第12章 光刻:掩膜,光刻胶和光刻机

合集下载

光刻机的结构

光刻机的结构

光刻机的结构光刻机是一种用于半导体制造的关键设备,它在芯片制造过程中扮演着重要的角色。

光刻机的结构可以分为以下几个部分。

一、光源系统光刻机的光源系统是指提供光源的部分,它通常由激光器和光学系统组成。

激光器是产生高功率、高稳定性的激光光源的关键部件,而光学系统则负责将激光束聚焦到光刻胶上,以实现图形的投影。

二、掩膜系统掩膜系统是光刻机中用于制作掩膜的部分。

掩膜是一种具有特定图形的透明介质,它被用来屏蔽激光束,使其只照射到光刻胶上的特定区域。

掩膜系统通常由掩膜台和对准系统组成,掩膜台用于固定掩膜,而对准系统则用于确保掩膜与光刻胶之间的对准精度。

三、光刻胶涂覆系统光刻胶涂覆系统用于将光刻胶均匀地涂覆到芯片表面。

光刻胶是一种感光材料,它可以在光的作用下发生化学变化,从而形成芯片上的图形。

光刻胶涂覆系统通常由涂覆机、旋涂机和烘烤机组成,涂覆机用于将光刻胶均匀地涂覆到芯片表面,旋涂机用于将多余的光刻胶旋掉,而烘烤机则用于加热光刻胶,加快其固化过程。

四、曝光系统曝光系统是光刻机的核心部分,它用于将掩膜上的图形投影到光刻胶上。

曝光系统通常由光学系统和运动系统组成,光学系统用于将掩膜上的图形聚焦到光刻胶上,而运动系统则用于控制光刻胶和掩膜之间的相对位置,以实现图形的精确投影。

五、显影系统显影系统用于去除未曝光的光刻胶。

显影是利用化学溶液将未曝光的光刻胶溶解掉的过程,从而形成芯片表面的图形。

显影系统通常由显影机和清洗机组成,显影机用于将芯片浸泡在显影溶液中,清洗机用于去除残留的显影溶液和光刻胶。

光刻机的结构如上所述,它的每个部分都起着关键的作用,只有各部分协同工作,才能实现精确的图形投影和高质量的芯片制造。

随着半导体技术的不断发展,光刻机的结构也在不断创新和改进,以满足制造更小、更快、更强大的芯片的需求。

光刻机的结构对于芯片制造的成功至关重要,因此在设计和制造过程中需要严格控制各个部分的精度和质量,以确保芯片的可靠性和稳定性。

光刻的概念

光刻的概念

光刻的概念
光刻是一种用于精密制造微电子芯片的关键工艺。

它是将光源通过掩膜形成的图案,映射在光刻胶层上的过程。

光刻是半导体工艺中最重要的步骤之一,常用于制造芯片、平板显示器和其他微加工领域。

光刻的过程主要包括光源、掩膜、光刻机和光刻胶四个部分。

首先,光源产生高能紫外光,并通过光学系统聚焦到掩膜上。

掩膜是一张玻璃板上刻有芯片设计图案的薄膜,它将设计图案投影到光刻胶层上。

当紫外光通过掩膜时,它会被掩膜上的图案部分阻挡,只有透过空白区域的光能够通过。

这样,光刻胶层上的光敏物质会发生化学反应,使得光刻胶在暴露部分变得溶解性,而未暴露的部分保持不变。

下一步是将光刻胶进行显影,即将光刻胶层中溶解的部分去除,只保留需要的图案。

然后,在光刻胶层的图案上进行材料的蚀刻或沉积,从而形成芯片所需的结构。

最后,去除剩余的光刻胶,留下清晰的图案,完成光刻。

光刻技术的精度和分辨率决定了芯片的制造质量。

目前,随着微电子技术的不断发展,光刻技术也得到了不断的改进。

例如,通过使用更高分辨率的掩膜和更强的光源,可以实现更小的芯片特征尺寸,提高芯片的集成度和性能。

总而言之,光刻是微电子制造中至关重要的工艺,它通过将光源的图案映射到光刻胶层上,实现微芯片的精确加工。

它在信息技术、通信、医疗设备等领域都发挥着重要的作用,并为我们带来了丰富的科技创新与发展。

euv光刻机的基本结构

euv光刻机的基本结构

euv光刻机的基本结构EUV光刻机的基本结构EUV光刻机是一种用于制造微电子器件的关键设备,其基本结构由以下几个部分组成:光源系统、光学系统、掩膜系统、投影光学系统和步进系统。

