初等数论ppt(12)第六章 - 指数与原根

合集下载

初等数学研究完整ppt课件

初等数学研究完整ppt课件
定义2: N×N按等价关系“~”划分的等价类 (以[(a,b)]表示(a,b)所属的等价类)叫做整数, 一切整数组成的集合叫做整数集,记为Z.
精选ppt课件2021
26
定理2 设Z+={[(a,0)]|a∈N-{0}} Z- ={[(0,a)]|a∈N-{0}}
则Z= Z+∪[(0,0)]∪Z-, 且Z+, [(0,0)], Z-两两不相交. 定义3 称Z+为正整数集,称Z-为负整数集。
✓(1)对于任意a, b∈ N, 都有
f(a+b)=f(a)+f(b)
f(a·b)=f(a)·f(b)
✓(2)对于任意a, b∈ N, 若a≤b, 则f(a)≤f(b).
证明:构造f: N→Z如下
f(a)=[(a,0)] 即可满足定理要求。
精选ppt课件2021
36
因此,以后我们可以对a与[(a,0)]不加区别地使用, 从而有Z+=N-{0}.
精选ppt课件2021
31
减法
加法的消去律保证我们可以定义加法的逆运算— —减法。
定义6 设a,b∈Z,若存在x∈Z,使x+b=a,则 称x=a-b.
整数都有负元保证了整数集上减法的封闭性。
精选ppt课件2021
32
除法
乘法的相消律保证我们可以定义乘法的逆运
算——除法。
定义7 设a,b∈Z, b≠[(0,0)], 若存在x∈Z,使
根据定义,有
✓ (a)b a

b
a
b
a
1
b
除单位元之外其他自然数都没有逆元,这说明在
自然数集上除法不具有封闭性。
精选ppt课件2021

初等数论

初等数论

3 同余
性质:同余关系是等价关系。 模m等价类: 在模m同余关系下的等价类. [a]m, 简记作[a]。 Zm: Z在模m同余关系下的商集。 在Zm上定义加法和乘法如下: a, b, [a]+[b]=[a+b], [a]· [b]=[ab]. 例6:写出Z4的全部元素以及Z4上的加法表和乘法表. 解 Z4={[0],[1],[2],[3]}, 其中[i]={4k+i |k∈Z}, i=0,1,2,3. + [0] [1] [2] [3] [0] [1] [2] [3] [0] [1] [2] [3] [1] [2] [3] [0] [2] [3] [0] [1] [3] [0] [1] [2] · [0] [1] [2] [3] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1]
解 150=2×3×52, 168=23×3×7. gcd(150,168)=21×31×50×70=6, lcm(150,168)=23×31×52×71=4200.
欧几里得算法-辗转相除法
除法算法: a=qb+r, 0≤r <|b|, 记余数r=a mod b
例如, 20 mod 6=2, 13 mod 4=3, 10 mod 2=0
RSA公钥密码
私钥密码:加密密钥和解密密钥都必须严格保密 公钥密码 (W.Diffie,M.Hellman,1976 ):加密密钥公开,解密 密钥保密
整数. 则 min( rk , sk ) min( r1 , s1 ) min( r2 , s2 ) gcd(a,b)= p1 p2 pk ,
max( rk , sk ) max( r1 , s1 ) max( r2 , s2 ) p p p lcm(a,b)= 1 2 k

初等数论

初等数论

定理及推论 • 定理1:任何大于1的整数a都至少有一个素约数.
证明 : 若a是素数, 则定理是显然的. 若a不是素数, 那么它有两个以上的正的非平凡约数, 可设它们为d1 , d 2 , , d k ( k 2). 不妨设d1是其中最小的, 若d1不是素数, 则存在e1 , e2 , 使得d1 e1e2 ,因此, e1和e2 也是a的正的非平凡约数, 这与d1 的最小性矛盾.
练习题
1 证明 : 若3 | n且7 | n, 则21| n.
1证明 : 3 | n,可设n 3m, 由7 | n得, 7 | 3m, 而7 | 7 m, 所以7 | (7 m - 2 3m), 即7 | m, 21| 3m, 即21| n.
2 设a 2k -1, k Z , 若a | 2n, 则a | n.
推论1 推论2
• 如果a是大于1的正整数,则a的大于1的最小约数必为素数.
任何大于 1 的合数a必有一个不超过 a的素约数.
证明 : 若a d1d 2 , 其中d1 1是最小素约数, 则d12 a, 成立.
定理2:素数的个数是无限的.
证明 : 假设正整数中只有有限个质数, 设为p1 , p2 , , pk , 令N p1 p2 pk 1, N 1, 若N 是质数, 结论显然成立; 若N 不是质数, 则N 有一质因数p, 这里p pi , i 1, 2, , k , 否则p | p1 p2 pk , 又 p | N p1 p2 pk 1, 因此p | 1, 这与p是质数矛盾, 故p是上面k 个质数以外的质数, 得证.
证明 : (1) a | b, b aq, b aq, a | b; (2) a | b, b | c, b q1a, c q2b, c q1q2 a , a | c; (3) b | ai (i 1, 2, , k ), ai qi b(i 1, 2, , k ), ai xi qi xi b(i 1, 2, , k ), a1 x1 a2 x2 ak xk b (q1 x1 q2 x2 qk xk ) b | a1 x1 a2 x2 ak xk (其中xi是任意的整数);

