高考第088讲 总复习:算法与程序框图知识讲解_高考总复习:算法与程序框图

合集下载

12.1 算法与程序框图

12.1  算法与程序框图

(2)框中y=-x2+mx的含义是什么?
(3)该程序框图解决的是怎样的一个问题? (4)若输入的x值为0和4时,输出的值相等,则 ①当输入的x值为3时,输出的值为多大? ②要想使输出的值最大,输入的x值应为多少? ③按照这个程序框图,当输入的x的值都大于 2时,x值大的输出的y值反而小,为什么?

该算法对应的程序框图如图所示:
探究提高 顺序结构的算法写好后,按顺序依次
画出流程图.在变量赋值时,以后赋的为准,前边 赋过值的变量,有新的数值时,原来的值无效.
知能迁移2
如图所示的框图是解决某个
问题而绘制的程序框图,仔细分析各 图框内的内容及图框之间的关系,回 答下面的问题: (1)框中x=a的含义是什么?
并画出程序框图.

算法如下:
第一步:令S=1,i=1; 第二步:若i≤99成立,则执行第三步; 否则输出S,结束算法; 第三步:S=S×i; 第四步:i=i+2,返回第二步. 程序框图:
方法一 当型循环程序框图
方法二 直到型循环程序框图
思想方法 感悟提高
方法与技巧
1.在设计一个算法的过程中要牢记它的五个特征:
第五步,输出d.
Z2
程序框图:
探究提高 给出一个问题,设计算法应注意:
(1)认真分析问题,联系解决此问题的一般数学
方法; (2)综合考虑此类问题中可能涉及的各种情况; (3)将解决问题的过程划分为若干个步骤; (4)用简练的语言将各个步骤表示出来.
知能迁移1

写出求过两点M(-2,-1)、N(2,3)的
第三步:输出函数值y.
相应的程序框图如图所示.
探究提高 利用条件结构解决算法问题时,要引入

高三数学算法与程序框图

高三数学算法与程序框图

开始
max w1
i2
.
Y
i6
Y
wi max
max wi
i i 1
输出
max 的号码球
结束
N N
w1, w2 , w3 , w4 , w5 , w6
; 绝地求生辅助
vfg80wiv
了救仁家老夫人,你早就挨板子了。”没得我帮老妇人盖好被子,鼠头人又责骂道,“仁老夫人不用你瞎操心,待会儿就会有 丫鬟来照料她,你做好你的本分就行。”听着鼠头人这么讲道,我也识趣的走了,但是我还是担心不知这傅家会怎么对待仁老 夫人。我已经答应了仁玉要好好照顾仁老夫人,但是自己在这里又没什么权利,得想个办法才行啊。9初到傅府|接新娘一事已 经完了,但我没有忘记我要粘着傅家过日子的目的。我赶紧向鼠头人身旁靠过去,恭敬地说道:“傅总管,那么现在我们是不 是也该动身回傅家了?”鼠头人用眼角瞄了我一眼,轻蔑地说道:“这事用不着你提醒,赶紧把你们家的下人叫过来,好了我 们就出发回去。”“那现在就可以走了,这仁家就我一个下人。”我应和道。“哟,就你一个下人啊?”鼠头人轻蔑中带着满 满地嘲笑意味反问道,“那也难怪,这烂屋子穷主人请不起仆人也是正常的。”这话听的我真不爽,心想,起码这一屋子人都 是能吃苦过活的好人,哪像你这只鼠头,仗势欺人,小心活命不长。也罢,我也就只有想想的份,现在的我可不敢当面说这货 的不是。过没多久,鼠头人叫上原先傅家的下人,再带上我这个新加入的下人,一同往傅家走去了。果真走了好远的路,我们 终于来到了傅家大宅门前。傅家大宅可真是雄伟啊!光是大宅的正门,就足足有两层楼这么高;两侧的围墙似乎在无限地伸延 着,完全看不见尽头;加之以摆在门口两侧的两头石狮子以及金光闪闪的写着“傅府”二字的巨大门牌,真是突出一个霸气。 霸气是挺霸气的,门面也是做得很光亮的,但是就是不知道里面的人是些怎么样的人儿。话说十个官员九个贪,贪得越多自家 的宅子也才建得越风光,倘若里面的傅家人们都是些权利之人,那么就算他们的物质生活有多丰富,也始终感受不到家人的关 爱,始终不会懂亲情是什么,因为他们只是靠着金钱与权利联系在一起,血缘之情想必已经被丢弃在不知何处了。随着鼠头人 一同踏入傅家大宅的正门,迎面扑来的是气场十分强大的喜庆情景。虽说这是傅家四少爷娶一个小老婆,但是这壮观的场面实 在是令人难以与之前在仁家门前发生的事情联想起来。大厅里坐满了达官贵人,他们的穿着打扮无不显得高贵,仔细瞅瞅,发 现有着各式各样的人儿;肚子大得吓人的中年男人们应该是傅家大老爷在朝中的大臣朋友;一些看起来稍微显得年轻帅气的要 不是官员们的儿子侄子什么的,就是来保护他们的保镖们;再要数的就是那一群聚在一起的女人们,她们个个穿着极其夸张, 胭脂水粉想必涂得满脸都是,她们围在一起有说有笑的,时不时还会传来一阵阵高音度的笑声。这时,从大厅里走出一位妇女。 我仔细打量着她,心中硬是吃了一大惊,这真是