光源系统是EUV光刻机的核心部分之一,它产生并提供高能量的极紫外光源。

在EUV光刻中,使用的是波长为13.5纳米的极紫外光,因为这种波长能够提供更高的分辨率和更小的特征尺寸。

为了产生这种波长的光源,EUV光刻机采用了离子激发的方式,通过将金属目标加热至极高温度,使其产生高能量的离子束,然后经过一系列的光学元件,将离子束转化为极紫外光。

光学系统是EUV光刻机中的另一个重要组成部分,它主要用于对极紫外光进行操控和处理。

光学系统中包括一系列的反射镜,这些反射镜能够高效地反射极紫外光,并将其聚焦到光刻胶上,形成所需的图案。

由于极紫外光具有很高的能量和短的波长,所以在光学系统的设计和制造过程中需要考虑光学元件的材料和表面处理等因素,以确保光学系统的性能和稳定性。

掩膜系统用于制作光刻胶上的图案,它由掩膜和掩膜台组成。

掩膜是一种特殊的光刻胶模板,上面有所需的图案,通过掩膜台将掩膜对准光刻胶,并通过紫外光的照射,将图案转移到光刻胶上。

掩膜系统的精度和稳定性对于光刻胶的图案转移非常重要,因此在制造和使用过程中需要进行精确的校准和控制。

投影光学系统是EUV光刻机中的另一个重要组成部分,它通过一系列的透镜将掩膜上的图案投影到光刻胶表面,形成所需的微型结构。

投影光学系统需要具备高分辨率、高透射率和高稳定性等特点,以确保图案的准确转移和重复性。

为了满足这些要求,投影光学系统采用了多层反射镜技术,能够在极紫外光的波长范围内实现高透射率和高反射率。

步进系统是EUV光刻机的最后一个关键部分,它用于控制掩膜和光刻胶的相对运动,以实现图案的重复制造。

步进系统通常采用线性电机和精密的导轨,能够实现高精度的位置控制和运动平稳性。

同时,步进系统还需要具备高速度和高加速度的特点,以提高光刻的效率和生产能力。

光刻机、刻蚀机、离子注入机解读

光刻机、刻蚀机、离子注入机解读

劣势:生产效率极低,无法用于规模化生产。
PART 1.3 光刻机的分类及优劣势
沉浸式光刻机 在传统的光刻技术中,其镜头与光刻胶 之间的介质是空气,而所谓浸入式技术 是将空气介质换成液体。实际上,浸入 式技术利用光通过液体介质后光源波长 缩短来提高分辨率,其缩短的倍率即为 液体介质的折射率。
PART 1.4 2.3 光刻机的发展及市场组成 能源供应丰裕
PART 1.3 1.5 光刻机的分类及优劣势 国内外光刻机生产企业
上海微电子装备有限公司 上海微电子装备有限公司于2002年在上海成立,公司 主要致力于大规模工业生产的投影光刻机研发、生产、 销售与服务。该公司现已成为世界上继欧洲和日本3家 光刻机公司之后,第4家掌握高端光刻机系统设计与系 统集成测试技术的公司。公司产品可广泛应用于IC制造 与先进封装、MEMS、3D-TSV、TFT-OLED等领域
PART 2.2 刻蚀机的分类
优势:各向异性好,选择性高,可控性、灵活性、重复性好,细线 条操作安全,易实现自动化,无化学废液,处理过程未引入污染, 洁净度高。 劣势:成本高,设备复杂。
PART 2.2 刻蚀机的分类
干法刻蚀机又分为三种:物 理性刻蚀机、化学性刻蚀机、 物理化学性刻蚀机。 物理性刻蚀又称为溅射刻蚀, 原理是靠能量的轰击打出原 子。 优势:方向性强,各向异性 刻蚀。 劣势:不能进行选择性刻蚀。
PART 1.3 光刻机的分类及优劣势
投影光刻机 分为步进重复和步进扫描两种,掩膜版 图像以缩小倍率投影成像在硅片上。 优势:分辨率高,14纳米、掩膜版无损 耗,污染物缩小在硅片上,影响小。 劣势:设备非常昂贵,系统及其复杂。
PART 1.3 光刻机的分类及优劣势
三束直写光刻机:激光直写、电子束直写、离子束直写光刻机 优势:无需制作昂贵的掩膜版,用于实验研究,灵活性高,分辨率高。

