最值问题解题思路奥数

最值问题解题思路奥数
最值问题解题思路奥数

最值问题解题思路奥数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

马到成功奥数专题:离散最值

引言:在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题。解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手:

1.着眼于极端情形;

2.分析推理——确定最值;

3.枚举比较——确定最值;

4.估计并构造。

离散最值问题渗透到小升初的各个奥数专题中,学好它可为解决数论,计数,应用问题等打下扎实的基础。

一、从极端情形入手

从极端情形入手,着眼于极端情形,是求解最值问题的有效手段。

题目1.一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的

解:假设摸出的8个球全是红球,则数字之和为(4×8=)32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故。

用一个绿球换一个红球,数字和可增加(6-4=)2,用一个黄球换一个红球,数字和可增加(5-4=)1。为了使红球尽可能地多,应该多用绿球换红球,现在7÷2=3……1,因此可用3个绿球换红球,再用一个黄球换红球,这样8个球的数字之和正好等于39。所以要使8个球的数字之和为39,其中最多可能有(8-3-1=)4个是红球。

题目2.有13个不同正整数,它们的和是100。问其中偶数最多有多少个最少有多少个

解:①2+4+6+8+10+12+14+16=72还要有5个奇数,但和是奇数,100是偶数,所以只能少一个偶数,2+4+6+8+10+12+14=56100-56=4242=1+3+5+7+9+17,最多有7个偶数。

②1+3+5+7+9+11+13+15=64还要5个偶数,100-64=3636=2+4+6+8+16 最少有5个偶数。

题目3.一种小型天平称备有1克、3克、5克、7克、9克5种砝码。为了能称出1克到91克的任意一种整数克重量,如果只允许在天平的一端放砝码,那么最少需要准备砝码多少个。

解:要能称出1克到91克的任意一种整数克重量,要有9个9克、1个5克、1个3克、2个1克,它们的和是91,这样即可。需要9+1+1+2=13个。

题目4.一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算。为了显示出222222,最少要按“7”键多少次

222222-70000*3=12222按下了3个7 12222-7000*1=5222按下了1个7

5222-700*7=322 按下了7个7 322-70*4=42按下了4个7 42-7*6=0 按下了6个7。3+1+7+4+6=21次

二、枚举法与逐步调整

当我们在有限数中求最大(或最小)值时,枚举法是常用基本方法之一。这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论。

题目5.将6,7,8,9,10按任意次序写在一个圆周上,每相邻两数相乘,并将所得得5个乘积相加,那么所得和数的最小值是多少

解:要使乘积最小,就要每个数尽可能小。对于10,旁边添6和7,这样积小一些。于是有两种添法:

----------------------------------------------

题目6.某公共汽车从起点开往终点站,中途共有13个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的每一站,那么为了使每位乘客都有座位,这辆公共汽车至少应有多少个座位

解法1:只需求车上最多有多少人。依题意列表如下:

由上表可见,车上最多有56人,这就是说至少应有56个座位。

说明:本题问句出现了“至少”二字是就座位而言的,座位最少有多少,取决于什么时候车上人数最多,要保证乘客中每人都有座位,应准备的座位至少应当等于乘客最多时的人数。所以,我们不能只看表面现象,误认为有了“至少”就是求最小数,而应该把题意分析清楚后再作判断。

解法2:因为车从某一站开出时,以前各站都有同样多的人数到以后各站(每站1人),这一人数也和本站上车的人数一样多,因此

车开出时人数=(以前的站数+1)×以后站数

=站号×(15-站号)。

因此只要比较下列数的大小:

1×14,2×13,3×12,4×11,5×10,

6×9,7×8,8×7,9×6,10×5,

11×4,12×3,13×2,14×1。

由这些数,得知7×8和8×7是最大值,也就是车上乘客最多时的人数是

56人,所以它应有56个座位。

说明:此题的两种解法都是采用的枚举法,枚举法是求解离散最值问题的

基本方法。这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中

找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论。

题目7.

在如图18-2所示得2*8方格表中,第一行得8个方格内依次写着1、2、3、

4、5、6、7、8。如果再把1、2、3、4、5、6、7、8按适当得顺序分别填入第

二行的8个方格内,使得每列两数的8个差数两两不同,那么第二行所显示的

八位数最大可能值是多少

三、从简单情形入手

解决复杂问题可以从简单问题入手,经过分析得出规律,也就找到了解决复杂

问题的方法。

题目8.