指数函数和对数函数ppt课件

指数函数和对数函数ppt课件

解法 2:a-b=ln22-ln33=3ln2-6 2ln3 =16(ln8-ln9)<0. ∴a<b.同理可得 c<a,∴c<a<b.故选 C.
[答案]C
4.考查函数的定义域 函数的定义域是历年高考中均考查的知识点,其难度 不大,属中低档题,但在求解时易漏掉部分约束条件造成错 解,因而也是易错题. [例 4] 函数 f(x)= 31x-2 x+lg(3x+1)的定义域是
[例 1] (1)化简
3 ÷(1-2
ba)×3 ab;
(2)求值:12lg3429-43lg 8+lg 245.
(2)解法一 12lg3429-43lg 8+lg 245 =lg472-lg4+lg7 5 =lg(472×14×7 5) =lg 10=12lg10=12.
解法二 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5 =12(lg2+lg5) =12lg10=12.
[例7]求不等式x-1<log6(x+3)的所有整数解. [解析]设y1=x-1,y2=log6(x+3),在同一坐标系中作
出它们的图像如图所示,两图像有两个交点,一交点的横坐标
显然在-3和-2之间,另一个交点设为P.
因为x=1时,log6(1+3)-(1-1)>0,x=2时, log6(2+3)-(2-1)<0,所以1<xP<2.
2.指数函数的概念与性质 (1)指数函数的定义
一般地,函数y=ax(a>0,且a≠1)叫作指数函数. (2)y=ax(a>0,a≠1)的图像
0<a<1
a>1

初等数论-绪论

初等数论-绪论

8、测圆海镜
《测圆海镜》由中国金、元时期数学家 李冶所著,成书于 1248年。全书共有12卷,170问。这是中国古代论述容圆的一 部专箸,也是天元术的代表作。《测圆海镜》所讨论的问题 大都是已知 勾股形而求其内切圆、旁切圆等的直径一类的问 题。在《测圆海镜》问世之前,我国虽有文字代表未知数用 以列方程和多项式的工作,但是没有留下很有系统的记载。
若2n 1是素数,则2n1(2n 1)是完全数
注意以上谈到的完全数都是偶完全数,至今仍然 不知道有没有奇完全数。
四、我国古代数学的伟大成就
1、周髀算经 公元前100多年,汉朝人撰,是一部既谈天体又
谈数学的天文历算著作,主要讨论盖天说,提出了 著名的“勾三股四弦五”这个勾股定理的一个特例。
广泛的应用,无疑同时也促进着数论的发展。
三 几个著名数论难题
初等数论是研究整数性质的一门学科,历史上遗 留下来没有解决的大多数数论难题其问题本身容易搞 懂,容易引起人的兴趣,但是解决它们却非常困难。
其中,非常著名的问题有:哥德巴赫猜想 ; 费尔马大定理 ;孪生素数问题 ;完全数问题等。
1、哥德巴赫猜想:
1742年,由德国中学教师哥德巴赫在教学中首先 发现的。1742年6月7日,哥德巴赫写信给当时的大数 学家欧拉,正式提出了以下的猜想:
一个大于6的偶数可以表示为不同的两个质数之和。
陈景润在1966年证明了“哥德巴赫猜想”的“一 个大偶数可以表示为一个素数和一个不超过两个素数 的乘积之和”〔所谓的1+2〕,是筛法的光辉顶点, 至今仍是“哥德巴赫猜想”的最好结果。
2
许多领域中都有极大的贡献,因为他的本行是专业的 律师,世人冠以“业余王子”之美称。在三百七十多 年前的某一天,费马正在阅读一本古希腊数学家戴奥 芬多斯的数学书时,突然心血来潮在书页的空白处, 写下一个看起来很简单的定理。

《指数》指数函数与对数函数PPT

《指数》指数函数与对数函数PPT
1.(1)整数指数幂的运算性质有哪些?
提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为