光刻与刻蚀工艺

光刻与刻蚀工艺
第十五页,共118页。
1、涂胶
第十六页,共118页。
1、涂胶
❖涂胶目的 ❖在硅片表面形成厚度均匀、附着性强、并
且没有(méi yǒu)缺陷的光刻胶薄膜。 ❖怎样才能让光刻胶粘的牢一些?
第十七页,共118页。
可以(kěyǐ)开始涂胶了……
❖ 怎么涂? ❖旋转涂胶法:把胶滴在硅片,然后使硅片
高速旋转,液态胶在旋转中因离心力作用 (zuòyòng)由轴心沿径向(移动)飞溅出去, 但粘附在硅表面的胶受粘附力的作用 (zuòyòng)而留下。在旋转过程中胶所含的 溶剂不断挥发,故可得到一层均匀的胶膜 ❖ 怎样才算涂的好?
❖一个英制等级100的洁净室相当于公制等级
第八页,共118页。
洁净室(4)
❖ 对一般的IC制造区 域,需要等级100的洁 净室,约比一般室内 空气低4个数量级。
❖ 在图形(túxíng)曝 光的工作区域,则需 要等级10或1的洁净室。
第九页,共118页。
lithography
❖Introduction ❖光刻 ❖洁净室 ❖工艺流程(ɡōnɡ yì liú chénɡ) ❖光刻机 ❖光刻胶 ❖掩膜版
第十四页,共118页。
resist substrate
maБайду номын сангаасk
negative tone
光刻工艺(gōngyì)过程
❖ 涂胶 coating ❖ 前烘 prebaking ❖ 曝光(bào guāng) exposure ❖ 显影 development ❖ 坚膜 postbake ❖ 刻蚀 etch ❖ 去胶 strip ❖ 检验 inspection
第二十八页,共118页。
❖显4、影之显后影的(x检iǎ查n yǐng)(Development)