分析与解

题目9.将1,2,3,…,49,50任意分成10组,每组5个数。在每一组中,

数值居中的那个数称为“中位数”。求这10个中位数之和的最大值与最小值。

解:{1,2,3,49,50} {4,5,6,47,48} …… {28,29,30,31,32}

3+6+……+30=165(最小值)

{1,2,48,49,50} {3,4,45,46,47} …… {19,20,21,22,23}

48+45+……+21=345(最大值)

四、和一定问题

我们知道和为10的自然数共有5对,每对自然数乘积后

又得到5个不同的数,如下表:

由此我们得到,当这两个自然数都取5时积有最大值

25。

成立。也就是和一定时差最小乘积越大。

题目10.?

有3条线段a,b,c,线段a长米,线段b场米,线段c长米。如图18-1,以它

们作为上底、下底和高,可以作出3个相同的梯形。问第几号梯形的面积最大

解:由于梯形体积=(上底+下底)*高/2在和一定的情况下,要使乘积最大,

让两个数越接近。可见a+b与c十分接近,所以③的面积最大。

题目11.如果将进货单价为40元的商品按50元售出,那么每个的利润是10元,但只能卖出500个。当这种商品每个涨价1元时,其销售量就减少10个。为了赚得最多的利润,售价应定为多少

解:设每个商品售价为(50+x)元,则销量为(500-10X)个。总共可以获利(50+x-40)×(500-10x)

=10×(10+X)×(50-X)(元)。

因(10+x)+(50-x)=60为一定值,故当10+X=50-X即X=20时,它们的积最大。

此时,每个的销售价为50+20=70(元)

题目12.用3,4,5,6,7,8六个数字排成三个两位数相乘,要求它们的乘积最大。应该怎样排列

【分析与解】十位数字分别是8、7、6,8>7>6,个位数字分别是5,4,3,

5>4>3,依据“接近原则”,大小搭配可得83×74×65,三个数最接近因而它们的乘积最大。

综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大

的数,这样才能使数之间更为接近,从而保证乘积最大。简单地说就是:数越接近,乘积越大。

........

综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大的数,这样才能使数之间更为接近,从而保证乘积最大。简单地说就是:数越

接近

..,乘积越大。

五、积一定的问题

两个变化着的量,如果在变化的过程中,它们的乘积始终保持不变,那么它们的差与和之间有什么关系呢

观察下面的表:

我们不难得出如下的规律:

两个变化着的量,如果在变化的过程中,乘积始终保持不变,那么它们的差越小,和就越小。若它们能够相等,则当它们相等时,和最小。

题目13. 长方形的面积为 144 cm2,当它的长和宽分别为多少时,它的周长最短

解:设长方形的长和宽分别为 xcm和 ycm,则有

xy=144。

故当x=y=12时,x+y有最小值,从而长方形周长2(x+y)也有最小值。

题目14.农场计划挖一个面积为432 m2的长方形养鱼池,鱼池周围两侧分别有3m和4m的堤堰如下图所示,要想占地总面积最小,水池的长和宽应为多少解:如图所示,设水池的长和宽分别为xm和ym,则有

xy=432。

占地总面积为 S=(x+6)(y+8)cm2。于是

S=Xy+6y+8X+48=6y+8X+480。

我们知道6y ×8X=48×432为一定值,故当6y=8X时,S最小,此时有

6y=8X=144,故y=24,x=18。

六、从整体入手

从整体抓住数据的本质特征进行分析,较易突破难点。

题目15.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。要求:(1)算式的结果等于37;(2)这个算式中的所有减数(前面添了减号的数)的乘积尽可能地大。那么,这些减数的最大乘积是多少

题目16.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。要求:(1)算式的结果等于37;(2)这个算式中的所有减数(前面添了减号的数)的乘积尽可能地大。那么,这些减数的最大乘积是多少

解:把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍。

因为55-37=18,所以我们变成减数的这些数之和是18÷2=9。对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好(不包括1)。9最多可拆成三数之和2+3+4=9,因此这些减数的最大乘积是2×3×4=24,添上加、减号的算式是