第1讲 算法与程序框图

第1讲 算法与程序框图

写出求该函数函数值的
考基联动
考向导析
限时规范训练
反思感悟:善于总结,养成习惯 利用条件结构解决算法问题时,要引入判断框,要根据题目的要求引入 一个或多个判断框.而判断框内的条件不同,对应的下一图框中的内容 和操作也相应地进行变化,故要逐个分析判断框内的条件. 迁移发散 2.阅读如图所示的程序框图,若输入 x 的值为 2,则输出 y 的值为________.
考基联动 考向导析 限时规范训练
考向二 算法的条件结构
-2,x>0, 【例 2】 (2010·青岛模拟)已知函数 y=0, x=0, 2, x<0,
算法及程序框图. 解:算法如下: 第一步,输入 x. 第二步,如果 x>0,则 y=-2; 如果 x=0,则 y=0;如果 x<0,则 y=2. 第三步,输出函数值 y. 相应的程序框图如图所示.
考基联动
考向导析
限时规范训练
迁移发散 1.如图所示的框图是解决某个问题而绘制的程序框图,仔细分析各 图框内的内容及图框之间的关系,回答下面的问题: (1)框中 x=a 的含义是什么? (2)框中 y=-x2+mx 的含义是什么? (3)该程序框图解决的是怎样的一个问题? (4)若输入的 x 值为 0 和 4 时,输出的值相等, 则:①当输入的 x 值为 3 时,输出的值为多大? ②要想使输出的值最大,输入的 x 值应为多少? ③按照这个程序框图,当输入的 x 的值都大于 2 时,x 值大的输出 的 y 值反而小,为什么?
解析:s1=0,i=1,i<2,则 s1=0+x1=1, s 0 i 1 i 2 0 x 1 s=1,i=1+1=2;i=2, 1 3 则 s2=1+x2=3,s= ×3= , 2 2 3 i=2+1=3>2,输出 s= . 2 3 答案: 2

高三数学算法与程序框图

高三数学算法与程序框图
N
i 10
Y
i 10
Y
N
S=S+i i=i+1
S=S+1/i i=i+1
输出S 结束
输出S 结束
P14练习A
3: 开始
P14练习B
3:
开始
x 1
x 10
Y
x 2 .4
N
x3
Y
N
y x2
输出
y x2
输出
y
y
x x 1
结束
x x 0 .6
结束
P15习题1—1(A)
2010届高考数学复习 强化双基系列课件
70《算法与程序框图》


算法与程序框图
程序框图
顺序结构 算法的三种基本逻辑 结构和框图表示 条件分支结构 循环结构
算 法
可以理解为由基本运算及规定的运 算顺序所构成的完整的解题步骤,或 者看成按照要求设计好的有限的确切 的计算序列,并且这样的步骤或序列 能够一类问题解决.
P15习题1—1(A)
3: 设两位小数为a.bc ,其 中 a, b, c 都为整数,且 0 b 9,0 c 9 .
开始 输入实数
4:
开始
x 3
x3
Y
N
x a.bc
N
y x 2 3x 1
输出
Y
c5
x a 0.1 b
输出
x a 0.1 b 1
席上,看似不经意地问了壹句。“愚弟只是去更衣。”“哟,四哥,您这个新郎官不见了,害得弟弟们想敬杯喜酒都没机会!”“好, 谢谢十弟。”“四哥,您刚才已经喝了不少,这杯,就由愚弟替您喝下吧。”“十三弟,放心吧,四哥的酒量还应承得下来。”“四哥, 您喝了十哥的酒,那九弟的酒?”“好,谢谢九弟。”“八弟来敬四哥壹杯!”“好,谢谢八弟!”“四弟,三哥也来凑个热闹,敬你 壹杯!”“谢谢三哥!”“四哥,十四弟恭敬您两杯!这喜事连连,喜酒也要成双才是”“谢谢十四弟!”“十四弟,四哥壹个人已经 喝了这么多,到你这儿,净出夭蛾子,怎么敬出双杯的来了?既然是喜事连连,那就由为兄代为喝下,也借机会沾沾喜气儿!”“十三 哥,不带这样的!你的酒,咱们单挑。”“怎么?十三弟连四哥的喜酒也要替喝?”“太子殿下,四哥喝得太多了!”“这是喜酒,哪 有替喝的道理。那么,本王敬的酒,十三弟也要替喝?”“这„„”“四弟谢太子殿下!”新郎官对于所有兄弟敬来的喜酒,壹律来者 不拒,也对十三阿哥替喝的请求壹概不予理会。开席之前,十四阿哥和十阿哥就卯足了劲儿,非要把四哥灌醉不可。也难怪这两个人如 此算计,原本十四阿哥就对皇阿玛赐婚给四哥很是不满,因此联合着平时跟自己关系非常要好的十哥,壹起向四哥发难。其它兄弟见这 两个活宝挑了头儿,平日里也没有什么机会能捉弄四哥,现在有这么壹个大好机会,又借着酒劲儿,众人拾柴火焰高,攒足了力气准备 跟四哥拼酒。太子和三阿哥作为兄长,虽然不至于和其它兄弟们胡闹,但是这种捉弄四弟的机会实在是太少了。平时里四弟做事严谨、 滴水不露,让这两位兄长颇是头痛不已,今天能这么壹个大好机会,虽然跟政务无关,但放弃了也实在是可惜。但是,众人轮番上阵的 结果,却是大大出乎意料:这新郎官怎么没有丝毫的推让,简直就是来者不拒,实打实地全部喝干!这下子,刚刚还喧闹的场合,即刻 安静了下来,众人都面面相觑,不知所以:壹会儿还洞房花烛夜呢,四哥(弟)怎么面对新娘子?第壹卷 第壹章 遇险秋水碧连天。 午后的京郊西南,官道上十来骑人马卷起阵阵风尘。为首壹个男子,30多岁,身形清瘦,面容冷峻,目光清洌、威严,天然壹股不怒自 威的气势,即使壹身深蓝色的便袍,也难以掩饰天生的贵胄之气。十来个随从,三个家仆打扮,其余的全部是侍卫。不多时,壹行人就 要来到他们的目的地:宝光寺,远远地,他们已经能够看得到林木掩映间的寺庙了。众人刚刚暗自松了壹口气,又立即失声惊呼,因为 他们同时看了冲天的火光!“保护好王爷!”侍卫首领壹边急呼 ,壹边与其它壹起,立即将为首的男子围在中间,同时马不停蹄,直 接冲