东南大学--材料学院--表面微细加工技术简介

东南大学--材料学院--表面微细加工技术简介

表面微细加工技术简介一、表面微细加工技术●表面技术的一个重要组成部分●微电子工业重要的工艺技术基础●工艺精度决定了集成电路的特征尺寸●微米量级、亚微米量级、纳米量级●微型传感器、微执行器(微马达、微开关、微泵等)、微型机器人、微型飞机、微生物化学芯片等表面微细加工技术:●光刻加工电子束加工离子束加工激光束微细加工●超声波加工微细电火花加工电解加工电铸加工1.1 光刻加工●光刻加工●复印图像+化学腐蚀●广泛应用平面器件和集成电路●光刻三要素:光刻胶、掩膜版和光刻机●光刻胶又叫光致抗蚀剂,它是由光敏化合物、基体树脂和有机溶剂等混合而成的胶状液体●光刻胶受到特定波长光线的作用后,导致其化学结构发生变化,使光刻胶在某种特定溶液中的溶解特性改变光刻加工步骤: 1、涂胶、前烘2、曝光3、显影、坚膜(形成窗口)4、腐蚀或刻蚀5、沉积(形成电路)6、去胶曝光:对光刻胶膜进行选择性光化学反应,曝光部分改变在显影液的溶解性光刻胶的种类:●正胶:辐照后溶解性增加分辨率高,在超大规模集成电路工艺中,一般采用正胶●负胶:辐照后溶解性降低分辨率差,适于加工线宽≥3 m的线条曝光时影响分辨率的主要因素:1、掩膜版和光刻胶膜的接触情况2、曝光线平行度3、光的衍射、反射和散射4、光刻胶膜的质量和厚度5、曝光时间6、掩膜版的分辨率和质量曝光方式:●接触式:掩膜与胶膜贴紧曝光●分辨率高,胶膜和掩膜易磨损●低分辨率器件生产>5 μm●接近式:掩膜与胶膜有40μm间隙●避免污损,衍射造成分辨率差●投影式复印法:通过透镜系统使掩膜版图形缩小●精度依赖于光学系统,近紫外光波长(0.35-0.4 μm )●加工极限0.4μm突破光刻极限: 采用短波长光源曝光●深紫外曝光技术(0.2~0.35μm )●合理选择激光的激发物,KrF(248nm), ArF(193nm)●X射线曝光技术(零点几纳米)●线宽0.1 μm●位置对准困难,需防护严格●准分子激光光刻技术●线宽0.2 μm●精确控制剂量方面有待进一步提高腐蚀/刻蚀:●湿法刻蚀:利用酸碱溶液作为腐蚀剂化学反应●优点:选择性好、重复性好、设备简单、成本低●缺点:钻蚀严重、对图形的控制性较差●干法刻蚀:●等离子体腐蚀:利用强电场下气体辉光放电产生的活性基与被腐蚀胶膜发生化学反应,产生挥发性气体而去除选择性好、对衬底损伤较小,但各向异性较差●离子腐蚀:利用具有一定动能的惰性气体的离子轰击集体表面,离子束腐蚀和溅射腐蚀(物理过程)●反应离子刻蚀(RIE:Reactive Ion Etching):离子轰击的物理效应和活性离子的化学效应结合具有前两者优点,同时各向异性和选择性应用最广泛的主流刻蚀技术新一代光刻技术:●接触-接近式→反射投影式→步进投影式→步进扫描式●436nm ~365nm(汞弧灯)→248nm (KrF准分子激光源)●利用光刻印刷细微图形已接近极限,50nm及以下,光学光刻将被其它新技术取代:●X射线光刻技术(XRL)●极紫外光刻技术(EUVL)●电子束投影光刻技术●离子束投影光刻技术●激光辅助直接刻印法(LADI)X射线光刻技术(XRL)●解决100nm以下光刻节点最现实的技术●光源波长0.7-1.3nm●缺点:掩膜衬底的机械性能(已获得较大突破)极紫外光刻技术(EUVL)——软X射线光刻●极紫外光源波长:10-14nm●物质吸收严重,反射光学系统●Mo、Si组成多层膜对13nm有较高的反射系数●若能得到应用,有可能解决≤50nm的光刻技术激光辅助直接刻印法(LADI)●2002年6月,美国普林斯顿大学研制的一种在硅片上制造出更精细结构的新技术●带有待压印线路图的石英压印模●将模子直接压印在硅片上,施加五千万分之一秒的大功率激光脉冲,使硅熔化后,按照模子的图案凝固,●可印出10nm的线路图,四百万分之一秒●《Science》杂志评论:该工艺可维持芯片小型化进程,摩尔定律在接下来的20年里可能仍然有效1.2 电子束加工工作原理:真空条件下,利用电流加热阴极发射电子束,经控制栅极初步聚焦后,由加速阳极加速,通过透镜聚焦系统进一步聚焦,使能量密度集中在直径1~10μm斑点内。

5、半导体工艺原理-光刻


6. 显影 (Develop)
工艺目的: 溶解硅片上 曝光区域 的胶膜,形 成精密的光 刻胶图形。
工艺方法: 正胶显影液: 2.38% 的四甲基氢氧化铵(TMAH)
特点:碱性、水性显影液、轻度腐蚀硅 1. TMAH 喷淋显影,转速1000rpm~1500rpm 2. 去离子水喷淋定影,转速 1000rpm~1500rpm 3. 原位旋转甩干 工艺要求:
版图文件
亮版
暗版
光刻机
IC制造中最关键的步骤 IC 晶圆中最昂贵的设备 最有挑战性的技术 决定最小特征尺寸
接触式光刻机 光刻的三种方式 接近式光刻机
投影式光刻机
5.2 光刻工艺原理
光刻工艺的8个基本步骤
1. 气相成底膜 3. 软烘 5. 曝光后烘培(PEB) 7. 坚膜烘培
2. 旋转涂胶 4. 对准和曝光 6. 显影 8. 显影检查
光的衍射
方形小孔的衍射图像(接触孔)
透镜
透镜是一种光学元件,来自物体的光并通过它折 射形成物体的像。 光通过透镜聚焦相当于做一次傅里叶变换。例如 平行光聚焦成一个点。
光通过掩膜版小孔图形衍射进行第一次傅里叶变 换,再通过透镜聚焦进行第二次傅里叶变换,掩 膜版图形在硅片上成像。
曝 光 机 光 学 系 统
投影式对准曝 光系统示意图
对准和曝光
工艺目的: 对准和曝光是将掩膜板上的图形通过镜头由紫外线 传递到硅片表面光刻胶膜上, 形成光敏感物质在空 间的精确分布,最终达到图形精确转移的目的。
对准标记
8张掩膜版及经过8次对准和曝光形成的CMOS器件结构
接触式光刻机
设备简单 70年代中期前使
自动涂胶/显影系统-涂胶模块
涂胶模块剖面图
涂胶模块 示意图

