,每次取一件,有放回地取3次,求取得不合格品件数 的分布列.
解: 可能的取值为0,1,2,3.由于是有放回地每次取一件,连续取三次,所以这相当于做3次独立重复试验,一次抽取到不合格品的概率 .因此
3.一个公式——二项分布 中,
.
4.模型思想——随机现象无处不在,模型思想往往事半功倍;以及
5.探究精神——模型的建立和探索都需要进行不断地探究.
(1)通过简化问题——减少试验次数、先求发生固定次数(2次)的概率.
(2)设置问题链,层层铺垫,建立模型得到公式.
(3)在问题(3)中先给出错解,再通过枚举法和计数原理得出正解,让问题变得更加清晰;
,
,
,
.
分布列为
0
1
2
3
0.912673
0.084681
0.002619
0.000027
例3. 9粒种子分别种在甲、乙、丙3个坑,每个坑3粒,每粒种子发芽的概率为0.5.若一个坑至少有一粒发芽,则这个坑不需要补种;否则,则需要补种.

独立重复试验及二项分布精品教案

独立重复试验及二项分布精品教案

《独立重复试验及二项分布》教学设计一、教材及学情分析 本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及两点分布、超几何分布和分布列的有关内容。

独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型。

二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布。

在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要。

可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。

会对今后数学及相关学科的学习产生深远的影响。

因此本节课宜采用以学生探究、发现为主的教学模式,让学生从具体试验得到独立重复试验,再得出二项分布,体会知识的过渡的思维,让学生有充分自由表达、质疑、探究问题的机会,在活动中学习、创新、提高。

二、三维目标1、知识与技能(1)理解n次独立重复试验的模型。

(2)掌握二项分布,并能利用它解决一些简单的实际问题。

2、过程与方法通过具体例子的学习,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力。

3、情感、态度与价值观激发学生学习兴趣,培养学生不断发现、探索新知的精神。

三、教学重点、难点重点:n次独立重复试验和二项分布的概念。

难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算四、教学过程(一)独立重复试验概念的引入教师:同学们喜欢什么奥运会项目?(各种不同的答案)教师:我最喜欢射击。

假设我击中目标的概率是0.8,那么我射击一次,用x 表示击中的次数,请写出x的分布列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.3独立重复试验与二项分布(教学设计)教学目标知识与技能:理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。

过程与方法:通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。

情感态度与价值观:使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。

教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。

教学难点:二项分布模型的构建。

教学过程:一、复习回顾:1、条件概率:在事件A 发生的条件下,事件B 发生的条件概率:()(|)()P AB P B A P A =2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立二、创设情景,新课引入:三个臭皮匠顶个诸葛亮的故事已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为三、师生互动,新课讲解:1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次;(2)某人射击1次,击中目标的概率是0.8,他射击10次;(3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛);(4)抛硬币实验。

在研究随机现象时,经常需要在相同的条件下重复做大量试验来发现规律。

例如掷硬币结果的规律,需要做大量的掷硬币试验。

显然,在n 次重复掷硬币的过程中,各次试验的结果都不会受其他试验结果的影响,即P(A 1A 2...A n )=P(A 1)P(A 2)...P(A n ). (1) 其中i A =),...,2,1(n i =是第i 次试验的结果。

2、 引入概念一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。

1()10.40.40.40.9360.8P A B C -⋅⋅=-⨯⨯=>在n 次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验结果的影响,即(1)式成立。

探究:投掷一枚图钉,设针尖向上的概率为p ,则针尖向下的概率q=1-p 。

连续掷一枚图钉3次,仅出现1次针尖向上的概率为多少?连续掷一枚图钉3次,就是做3次独立重复试验.用)3,2,1(=i A i 表示事件“第i 次掷得针尖向上”,用1B 表示事件“仅出现一次针尖向上”,则)()()(1121321321A A A A A A A A A B ⋃⋃=由于事件321321321,A A A A A A A A A 和彼此互斥,由概率加法公式得1123123123()()()()P B P A A A P A A A P A A A =++=p q p q p q p q 22223=++.因此,连续掷一枚图钉3次,仅出现1次针尖向上的概率是p q 23.思考:上面我们利用掷1次图钉,针尖向上的概率为p ,求出了连续掷3次图钉,仅出现1次针尖向上的概率.类似的,连续掷3次图钉,出现k (k=0,1,2,3)次针尖向上的概率是多少?你能发现其中的规律吗?用)3,2,1,0(=k B k 表示事件“连续掷一枚图钉3次,出现k 次针尖向上”。