【优化指导】高考数学总复习 第9章 第1节 算法与程序框图课件 新人教A版

【优化指导】高考数学总复习 第9章 第1节 算法与程序框图课件 新人教A版

2x x<0,
写出求该
函数的函数值的算法及程序框图.
【思路点拨】求分段函数值的算法需用条件,先写算
法,再用条件结构画程序框图.
【规范解答】算法如下:
第一步:输入x;
2分
第二步:如果x>0,则y=-2x;如果x=0,则y=0;
如果x<0,则y=2x;
4分
第三步:输出函数值y.
6分
相应的程序框图如图所示. 12分
[理:必修③第一章] [文:选修1-2第四章]
第一节 算法与程序框图
1.了解算法的含义,了解算法的思想. 2.理解算法框图的三种基本结构:顺序结构、条件结 构、循环结构. 3.了解程序框图,了解工序流程图(即统筹图). 4.能绘制简单实际问题的流程图,了解流程图在解决实 际问题中的作用. 5.会运用结构图梳理已学过的知识、整理收集到的资料 信息.
2.循环结构的要素: 利用循环结构表示算法时,在画出算法的框图之前就应 该分析清楚循环结构的三要素: 循环变量、循环体、循环终止条件,只有准确地把握了 这三个要素,才能清楚地画出循环结构的算法框图. ①循环变量:一般分为累计变量和计数变量,应明确它 的初始值、步式(指循环变量每次增加的值)、终值. ②循环体:也称循环表达式,它是算法中反复执行的部 分. ③循环的终止条件:算法框图中用一个判断框来表示, 用它判断是否继续执行循环体.
1.算法有以下特点:(1)有限性:算法的步骤是有限的, 应在有限步骤内求解某类问题,不能无限继续下去.
(2)确定性:算法的每一步骤和次序都必须是确定的. (3)有效性:算法的每一步骤都必须是有效的,可行的. (4) 不 唯 一 性 : 求 解 某 一 问 题 的 算 法 可 以 是 多 个 , 不 唯 一. (5)概括性:写出的算法必须能解决一类问题.

10算法与程序框图复习课PPT课件

10算法与程序框图复习课PPT课件

2.设计算法的程序框图的步骤 第一步,用自然语言表述算法步骤. 第二步,确定每一个算法步骤所包含的逻 辑结构,并用相应的程序框图表示,得到该步 骤的程序框图. 第三步,将所有步骤的程序框图用流程线 连接起来,并加上终端框,得到表示整个算法 的程序框图.
3.三种逻辑结构的程序框图的应用 顺序结构在程序框图中的体现就是用流 程线将程序框自上而下地连接起来,按顺序 执行算法步骤. 条件结构在程序框图中是用判断框来表 示,判断框内写上条件,然后它有两个出口 ,分别对应着条件满足和条件不满足时所执 行的不同操作.
首先确定托运行李的费用y与行李
重量x的关系式,然后根据条件结构确定①②
的内容.
由题意知,托运行李的费用y与行
李重量x的关系式为
0.53x y= 50×0.53+(x-50)×0.85
(x≤50) (x>50)

y=0.53x 0.85x-16
(x≤50) (x>50)
故①处应填写y=0.85x-16;②处应填写
1.如果执行下面的程序框图, 那么输出的S=( C )
A.7 B.9
C.11 D.13 对于i=1,S=1时,执行
i=i+1后,i=2,执行S=S+2后, S=3;
当i=2,S=3时,执行i=i+1后, i=3,执行S=S+2后,S=5;
当i=3,S=5时,执行i=i+1后,i=4,执行 S=S+2后,S=7;
对于i=1,S=1时,执行S=S+i后,S=2, 执行i=i+1后,i=2;
i=2,S=2 时 , 执 行 S=S+i 后 , S=4 , 执 行 i=i+1后,i=3;