,再进行运算.
-

的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,


数, =|a|=
-, < 0.
课前篇
自主预习


2.填空

《初等数论(闵嗣鹤、严士健)》第三版课件


2
2
同样有 t b . 存在性得证 ;下证唯一性. 2
16
4
设a bs t bs1 t1,s1 s, 则 t t1 b(s1 s) b ,(1)
另一方面,t
b 2 , t1
b 2
t t1 t t1 b
(2)
当b为奇数时,②式中的等号不能成立, s s1, t t1.
(1) a 14q 4, r 2
(2) a 14,b 3 14 3 5 ( 余 1 ), q 5, r 1
(3)a 14,b 3
14 (3) 14 3
注:一般地,要求a,q是整数,b, r是非负整数; 如果允许b取负值,则要求 0 r b .
4
1
因此
a b m q1 q2 ,
q1 q2是个整数,故m a b .
定理3
m a1 ,, m an , q1,,qn Z m (q1a1 qnan )
eg2 (1) 已知:x和y是整数,13︱( 9x + 10y ),
求证:13︱( 4x + 3y );
(2)若 a ,b 是整数,且7∣( a + b ), 7∣( 2a-b ),
注:显然每个非零整数a都有约数 1,a,称这四个 数为a的平凡约数,a的另外的约数称为非平凡约数。 eg1 有一个自然数乘以9后,得到一个仅由数字1组成 的多位数,求这个自然数最小为多少? 12345679
3
中小学数学中的一些数论问题:
1.已知66︱X1998Y,求所有满足条件的六位数X1998Y.
证明:a , b不全为0,
在S ax by | x, y Z中存在正整数,
所以,存在形如ax by的最小正整数ax0 by0 .

数学---初等数论共68页文档


数学---初等数论
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯

必修一基本初等函数复习PPT课件


18
底数互为倒数的两个 对数函数
y = loga x, y = log1 x
的函数图像关于x轴对a称。
19
当a>1时,a值越大, y=logax的图像越靠近x轴;
当0<a<1时,a值越大, y=logax的图像越远离x轴。
20
4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
y
叫做幂函数,
其中x是自变
量,α是常数.
O
x
23
幂函数的性质
函数
性质 y=x
y=x2
1
y=x3 y = x 2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R [0,+∞) R [0,+∞) {y|y≠0}
奇偶性 奇


单调性

[0,+∞)增 (-∞,0]减

非奇非偶 奇
(0,+∞)减
常用对数:通常将log10N的对数叫做常用对数,为了简便, N的常用对数记作lgN。
自然对数:通常将使用以无理数e=2.71828…为底的对数

做自然对数,为了简便,
N的自然对数logeN简记作lnN.
12
2024/10/27
13
9.对数恒等式
( ) aloga N = N a 0且a 1,N 0 叫做对数恒等式
10.对数的性质 (1)负数和零没有对数; (2)1的对数是零,即loga1=0; (3)底数的对数等于1,即logaa=1 11.对数的运算法则 如果a>0,a≠1,M>0,N>0,那么

初等数学研究(PPT课件)

初等数学研究
感谢您的阅览
初等数学研究(PPT课件)
1
• 数学教育研究表明,人们认识负数比起认识无理数要容易些.但 是,历史有独特的自身发展逻辑.
• 事实上,当人们还普遍怀疑负整数也是一种数时,人们就已经在 研究正的有理数与无理数,甚至已经开始使用复数了.
初等数学研究(PPT课件)
2
• “数系”的历史扩展途径 • “数系”的逻辑扩展途径
• 接着是代数运算的需要,因减法、开方运算的需要产生了负数、无理数 和复数.
• 到了近代,“数”不再只是单个的量的表示,人们为了追求运算的无矛 盾性,接受了理想的“数”,包括复数、四元数、八元数等等.
初等数学研究(PPT课件)
4
“新数”为何最初不被承认?
• 不能够测量 • 并非非有不可 • 不能够理解 • 逻辑基础不清楚
初等数学研究(PPT课件)
5“新数”为何最终获得Fra bibliotek认?“因为在数学中和在其他场合一 样,成功是最高法庭,任何人都得 服从它的裁决.”
D.Hilbert《论 无限》
初等数学研究(PPT课件)
6
• 算法合理性是“新数”获得承认的主要原因 • 算术到代数的演进加速了数系的形成 • 广泛的应用促进广泛的承认 • “理想数” 的思想
初等数学研究(PPT课件)
7
1.2 数系的构造理论
初等数学研究(PPT课件)
8
1.2.1自然数的定义
• 自然数严格的抽象定义是由peano公理给出的,它刻画了自然数 的本质属性,并导出了有关自然数的所有运算和性质。
• Peano公理陈述如下:
• (1)0是自然数;
• (2)每个自然数都有一个后继,a的后继记为a+ ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档