光刻与刻蚀工艺流程

光刻与刻蚀工艺流程光刻和刻蚀是半导体工艺中重要的步骤,用于制备芯片中的电路。

光刻是一种通过使用光敏剂和光刻胶来转移图案到硅片上的技术。

刻蚀则是指使用化学物质或物理能量来去除或改变表面的材料。

光刻工艺流程分为四个主要步骤:准备硅片、涂敷光刻胶、曝光和开发。

首先,准备硅片。

这包括清洗硅片表面以去除杂质和污染物,然后通过浸泡于化学溶液中或使用化学气相沉积等方法在硅片上形成一层光刻胶的基础层。

第二步是涂敷光刻胶。

将光刻胶倒入旋转涂胶机的旋转碟中,然后将硅片放置在碟上。

通过旋转碟和光刻胶的黏度控制,使光刻胶均匀地铺在硅片上。

光刻胶的厚度取决于所需的图案尺寸和深度。

第三步是曝光。

在光刻机中,将掩膜对准硅片,然后使用紫外线照射光刻胶。

掩膜是一个透明的玻璃或石英板,上面有所需的电路图案。

曝光过程中,光刻胶中的光敏剂会发生化学反应,使得光刻胶在被曝光的区域变得溶解性,而未被曝光的区域仍保持完整。

最后一步是开发。

在开发过程中,使用盐酸、溶液或者有机溶剂等化学溶液将未曝光的光刻胶从硅片上溶解掉。

溶解后就会出现光刻胶的图案,这相当于将掩膜中的图案转移到硅片上。

在完成开发后,再对硅片进行清洗和干燥的处理。

刻蚀工艺流程通常根据需要的深度和形状来选择不同的刻蚀技术。

常见的刻蚀技术有湿刻蚀和干刻蚀。

湿刻蚀是将硅片浸泡在一个含有化学溶液的反应槽中,溶液会去除不需要的材料。

刻蚀速度取决于化学溶液中的浓度和温度以及刻蚀时间。

湿刻蚀通常用于较浅的刻蚀深度和简单的结构。

干刻蚀是使用物理能量如等离子体来去除材料。

等离子体刻蚀分为反应离子束刻蚀(RIE)和电感耦合等离子体刻蚀(ICP)。

在等离子体刻蚀中,通过加热到高温的氩气等离子体释放离子,离子会以高速束流撞击竖立在硅片表面的物质,去除不需要的材料。

干刻蚀通常用于深刻蚀和复杂的纳米级结构。

在刻蚀过程中,为了保护不需要刻蚀的区域,通常会将硅片用光刻胶进行覆盖。

在刻蚀结束后,光刻胶可以去除,暴露出所需要的图案。

光刻机中掩膜制备的新方法与新材料的应用

光刻机中掩膜制备的新方法与新材料的应用概述:光刻技术是半导体工业中重要的制造工艺之一,而掩膜是光刻技术的关键组成部分。

本文将介绍光刻机中掩膜制备的新方法与新材料的应用,以提升光刻技术的效率和精度。

一、光刻技术的背景与意义光刻技术是一种将图形转化为物理结构的重要工艺,广泛应用于集成电路制造、光电子器件制造等领域。

制备掩膜作为光刻技术的重要步骤,对于光刻结果的准确性和稳定性起着关键作用。

因此,寻找新的方法和材料来改善掩膜制备的效率和精度,对于提升光刻技术的发展具有重要意义。

二、传统光刻机中掩膜制备存在的问题在传统的光刻机中,掩膜的制备主要采用光刻胶的涂覆和曝光技术。

然而,这种方法存在一些问题,如光刻胶的耗材成本较高、制备过程复杂且耗时等。

此外,由于光刻胶在制备过程中容易受到环境因素的影响,造成掩膜制备的结果不稳定。

因此,寻找新的方法和材料来改进光刻机中掩膜制备的过程和质量成为了当下的研究热点。

三、光刻机中掩膜制备的新方法1. 基于纳米颗粒的掩膜制备方法纳米颗粒是小到纳米级别的物质,具有较大的表面积和特殊的物理化学性质,被广泛应用于不同的领域。