人教版高中数学【必修三】[知识点整理及重点题型梳理]_算法与程序框图_基础

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习算法与程序框图【学习目标】1.初步建立算法的概念;2.让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6.掌握画程序框图的基本规则,能正确画出程序框图.【要点梳理】【算法与程序框图 397425 知识讲解1】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等.用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点.(3)程序语言:算法最终可以通过程序的形式编写出来,并在计算机上执行.要点诠释:算法的特点:思路简单清晰,叙述复杂,步骤繁琐,计算量大,完全依靠人力难以完成,而这些恰恰就是计算机的特长,它能不厌其烦地完成枯燥的、重复的繁琐的工作,正因为这些,现代算法的作用之一就是使计算机代替人完成某些工作,这也是我们学习算法的重要原因之一.事实上,算法中出现的程序只是用基本的语句把程序的主要结构描述出来,与真正的程序还有差距,所以算法描述的许多程序并不能直接运行,要运行程序,还要把程序按照某种语言的严格要求重新改写才行.【算法与程序框图 397425 知识讲解2】要点二、程序框图1、程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.23一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字.4、算法的三种基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构.见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P 是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.见示意图要点诠释:条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.①当型循环结构,如左下图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构,继续执行下面的框图.②直到型循环结构,如右下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立,依次重复操作,直到某一次给定的判断条件P成立为止,此时不再返回来执行A框,离开循环结构,继续执行下面的框图.见示意图要点诠释:循环结构中使用什么样的条件控制循环的开始和结束,要清楚满足某个条件的变量的次数与循环次数的联系与区别.误区提醒1、框图中的流程线不能出现交叉的现象.若有交叉,则程序语句无法写出;2、各种框图有其固定的格式和作用,不要乱用.如条件结构中不要忘了“是”与“否”,流程线不要忘记画箭头;3、条件分支结构的方向要准确;4、循环结构中,计数变量要赋初值,计数变量的自加不要忘记,自加多少不能弄错.另外计数变量一般只负责计数任务;5、循环结构中循环的次数要严格把握,区分“<”与“≤”等.循环变量的取值与循环结构(当型与直到型)有关,需区分清楚.另外,同一问题用两种不同的结构解决时,其判断条件恰是相反的;6、程序框图不要出现死循环(无限步的循环).【典型例题】类型一:算法的概念例1.(1)下列描述不能看作算法的是().A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生明确的结果.其中正确的有().A.1个B.2个C.3个D.4个【答案】(1)C (2)C【解析】(1)A、B、D都描述了解决问题的过程,可以看作算法.而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③④正确.而解决某一类问题的算法不一定是唯一的,故①错误.【总结升华】算法一般是机械的,有时需要进行大量的重复计算,只要按部就班去做,总能算出结果.通常把算法过程称为“数学机械化”,数学机械化的最大优点是它可以借助计算机来完成.实际上处理任何问题都需要算法,如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续…….举一反三:【变式1】我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的有().A.1个B.2个C.3个D.4个【答案】D类型二:算法的描述例2.写出求方程组32142x yx y-=⎧⎨+=-⎩①②的解的算法.【解析】可利用消元法或代入法求解.算法一:第一步:②×2+①,得到5x=14-4.③第二步,解方程③,可得x=2.④第三步,将④代入②,可得2+y=-2.⑤第四步,解⑤得y=-4.第五步,得到方程组的解为24 xy=⎧⎨=-⎩算法二:第一步,由②式移项可以得到x=-2-y.③第二步,把③代入①,得y=-4.④第三步,把④代入③,得x=2.第四步,得到方程组的解为24 xy=⎧⎨=-⎩.【总结升华】通过求解二元一次方程组可知,求解某个问题的算法不一定唯一.对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用的算法是最优算法.举一反三:【变式1】试描述求解三元一次方程组1233162x y zx y zx y z++=⎧⎪--=⎨⎪--=-⎩①②③的算法步骤.【解析】算法1:第一步,①+③,得x=5.④第二步,将④分别代入①式和②式可得73 1y zy z+=⎧⎨+=-⎩⑤⑥.第三步,⑥-⑤,得y=-4.⑦第四步,将⑦代入⑤可得z=11.第五步,得到方程组的解为5411xyz=⎧⎪=-⎨⎪=⎩.算法2:第一步,①+②,得2x -y=14. ④ 第二步,②-③,得x -y=9. ⑤ 第三步,④-⑤,得x=5. ⑥第四步,将⑥代入⑤式,得y=-4. ⑦ 第五步,将⑥和⑦代入①式,得z=11.第六步,得到方程组的解为5411x y z =⎧⎪=-⎨⎪=⎩.