类似于前面的讨论,可以得到33210)()(q A A A P B P ==;)()()()1(321321321A A A P A A A P A A A P B P ++==p q 23; 232132132123)()()()(qp A A A P A A A P A A A P B P =++=;33213)()(p A A A P B P ==.仔细观察上式可以发现3,2,1,0,)(33==-k q p C B P kk k k .一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P k n k k n ,...,2,1,0,)1()(=-==-此时称随机变量X 服从二项分布,记作X~B(n,p),并称p 为成功概率。

3、例题选讲:例1(课本P57例4) 某射手每次射击击中目标的概率是0.8 ,求这名射手在10次射击中,(1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率.(结果保留两个有效数字,可以用计算器)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) . (1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈.(2)在 10 次射击中,至少有 8 次击中目标的概率为 P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.变式训练1:某人参加一次考试,若五道题中解对四题则为及格,已知他的解题正确率为0.6,试求他能及格的概率.(结果保留四个有效数字) 解:X 为解对的题数,则 X ~B (5,0.6)4、二项分布与两点分布、超几何分布的区别与联系:(1)二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ1 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n由于kn k k n q p C -恰好是二项展开式11100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记kn k k n q p C -=b (k ;n ,p ).(2)两点分布是特殊的二项分布:ξ~B (1,p ) ξ 01 P1p -p(3)一个袋中放有M 个红球,(N M -)个白球,依次从袋中取n 个球,记下红球的个数ξ.1)如果是有放回地取,则(,)M B n Nξ~ 2)如果是不放回地取, 则ξ服从超几何分布.()(0,1,2,,)k n k M N MnNC C P k k m C ξ--===(其中min(,)m M n =()()()545455454333 1555 0.3370P X P X P X C C ≥==+=⎛⎫⎛⎫⎛⎫=⨯+⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≈例2:某产品的次品率P =0.05,进行重复抽样检查,选取4个样品,求其中恰有两个次品的概率和其中至少有两个次品的概率.(结果保留四个有效数字) 略解:变式训练2:某所气象预报站预报准确率为80%.则它5次预报中恰有4次准确率约为多少?(保留两位有效数字)解:X 为预报准确的次数,则 X ~B (5,0.8)例3:实力相等的甲、乙两队参加乒乓球团体比 赛,规定5局3胜制(即5局内谁先赢3局就算胜 出并停止比赛).⑴试求甲打完5局才能取胜的概率. ⑵按比赛规则甲获胜的概率. 解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. (1)甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率222141113()()22216P C =⨯⨯⨯=. (2)记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.事件D =“按比赛规则甲获胜” ①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜.∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负. ∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负.∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=.事件D =“按比赛规则甲获胜”,则D A B C =++, 又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12.课堂练习:(课本P58练习NO :1;2;3;) 四、课堂小结,巩固反思:()()544444554410.80.2 50.80.20.41P X C p p C -==-=⨯⨯=⨯⨯≈1、独立重复试验的概念:在相同条件下重复做的n 次试验称为n 次独立重复试验。

在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P k n kk n ,...,2,1,0,)1()(=-==-此时称随机变量X 服从二项分布,记作X~B(n,p),并称p 为成功概率。

2、二项分布与两点分布、超几何分布的区别与联系 五、课时必记: 二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ1 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n由于kn k k n q p C -恰好是二项展开式11100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记kn k k n q p C -=b (k ;n ,p ).六、分层作业: A 组:1.任意抛掷三枚硬币,恰有2枚正面朝上的概率为 ( )A. B. C. D.【解析】选B.抛掷一枚硬币,正面朝上的概率为,则抛掷三枚硬币可以看作三次独立重复试验,故恰有2枚正面朝上的概率为P=×=.2.已知随机变量X 服从二项分布X ~B ,则P(X=5)等于 ( )A. B. C. D.【解析】选B.P(X=5)=×=3.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=,则P(η≥1)= .【解析】由题意知P(ξ<1)=1-=,即(1-p)2=,得p=,所以P(η≥1)=1-P(η<1)=1-(1-p)3=1-=.答案:4.某射手每次射击击中目标的概率是0.8,现连续射击4次,则击中目标次数X的分布列为.XP【解析】击中目标的次数X服从二项分布X~B(4,0.8),所以P(X=k)=(0.8)k(0.2)4-k(k=0,1,2,3,4),即X的分布列为X 0 1 2 3 4PB组:(必须严格按照答题规范作答)1、(课本P59习题2.2 A组NO:1)2、(课本P59习题2.2 A组NO:3)3、(课本P59习题2.2 B组NO:1)。

相关文档
最新文档