近年来,研究者们探索将纳米颗粒应用于光刻机中掩膜制备的方法。

这种方法将纳米颗粒以浓度梯度的方式分布在基板上,并利用纳米颗粒的自组装性质形成具有所需图案的掩膜。

与传统的光刻胶方法相比,基于纳米颗粒的掩膜制备方法具有制备过程简单、成本低、结果稳定等优点,对于提升光刻技术的发展具有重要意义。

2. 精密纳米压印技术纳米压印技术是一种将图案压印到表面的制造方法,具有高分辨率、高生产效率等特点。

近年来,研究者们在光刻机中掩膜制备方面尝试将纳米压印技术应用于掩膜制备过程中。

通过将压模与基片接触并施加压力,使得压模上的图案被转移到基片上,形成掩膜。

这种方法具有制备过程简单、高分辨率等优点,并且可以提高掩膜的机械稳定性和耐久性,为光刻技术的发展提供新的途径。

四、光刻机中掩膜制备的新材料应用1. 液晶材料液晶材料是一类介于固体与液体之间的材料,具有可调节透明性和折射率的特点。

光刻工艺步骤介绍

光刻工艺步骤介绍光刻工艺是半导体芯片制造中不可或缺的一步,其目的是将芯片设计图案转移到光刻胶上,然后通过化学腐蚀或蚀刻的方式将这些图案转移到芯片表层。

下面是一个光刻工艺的详细步骤介绍:1.准备工作:首先需要清洗芯片表面,以去除表面的杂质和污染物。

清洗可以使用化学溶液或离子束清洗仪等设备。

同时,需要准备好用于光刻的基板,这通常是由硅或其他半导体材料制成的。

2.底层涂覆:将光刻胶涂覆在基板表面,胶层的厚度通常在几微米到几十微米之间。

胶液通常是由聚合物和其他添加剂组成的,可以通过旋涂、喷涂或浸涂等方法进行涂覆。

3.烘烤和预烘烤:将涂覆好的光刻胶进行烘烤和预烘烤。

这一步的目的是除去胶液中的溶剂和挥发物,使胶层更加均匀和稳定。

烘烤的温度和时间可以根据不同的胶液和工艺要求来确定。

4.掩膜对位:将掩膜和基板进行对位。

掩膜是一个透明的玻璃或石英板,上面有芯片设计的图案。

对位过程可以通过显微镜或光刻机上的对位系统来进行。

5.曝光:将掩膜下的图案通过光源进行曝光。

光源通常是由紫外线灯或激光器组成的。

曝光时间和光照强度的选择是根据胶层的特性和所需的图案分辨率来确定的。

6.感光剂固化:曝光后,光刻胶中的感光剂会发生化学反应,使胶层中的暴露部分固化。

这一步被称为光刻胶的显影,可以通过浸泡在显影剂中或使用喷雾设备来进行。

7.显影:在光刻胶上进行显影,即移去显影剂无法固化的胶层。

显影的时间和温度可以根据胶层的特性和图案的要求来确定。

显影过程通常伴随着机械搅动或超声波搅拌,以帮助显影剂的渗透和清洗。

8.硬化:为了提高图案的耐久性和稳定性,可以对显影后的芯片进行硬化处理。

硬化可以通过烘烤、紫外线照射或热处理等方法来实现。

9.检查和修复:在完成光刻工艺后,需要对光刻图案进行检查。

如果发现图案存在缺陷或错误,可以使用激光修复系统或电子束工作站等设备进行修复。

10.后处理:最后,需要对光刻胶进行去除,以准备进行下一步的制造工艺。

去除光刻胶的方法可以采用化学溶剂、等离子体蚀刻或机械刮伤等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档