类型三:算法的设计【算法与程序框图 397425 算法中的例1】例3.设计一个算法,从3个互不相等的数中选出最小的一个数.,并用数学语言表达. 【解析】第一步:假定这3个数中第一个是“最小值”;第二步:将第二个数与“最小值”比较,如果它小于此“最小值”,那么就用这个数取代“最小值”; 第三步:再重复第二步,将第三个数与最小值比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第四步:此时的“最小值”就是三个数中的最小值,输出最小值.所谓的算法,就是解决该类问题的一般步骤. 举一反三:【变式1】任意给定一个正整数n ,设计出判断n 是否为质数的一个算法. 【解析】第一步,当n =1时,n 既不是质数,也不是合数; 第二步,当n =2时,n 是质数;第三步,当n ≥3时,从2到n -1依次判断是否存在n 的因数(因数1除外),若存在,则n 是合数;若不存在,则n 是质数.类型四:顺序结构的应用【算法与程序框图 397425 程序框图中的例1】 例4.对于一个二次函数2y ax bx c =++,求出顶点坐标.【解析】算法步骤:S1 用户输入二次函数的系数a,b,c ;S2 计算顶点坐标24,24b ac b x y a a-=-=(赋值);S3 输出顶点坐标.举一反三:【变式1】已知x=40,y=3.画出计算z=15x+8y 的值的程序框图. 【答案】程序框图如下图所示.类型五:条件结构的应用例5.已知函数232 1 (0)1 (01)2 (1)x x y x x x x x -<⎧⎪=+≤<⎨⎪+≥⎩,写出求该函数的函数值的算法,并画出程序框图.【解析】该函数是分段函数,因此当给出一个自变量x 的值时,需先判断x 的范围,然后确定利用哪一段的解析式求函数值.画程序框图时,必须采用条件分支结构,因为函数解析式分了三段,所以需要两个判断框,即进行两次判断.算法如下:第一步,输入x .第二步,如果x <0,那么使y=2x -1,输出y ;否则,执行第三步. 第三步,如果0≤x <1,那么使y=x 2+1,输出y ;否则,执行第四步.第四步,y=x 2+2x 第五步,输出y .程序框图如下图所示.【总结升华】凡是必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构.而像本题求分段函数的函数值的程序框图的画法,如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需引入两个判断框;分四段的函数需引入三个判断框,依此类推.判断框内的内容是没有固定顺序的.举一反三:【变式1】已知函数 1 (0)()0 (0)1 (0)x f x x x ->⎧⎪==⎨⎪<⎩, 写出求函数()f x 的任一函数值的一个算法并画出程序框图.【解析】记y=f (x).算法:第一步:输入x .第二步:如果x >0,那么使y=-1;如果x=0,那么使y=0;如果x <0,那么使y=1. 第三步:输出函数值y . 程序框图如下图所示.【变式2】如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.【答案】开始结束类型六:循环结构的应用例6.设计一个计算1+3+5+7+…+999的值的算法,并画出程序框图.【解析】算法一:当型循环:第一步,令S=0,i=1.第二步,若i≤999成立,则执行第三步;否则输出S,结束算法.第三步,S=S+i.第四步,i=i+2,返回第二步,程序框图如图(1).算法二:直到型循环:第一步,令S=0,i=1.第二步,S=S+i.第三步,i=i+2.第四步,若i不大于999,转第二步;否则,输出S,结束算法.程序框图如图1-1-8(2).【总结升华】注意直到型循环和当型循环的区别.直到型循环先执行i=i+2,再判断i>999是否成立,若成立才输出S;而当型循环先判断i≤999是否成立,若成立,则执行i=i+2,直到条件i≤999不成立才结束循环,输出S.举一反三:【变式1】给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框处①和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤31?;p=p+i+1C.i≤31?;p=p+i D.i≤30?;p=p+i【答案】D【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1,即1+1=2;第3个数比第2个数大1,即2+2=4;第4个数比第3个数大1,即4+3=7;…故②中应填写p=p+i故选:D.【变式2】(2016春河南周口期中)设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图:类型七:利用算法和程序框图解决实际问题例7.北京获得了2008年第29届奥运会主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.试画出该过程的程序框图.【解析】本题为算法中与现实生活相联系的题目,从选举的方法看,应选择循环结构来描述算法.如图所示:【总结升华】解决与现实相关的问题时首先要理清题意,此循环结构中对用哪一个步骤控制循环,哪一个步骤作为循环体,要有清晰的思路.举一反三:【变式1】儿童乘坐火车时,若身高不超过1.1 m,则无需购票;若身高超过1.1 m,但不超过1.4 m,可买半票;若超过1.4 m,应买全票,请设计一个算法,并画出程序框图.【解析】根据题意,该题的算法中应用条件结构,首先以身高为标准,分成买和免票,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h.第二步:如果h≤1.1 m,那么免费乘车,否则若h≤1.4 m,则买半票,否则买全票.精品文档 用心整理资料来源于网络 仅供免费交流使用 程序框图如下图所示.【总结升华】本题的程序框图中有两个判断点,一个是以1.1 m 为判断点,1.1 m 把身高分为两段,在大于1.1 m 的一段中,1.4 m 又将其分两段,因此1.4 m 这个判断是套在1.1 m 的判断里的.所以我们用到两个条件结构.。

