浅探生物质发电锅炉燃烧控制系统设计与应用

浅探生物质发电锅炉燃烧控制系统设计与应用
浅探生物质发电锅炉燃烧控制系统设计与应用

浅探生物质发电锅炉燃烧控制系统设计与应用

发表时间:2019-07-02T13:57:29.803Z 来源:《工程管理前沿》2019年第07期作者:段威邱炬龙

[导读] 将对生物质发电锅炉燃烧控制系统进行详细论述。

山东鲁能控制工程有限公司山东济南 250023

摘要:近年来,随着我国社会的不断发展和进步,人们对于能源的需求程度也有了显著提升,能源的过度浪费不仅会造成大量不可再生资源的枯竭,而且对环境问题也会造成一定的影响,能源过度浪费问题已经成为制约能源进一步应用的主要阻碍。在可再生能源中,生物质由于具有诸多优质特性,因此具有较好的发展前景,这是因为化石能源是由生物质发展衍变而来的,通过一系列的化合反应最终变成能源,生物质能源在我国有着极为丰富的储存,现在每年农村中的生物质量约3.25亿吨。近些年以来,生物质发电已经作为我国最大的环保项目在发电过程中加以应用,本文将对生物质发电锅炉燃烧控制系统进行详细论述。

关键词:生物质发电;锅炉;控制系统

绪论:生物质发电作为现阶段我国所主要推行的项目,不仅能够有效解决秸秆等物质燃烧所带来的环境破坏问题,在减少燃烧气体排放的同时能够有效遏制温室效应的产生,而且对发电技术的进一步应用具有强有力的推动作用。目前,国能生物集团在生物质能开发利用方面卓有成效,利用生物质直燃烧方式进行生物质能发电。

1.生物质直燃发电的基本原理

生物质燃烧的原料就是桔梗、树皮。将桔梗、树皮送入锅炉的炉膛中燃烧。桔梗、树皮燃烧后生成的灰道,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态遗,最后由排渣装置排入灰法沟,再由灰遗泵送到灰渣场大量的细小的灰粒则随烟气带走,经除尘器分离后也送到灰渣沟。

空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道部分送入科仓作干燥以及送料粉,另部分直接引至燃烧器进入护膛。燃烧生成的高温烟气,高温烟气加热过热器中的水蒸气,形成过热蒸汽,后续烟气在引风机的作用下经过省煤器和空预热器,同时逐步将烟气的热能传给水和空气,自身变成低温烟气,经除尘器净化后在排入大气。

炉给水先进入省煤器预热到接近饱和温度,后经水冷壁加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。主蒸汽进入汽轮机膨胀做功,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝結冷却成水,此凝结水称为主凝结水。主凝结水与经化学车间处理后的补给水进入除氧器的水箱,成为锅炉的给水,再经过给水泵升压后送入锅炉,使工质完成一个热力循环。循环水泵将冷却水(又称循环水)送在凝结器,这就形成循环冷却水系统。

经过以上流程,就完成了生物质能→蒸汽的热能→机械能→电能的转化过程。

2.生物质直燃发电锅炉燃烧控制

生物质直燃发电锅炉燃烧控制系统分为燃料调节系统、送风自动调节系统、报警和联锁三大主要系统,本文将从上述三大系统入手,进行燃烧控制分析。

2.1 燃料调节系统

燃料调节系统的主要作用是为了给予锅炉足够的燃料,通过该系统的合理运行能够及时给予整个系统适当的燃料,从而为更加经济、稳定的燃烧奠定坚实基础。锅炉燃料控制系统的运行离不开能量平衡的控制,当锅炉侧压力不足以给予锅炉充分燃烧时,系统就会自己进行加料处理。当锅炉给料变频电动机螺旋输送机的M/A站处于手动状态时,那么系统会自动将其所处状态输出至各个平衡环节,该台锅炉就会实现手动控制,手动控制按钮打开后,总的反馈信号最终等于炉前给料变频电动机螺旋输送机的开度,实现自平衡无扰手/自动切换。