高中同步讲义 程序框图

授课主题算法与程序框图教学目的识别运行程序框图和完善程序框图是高考的热点.解答这一类问题,第一,要明确程序框图的顺序结构、条件结构和循环结构;第二,要识别运行程序框图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对程序框图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.教学重点①了解二分法求方程近似解的方法,体会函数的零点与方程根之间的联系,形成用函数观点处理问题的能力.②会利用函数的图象求方程的解的个数以及研究一元二次方程的根的分布.教学内容.复习检查1.算法与程序框图(1)算法的定义:算法是指按照解决某一类问题的和的步骤.(2)程序框图:①程序框图又称,是一种用、及来表示算法的图形.②程序框图通常由程序框和流程线组成.③基本的程序框有、、、.(3)三种基本逻辑结构:名称内容顺序结构条件结构循环结构定义由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤的情况,反复执行的步骤称为循环体程序框图2.基本算法语句(1)输入、输出、赋值语句的格式与功能:语句一般格式功能输入INPUT“提示内容”;变量输入信息语句输出PRINT“提示内容”;表达式输出常量、变量的值和系统信息语句赋值变量=表达式将表达式所代表的值赋给变量语句(2)条件语句的格式及框图:①IF-THEN格式:②IF-THEN-ELSE格式:(3)循环语句的格式及框图:①UNTIL语句:②WHILE语句:1.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.5B.9C.14 D.412.如图是一个算法流程图,则输出的k的值是________3.(2014·深圳调研)若执行图中的框图,输入N=13,则输出的数等于________.4.运行如图所示的程序框图,若输出的结果是62,则判断框中整数M的值是________.1.(2013·新课标卷Ⅰ)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]2.(2013·安徽高考)如图所示,程序框图(算法流程图)的输出结果为()A.34 B.16C.1112D.25243.(2013·南昌模拟)若如下框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是( )A .k =9?B .k ≤8?C .k <8?D .k >8?变式练习:1.(2013新课标全国Ⅰ,5分)执行如图的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]2.(2013新课标全国Ⅱ,5分)执行下面的程序框图,如果输入的N =10,那么输出的S =( )A. 1+12+13+…+110B. 1+12!+13!+ (110)C. 1+12+13+…+111D. 1+12!+13!+ (111)3.(2013浙江,5分)某程序框图如图所示,若该程序运行后输出的值是95,则( )A.a=4B.a=5C.a=6 D.a=74.(2013重庆,5分)执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7C.k≤8 D.k≤9解析:本题考查算法与框图,意在考查考生知识交汇运用的能力.首次进入循环体,s=1×log23,k=3;第二次进入循环体,s=lg 3lg 2×lg 4lg 3=2,k=4;依次循环,第六次进入循环体,s=3,k=8,此时终止循环,则判断框内填k≤7.答案:B1角度一与统计的交汇问题1.(2013·荆州模拟)图(1)是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14.图(2)是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.7 B.8C.9 D.10角度二与函数的交汇问题2.(2014·北京海淀模拟)执行如图所示的程序框图,输出的k值是()A .4B .5C .6D .7角度三 与概率的交汇问题3.(2013·洛阳统考)执行如图所示的程序框图,任意输入一次x (0≤x ≤1)与y (0≤y ≤1),则能输出数对(x ,y )的概率为( )A.14B.13C.23D.34[类题通法]解决算法的交汇性问题的方法(1)读懂程序框图、明确交汇知识; (2)根据给出问题与程序框图处理问题; (3)注意框图中结构的判断.考点三基本算法语句[典例] (2014·东北三校模拟)下面程序运行的结果为( )n =10S =100DOS =S -nn =n -1LOOP UNTIL S<=70PRINT n ENDA .4B .5C .6D .7[类题通法]1.输入语句、输出语句和赋值语句基本对应于算法的顺序结构.2.在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.[针对训练]运行下面的程序时,WHILE循环语句的执行次数是()N=0WHILE N<20N=N+1N=N*NWENDPRINT NENDA.3 B.4C.15 D.19变式练习6.(2013湖北,5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i=________.7.(2012新课标全国,5分)如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数8.(2012天津,5分)阅读下面的程序框图,运行相应的程序,当输入x的值为-25时,输出x的值为()A.-1B.1C.3 D.99.(2012北京,5分)执行如图所示的程序框图,输出的S值为()A.2 B.4C.8 D.1610.(2011新课标全国,5分)执行右面的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440 D.504011.(2011天津,5分)阅读下边的程序框图,运行相应的程序,则输出i的值为()A.3 B.4C.5 D.612.(2010浙江,5分)某程序框图如图所示,若输出的S=57,则判断框内为()A .k >4?B .k >5?C .k >6?D .k >7?13.(2010陕西,5分)如图是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为( )A .S =S +x nB .S =S +x nnC .S =S +nD .S =S +1n14.(2009·浙江,5分)某程序框图如图所示,该程序运行后输出的k 的值是( )A.4B.5C.6 D.715.(2012广东,5分)执行如图所示的程序框图,若输入n的值为8,则输出s的值为________.16.(2011山东,4分)执行下图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是__________.17.(2011安徽,5分)如图所示,程序框图(算法流程图)的输出结果是______________.18.11.(2013陕西,5分)根据下列算法语句,当输入x为60时,输出y的值为()输入x;If x≤50 Theny=0.5*xElsey=25+0.6*(x-50)End If输出y.A.25B.30C.31 D.612.(2011江苏,5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为____.Read a,bIf a>b Thenm←aElsem←bEnd IfPrint m1.(2014·大连模拟)在如图所示的程序框图中,输入A=192,B=22,则输出的结果是()A.0B.2C.4D.6IF a<b THENx=a+bELSEx=a-bEND IF(第1题图)(第2题图)2.当a=1,b=3时,执行完如上图的一段程序后x的值是()A.1 B.3 C.4 D.-23.(2014·长春模拟)如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x?B.x>c?C.c>b?D.b>c?(第3题图)(第4题图)4.(2014·哈师大附中)按如上图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是()A.5 B.6 C.7 D.85.(2013·东城模拟)某程序框图如图所示,执行该程序,若输入的x值为5,则输出的y值为()A.-2 B.-1 C.12D.2(第5题图)(第6题图)6.(2014·石家庄模拟)阅读程序框图(如上图),如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x≤log23}B.{x∈R|-2≤x≤2}C.{x∈R|0≤x≤log23,或x=2}D.{x∈R|-2≤x≤log23,或x=2}7.(2013·安徽四校联考)如图是寻找“徽数”的程序框图.其中“S MOD 10”表示自然数S被10除所得的余数,“S\10”表示自然数S被10除所得的商.则根据上述程序框图,输出的“徽数”S 为()A.18 B.16 C.14 D.12(第7题图)(第8题图)8.(2013·西安模拟)如果执行如上图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A.A+B为a1,a2,…,a N的和B.12(A+B)为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中的最小数和最大数D.A和B分别是a1,a2,…,a N中的最大数和最小数9.(2014·台州模拟)按如图所示的程序框图运算,若输入x=20,则输出的k=________.(第9题图)(第10题图)10.(2013·湖南高考)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________.11.(2014·湖北八校联考)执行如图所示的程序框图,输出的S的值为________.(第11题图)(第12题图)12.(2014·湘潭模拟)执行如上图所示的程序框图,输出的结果是________.21。

人教B版高中数学必修3-1.1《算法与程序框图》复习课件

Y
N
y x 2 3x 1
输出
y
x x 0 .1
结束
开始
P15习题1—1(B)
1:
b d 输入分数 , a c
bc x ad bc 约简 x ad
输出
x
结束
开始
P15习题1—1(B) 2:
S=0,i=1
i 50
Y
N
S=S+i i=S+(i+1)
输出S 结束
3:
开始
P15习题1—1(B)(1):
自然语言、数学语言、形式语言、框图。
程序框图
用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
四种图框类型 输入、输出框 处理框 判断框 起止框
算法的三种基本逻辑结构和框图表示
顺序结构 条件分支结构 循环结构
A B A
Y
p
N B
p
Y
N
A
考点1
理解算法与程序框图
例1.看下面的程序框图,分析算法的作用
输出Sum
输出Sum 结束
结束
考点2
用程序框图表达算法 开始 i=0,Sum=1 i=i+1 Sum=Sum*i 否 i>=100? 是 输出Sum 结束
设计一算法,画出流程图 求积:1×2×3×…×100,
开始
P14练习A
1:
S=0,i=1
i 10
Y
N
S=S+i i=i+1
输出S 结束
开始
(1)
开始
(2)
开始
输入x
输入a,b

y=3*x*x+4*x+5 是 输出y 输出a,b 输出b,a a<b?

算法与程序框图、基本算法语句


A. 3 C. 127
B.126 D. 128
栏目 导引
第十章
统计、统计案例及算法初步
(2)(2014· 吉林长春市调研测试 )如图的程序框图, 如果输入三 个实数 a, b, c,要求输出这三个数中最大的数,那么在空 白的判断框中,应该填入下面四个选项中的( A )
A. c>x? C. c>b?
Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程 序 重复运行n次后,统计记录了输出y的值 为i(i=1,2,3) 的 频 数.以下是甲、乙所作频数统计表的部分数据. 甲的频数统计表(部分) 运行次数n 30 … 2 100 输出y的值为1 输出y的值为2 输出y的值为 3的频数 的频数 的频数 14 6 10 … … … 1 027 376 697
栏目 导引
第十章
统计、统计案例及算法初步
1.(1) (2014· 北京海淀区期中练习)某程序框图如图所示,执 行该程序,若输入的 x 值为 5,则输出的 y 值为( C )
A.- 2 1 C. 2
B.- 1 D. 2
栏目 导引
第十章
统计、统计案例及算法初步
(2)(2014· 湖南省五市十校联合检测 )执行如图所示的程序框 2 013 2 014 图,输出的结果是 ____________ .
栏目 导引
第十章
统计、统计案例及算法初步
程序框图与概率、统计的交汇
(2013· 高考四川卷)某算法的程序框图如图所示,其 中输入的变量 x 在 1,2,3, …,24 这 24 个整数中等可能 随机产生.
栏目 导引
第十章
统计、统计案例及算法初步
(1)分别求出按程序框图正确编程运行时输出y的值为i的 概 率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考总复习:算法与程序框图 编稿:孙永钊 审稿:张林娟 【考纲要求】 1.算法的含义、程序框图 (1)了解算法的含义,了解算法的思想; (2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。 2.基本算法语句 理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。 【知识络】

【考点梳理】 考点一、算法 1.算法的概念 (1)古代定义:指的是用阿拉伯数字进行算术运算的过程。 (2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。 (3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。 2.算法的特征: ①指向性:能解决某一个或某一类问题; ②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续. ③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行. ④构造性:一个问题可以构造多个算法,算法有优劣之分。 3.算法的表示方法: (1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义; (2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。 要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。 考点二:程序框图 1. 程序框图的概念: 程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。 2.程序框图常用符: 图形符 名称 含义 开始/结束框 用于表示算法的开始与结束