2.2 送风自动调节系统

送风自动调节系统的主要作用是为了给炉膛内的燃料适当的风量和氧气,该系统的正常运行一方面能够保证颅内燃料能够正常燃烧,另一方面还能够为燃烧介质提供较好的燃烧环境,提升燃烧介质的应用率,送风自动调节系统由两台送风机组成,系统通过自动调节两台送风机风门的大小实现控制炉内风量的大小。送风自动调节系统的良好运行离不开以下几方面的支撑:(1)风量的大小预处理系统。该系统中安装两个风量测量装置,该装置能够对进入锅炉内的总风量进行测量;(2)含氧量测量系统。烟气中的氧气含量能够很直观的反映出燃烧物与燃烧介质之间的关系,由于锅炉在燃烧过程中离不开氧气的支撑,因此需要对炉内氧气含量进行动态监测,从而为其保证充分燃料奠定坚实基础。(3)风量控制系统。风量控制系统作为送风自动调节系统中的重要一环,在其运行过程中扮演极为重要的角色,风量控

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

工业锅炉控制系统设计

工业锅炉控制系统设计 The following text is amended on 12 November 2020.

工业锅炉控制方案设计 学生学号: 学生姓名:曹新龙 专业班级:自动化12102班指导老师:赵莹萍 目录

引言 锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。 锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。 本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

发电厂燃煤锅炉燃烧PLC控制系统设计说明

发电厂燃煤锅炉燃烧控制系统设计 摘要 在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制和再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性与经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。 本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。 关键词:热电厂;锅炉燃烧;单片机;控制 Coal-fired power boilers burning single chip control system design Abstract Thermal power plant boiler combustion control plays an important role in security and economy of the entire power generation process, the control of its high efficiency thermal power plant is an important task. In this paper, the analysis and study of the entire combustion system,

燃气热水锅炉控制方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,通过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网通过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据;(2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,通过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统 摘要 锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。 在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。 在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。 关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system. In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable. Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control. Keywords: boiler combustion control system, control, PLC ,supervisory control

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

辅锅炉燃烧模拟控制系统设计

学校 毕业论文 题目:辅锅炉燃烧模拟控制系统设计Auxiliary boiler combustion control system simulation 系别: 专业: 班级: 姓名: 学号: 指导教师: 2011年月日

目录 前言 (3) 摘要 (3) 1 可编程序控制器的基本特点 (4) 2系统设计要求 (5) 2.1水位控制 (5) 2.2燃烧程序自动控制 (5) 2.3蒸汽压力控制 (7) 2.4自动保护和报警 (7) 3控制部分的设计 (7) 3.1硬件设计 (8) 3.2控制部分的软件设计 (9) 一、控制系统流程图 (10) 二、时序图 (11) 三、控制程序 (12) 四、控制程序的说明 (15) 4 结束语 (16) 参考文献 (16)

前言 在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。 随着船舶技术的发展,船舶自动化的程度越来越高,而PLC因其可靠性高、运用灵活,在自动控制领域获得了广泛的应用。目前,在船舶自动化设备中,船舶电站自动化、分油机自动控制、锅炉自动控制等领域,都已成功地应用了可编程序控制器,相信随着市场的发展和技术的进步,PLC技术在船上会有更广阔的前景。 船舶辅锅炉是一个多输入、多输出且相互关联的复杂的控制对象,其实际操作必须遵循严格的步骤,在实习和教学环节中,实现每个人都进行实际操作有难度。因燃油运行成本且可能出现操作失误,会给实习和教学带来一定的困难和不安全因素。随着虚拟现实技术的产生,这些问题将逐步得到解决。以下将会用PLC设计一个辅锅炉模拟控制系统。 摘要 目前我国船舶自动化控制程度较低,控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。随着船舶自动化的发展,PLC技术越来越多的在船舶中得到应用。本文分析了PLC的特点以及在船用辅锅炉自动控制系统的应用,主要应用在船用辅锅炉锅炉水位自动控制、蒸汽压力自动控制、燃烧程序的自动控制、保护与报警,使锅炉实现自动控制,逐渐达到无人机舱的目的。 本文主要包括以下几方面内容:一、介绍可编程序控制器(PLC)的基本特点,使人了解PLC工作原理及方式;二、说明该控制系统的设计要求,也就是本文用S7—200 PLC实现自动锅炉控制要达到的目的;三、是本文最重要的一环,系统自动控制的设计包括硬件和软件方面。

PLC在工业锅炉自动控制系统中的应用

1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。 锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统

基于DCS的燃气锅炉自动控制系统

基于DCS的燃气锅炉自动控制系统 作者:李婕姝杨润清来源:v黑龙江科技信息发布时间:2010-1-26 17:29:14 [收藏] [评论] 基于DCS的燃气锅炉自动控制系统 1 工艺介绍 本锅炉系统主要通过燃烧高炉煤气和焦炉煤气为某钢铁公司1000M3高炉提供动力,并季节性提供工业用暖。锅炉主要包括煤气(高炉煤气、焦炉煤气)系统、炉体部分、对流受热面(汽包及冷却壁,I、II 过热器,I、II省煤器,I、II空气预热器)、点火器、送引风设备等组成。 按照各部分的功能大致分为汽水系统、风烟系统、燃烧系统、减温减压及公用系统几个子系统。 本控制系统主要控制锅炉及相关辅助设备的生产过程,使其符合工艺所要求达到的蒸汽温度(450℃)、压力(3.82MPa)、流量(130t/h)、纯度(过热蒸汽)。 1.1 汽水系统 汽水系统是供给锅炉保护和产生蒸汽的除氧水,生成载热的过热蒸汽送到汽机膨胀做功或者经过减温减压后供热。来自除氧给水系统的除氧水经过调节后送到I、II省煤器预热,然后送到锅炉汽包和与汽包相连的锅炉冷却壁中,经过锅炉燃烧生成的高温烟气的加热生成不饱和蒸汽,不饱和蒸汽经过I级过热器、I级过热器蒸汽集箱,经过喷水减温器减温处理后,再经过II级过热器、II级过热器蒸汽集箱后生成饱和的过热蒸汽,然后送到蒸汽母管,一部分送到汽机膨胀做功,一部分进入减温减压系统, 一部分提供除氧汽动给水泵做功给水。 1.2 风烟系统 空气(冷风)经过净化后通过1#、2#送风机送到I、II空气预热器中进行预热成为热风,热风送到热风烧嘴和煤气混合燃烧;高炉煤气和焦炉煤气通过高炉煤气管道和焦炉煤气管道送到燃烧喷嘴和热风混合 燃烧,生成高温烟气,加热锅炉汽包中的除氧水使之成为不饱和蒸汽,然后高温烟气依次通过I过热器、II过热器、II省煤器、II空气预热器、I省煤器、I空气预热器将不饱和蒸汽加热成为高温高压的饱和蒸汽,并预热送到锅炉汽包中的除氧水和送到锅炉炉膛中的空气,最后通过引风机引至烟囱中排放。 1.3 燃烧系统 高炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;进入锅炉和高炉煤气混合燃烧的热风分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;焦炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角2个燃烧喷嘴),参与燃烧。正常情况下,燃料为高炉煤气,焦炉煤气只是在点火的时候用到,平时只是作为保安气(作为锅炉燃烧过程中的炉膛温度低时保护气)。 燃烧过程中通过热电偶和火焰观测器来检测炉膛温度变化。通过调节高炉煤气、焦炉煤气、风的配比来调节锅炉炉膛温度(燃料配比一般为100%高炉煤气,另外也有80%——90%高炉煤气加20%——10%焦炉煤气或者50%焦炉煤气)。整个燃烧过程中炉膛温度控制在1100±10℃左右。 1.4 减温减压及公用系统 本锅炉产生的过热蒸汽大部分送到汽机做功给高炉供风,其余的一部分送到中温中压联络管,另一部分送到1#、2#减温减压器经过工业水的减温减压后变为低温低压蒸汽,一部分送到厂区供热,另一部分通过加热蒸汽母管送到除氧器,一部分提供除氧汽动给水泵做功给水。 2.系统配置 2.1 DCS系统 计算机集散控制系统(DCS)由上位系统和下位系统组成。上位系统采用工业控制计算机,用Siemens 组态软件WinCC完成现场数据的实时显示、存储、报警处理、打印及控制参数设定。下位系统由Siemens PLC 构成,与现场设备相连。上位系统和下位系统之间的通讯采用Ethernet方式,其最高传输速率可达 10-100Mbit/s,完全满足对数据实时监控的要求。自动控制系统采用S7 400 系列PLC硬件组成基础自动