输入/输出框 用于表示数据的输入或结果的输出

处理框 描述基本的操作功能,如“赋值”操作、数学运算等 判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N” 流程线 表示流程的路径和方向 连接点 用于连接另一页或另一部分的框图

注释框 框中内容是对某部分流程图做的解释说明

3.画程序框图的规则: (1)使用标准的框图的符; (2)框图一般按从上到下、从左到右的方向画; (3)除判断框图外,大多数框图符只有一个进入点和一个退出点。判断框是具有超过一个退出点的唯一符; (4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果; (5)在图形符内描述的语言要非常简练清楚。 4.算法的三种基本逻辑结构: (1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。这是任何一个算法都离不开的基本结构。 (2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。它是依据指定条件选择执行不同指令的控制结构。 (3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。

考点三:基本算法语句

程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句 、赋值语句、条件语句和循环语句。以下均为BASIC语言。 1.输入语句 这个语句的一般格式是:INPUT “提示内容”;变量 其中,“提示内容”一般是提示用户输入什么样的信息。每次运行程序时,计算机每次 都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。 INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为: INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,… 要点诠释: ①“提示内容”与变量之间必须用分“;”隔开。

②各“提示内容”之间以及各变量之间必须用逗“,”隔开,但最后的变量的后面不需要。

2.输出语句 它的一般格式是:PRINT “提示内容”;表达式 同输入语句一样,表达式前也可以有“提示内容”。 输出语句的用途: (1)输出常量,变量的值和系统信息; (2)输出数值计算的结果。 3.赋值语句 用来表明赋给某一个变量一个具体的确定值的语句。它的一般格式是:变量=表达式 赋值语句中的“=”叫做赋值。 赋值语句的作用: 先计算出赋值右边表达式的值,然后把这个值赋给赋值左边的变量,使该变量的值等于表达式的值。 要点诠释: ①赋值左边只能是变量名字,而不能是表达式。如:2=X是错误的。 ②赋值左右不能对换。如“A=B”与“B=A”的含义运行结果是不同的。 ③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)。 ④赋值“=”与数学中的等意义不同。 4.条件语句 算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句。 它的一般格式是:(IF-THEN-ELSE格式) IF 条件 THEN 语句1 ELSE 语句2 END IF

当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句1,否则执行ELSE后的语句2。 在某些情况下,也可以只使用IF-THEN语句:(即IF-THEN格式) IF 条件 THEN 语句 END IF

计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。

要点诠释:条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。

5.循环语句 算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构,即WHILE语句和UNTIL语句。 (1)WHILE语句的一般格式是: WHILE 条件 循环体 WEND 其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。 (2)UNTIL语句的一般格式是: DO 循环体 LOOP UNTIL 条件

要点诠释:当型循环在进行循环前对控制条件进行判断,当条件满足时就反复循环,不满足就停止;直到型循环在进行一次循环后,对控制条件进行判断,当条件不满足时就反复循环,满足就停止。 1.算法与框图是新课标教材中新增的内容,但也曾与其它板块知识结合出现在前几年的各类考试中,其思想方法渗透在高中数学课程的其他相关内容中。考题应考查算法的思想,基本结构为主,多以选择题、填空题的形式呈现。 2.根据本章知识的特点,复习中应加强对算法思想的理解,了解算法的基本逻辑结构,掌握算法基本语句的使用。 3.仔细审题.在画流程图时首先要进行结构的选择,套用公式.若求只含有一个关系的解析式的函数的函数值时,只用顺序结构就能够解决;若是分段函数或执行时需要先判断后才能执行后继步骤的,就必须引入选择结构;如果问题里涉及了许多重复的步骤,且数之间有相同的规律,就可引入变量,应用循环结构.当然应用循环结构里边一定要用到顺序结构与选择结构.循环结构有两种:直到型和当型,两种都能解决问题. 【典型例题】 类型一:算法的含义 【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法. 【思路点拨】先根据表面积算出球的半径,再根据球的体积公式求出球的体积,将上面步骤分解并分别写出即可得到算法。 【解析】算法如下: 第一步,s=16π. 第二步,计算4SR

第三步,计算343RV 第四步,输出V. 【总结升华】给出一个问题,设计算法应该注意: (1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况; (2)将此问题分成若干个步骤; (3)用简练的语句将各步表述出来. 举一反三: 【变式1】设计一个计算1×3×5×7×9×11×13的算法.图中给出程序的一部分,则在横线①上不能填入的数是( ) A.13 B.13.5 C.14 D.14.5 【解析】当I<13成立时,只能运算 1×3×5×7×9×11.故选A.

【变式2】写出找出1至1 000内7的倍数的一个算法. 解答:算法1: S1 令A=0; S2 将A不断增加1,每加一次,就将A除以7,若余数为0,则找 到了一个7的倍数,将其输出; S3 反复执行第二步,直到A=1 000结束. 算法2: S1 令k=1; S2 输出k·7的值; S3 将k的值增加1,若k·7的值小于1 000,则返回S2,否则结束. 算法3: S1 令x=7; S2 输出x的值;

S=1 I=3 While I< ① S=S×I I=I+2 End While Print S End

相关文档
最新文档