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

基于PLC的锅炉燃烧控制系统

基于PLC的锅炉燃烧控制系统 1、引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。

图1 燃烧控制系统结构图 2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相

协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。

图2 单元机组燃烧过程控制原理图

P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

FGR的循环型工业锅炉节能控制系统设计分析

FGR的循环型工业锅炉节能控制系统设计分析 摘要:氮氧化物是雾霾产生的一大成因,也是燃气锅炉排放的主要污染物。已颁布的《北京市锅炉大气污染物排放标准》将工业锅炉氮氧化物的排放标准大幅提高。 关键词:FGR循环型工业锅炉;节能控制系统设计; 工业锅炉是重要的热能动力设备,我国是当今世界锅炉生产和使用最多的国家。我国锅炉制造业特别是改革开放以来随着国民经济的蓬勃发展,全国有千余家持有各级锅炉制造许可证的企业可以生产各种不同等级的锅炉。由于节能环保日益严格,而工业锅炉又处于能耗高、浪费大、环境污染严重的生产运行状态,因此对工业锅炉推广应用各种新技术、新工艺、新管理是实现节能降耗、减少污染的重要途径。随着工业生产规模的不断扩大,生产过程不断强化。 一、烟气循环FGR的主要原理 烟气循环参与再燃烧有两种方式:烟气内部循环和烟气外部再循环。烟气内部循环一般用于普通低氮应用,利用燃烧器喷嘴流速产生卷吸烟气的效应,使少量烟气再次参与燃烧,降低火焰温度,排放目标值为80 mg/m3;而烟气外部再循环是通过风机的机械力量大幅度增加再循环烟气的流量,再循环烟气量可占总烟气量的25%,大幅度降低火焰温度,更低的氮氧化物排放。 二、FGR的循环型工业锅炉节能控制系统设计分析 1.物料出口温度控制。经过分析可知,影响锅炉物料出口温度的因素包括物料流量、燃烧工况以及空气量与燃料量比值等,在控制系统中,物料出口温度是通过改变燃料流量来控制的,但受到燃烧工况、风量的跟随作用以及风量与燃料量的比值影响。为了使物料出口温度稳定在目标温度,必须保证燃料能够充分燃烧,释放出足够的能量,因此选择采用串级控制系统。该控制系统中,物料出口温度控制回路为串级控制系统的主回路。在控制方案中,当物料出口温度由于某种干扰变化时,通过物料出口温度控制器的输出来改变燃料控制器的给定值,使燃料量随之变化。然后通过比值控制器使空气量也发生改变,保持燃料量和空气量的流量比不变。但从动态角度看,因蒸汽出口温度变化首先反应到燃料量给定值的变化,使燃料量随之变化,再经过燃料量测量变送器、比值器,改变空气量控制器的给定值,空气量才发生变化。显然,空气量的变化滞后于燃料量,即动态比值不能得到保证。在实际工业生产中,为了使燃料完全燃烧,在提升负荷时要求先提升空气量,后提升燃料量;在降低负荷时,要求先降低燃料量,后降低空气量,即所谓具有逻辑提降量的比值控制系统。通过增加两个选择器HS、LS 组成具有逻辑提降功能的燃烧过程控制系统,空气量与燃料量的比值。燃烧系统要减少稳态误差,同时由于流量噪声比较大,不能采用微分作用。因此,燃料流量控制器和空气流量控制器均采用控制器。如有微分作用时,一旦主控制器和输出稍有变化,调节阀将大幅度变化,不利于控制,所以副控制器选用控制器,主控制器采用PID 控制器。 2.烟气含氧量闭环控制。烟气含氧量是指燃料燃烧之后排出的烟气中氧气的含量,它主要与燃料的燃烧状况有关。烟气含氧量的影响因素是燃烧工况。燃烧过程的燃料量与空气量比值控制系统存在一个不足,即不能保证两者是最优比,这是由于流量测量的误差以及燃料质量的变化所造成的。为此,文中方案采用烟气氧含量作为送风量的校正信号。锅炉燃烧过程中烟气含氧量的闭环控制方案,烟气含氧量作为被控变量,其设定值是锅炉燃烧效率最高情况下的最优烟气含氧

燃气蒸汽锅炉DCS控制系统

河南xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统有限公司

一:概述 xxxx电气有限公司是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国内最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国内锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国内唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

相关文档
最新文档