10 + 9+ 8+ 7 + 6+ 5- 4- 3- 2 +1=37。

七、抓不等关系

题目17.某校决定出版“作文集”,费用是30册以内为80元,超过30册的每册增加元。当印刷多少册以上时,每册费用在元以内

解:显然印刷的册数应该大于30。设印刷了(30+x)册,于是总用费为

(80+)元。故有

80+≤ ×(30+x),

答案:117+30= 147以内。

题目18.有4袋糖块,其中任意3袋的总和都超过60块。那么这4袋糖块的总和最少有多少块

解:要使其中任意3袋的总和都超过60块,那么至少也是61,先在每袋中放20个糖块,但任意3袋中至少一个21,否则就无法超过60。要使任意3袋中至少一个21,这4个袋子的糖块分别是20,20,21,21。和为

20+20+21+21=82

八、抓相等关系

题目19.10位小学生的平均身高是米。其中有一些低于米的,他们的平均身高是米;另一些高于米的平均身高是米。那么最多有多少位同学的身高恰好是米解:要最多有多少位同学的身高恰好是米,就要使低于和高于米的人越少,设高于和低于的人分别为a,b。可得:+=(a+b) 2b=3a至少是5人那么最多有10-

5=5位同学的身高恰好是米。

----------------------------------------------

题目20.4个不同的真分数的分子都是1,它们的分母只有2个奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等。这样的奇数和偶数很多,小明希望这样的偶数尽量地小,那么这个和的最小可能值是多少

解:1/奇+1/奇=1/偶+1/偶偶/奇=(偶+偶)/偶×偶

奇*(偶+偶)=偶*偶*偶。因为偶*偶*偶是8的倍数所以偶+偶是8的倍数若是8,只能为2和6则1/2+1/6=1/3+1/3不符合题意,因为奇相等;若是16,有

1/6+1/10=1/5+1/15因此本题答案是16。

九、位值展开式

题目21.一个两位数被它的各位数字之和去除,问余数最大是多少

解:设两位数位ab(a表示十位数字,b表示个位数字)

ab=(10a+b)/(a+b)=(9a)/(a+b)+1

a+b最大是18,此时余数为9]

当a+b=17,若a=9 余数为13若b=9余数为4

题目22.当a+b=16,若a=9 余数为1 若b=9余数为15 此时余数最大。由3个非零数字组成的三位数与这3个数字之和的商记为K。如果K是整数,那么K 的最大值是多少

解:设这个数为abc(a表示百位数字,b表示十位数字,c表示个位数字)

那么abc/(a+b+c)=K (100a+10b+c)/(a+b+c)=K 要使这个算式最大,就要让a 尽可能大,b,c尽可能的小。试一下:911/(9+1+1)=82……9,811/

(8+1+1)=81……1,711/(7+1+1)=79,所以K最大是79。

题目23.用1,3,5,7,9这5个数组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个数组成一个三位数FGH和一个两位数IJ。求算式ABC×DE—FGH×IJ的计算结果的最大值。

解:要使ABC*DE-FGH*IJ这个算式最大就要使ABC*DE最大,FGH*IJ最小。那么前面最大是751*93。后面最小是468*20。那么算式的最小值是751*93-

468*20=60483

十、“估计+构造”

“估计+构造”是解离散最值问题的一种常用方法,要求某个离散最值,先估计该量的上界或下界,然后构造出一个实例说明此上界或下界能够达到,这样便求出了这个量的最大值或最小值。

题目24.把 1,2,3,…,12填在左下图的12个圆圈里,然后将任意两个相邻的数相加,得到一些和,要使这些和都不超过整数n,n至少是多少为什么并请你设计一种填法,满足你的结论。

解:因为1+2+3+…+12=78,78×2÷12=13,所以n≥13。又考虑到与12相邻的数最小是1和2,所以n至少是14。右上图是一种满足要求的填法。十一、转化与对称思想

转化思想是数学思想之一,把复杂问题转化成简单问题,从而达到解决问题的目的.在平面上有两个点A、B,把A、B用线连结起来有许多种方法,可用线段、弧线、折线等.在这无穷多种连结方法中,线段最短,因而我们也称线段AB的长叫A、B两点间的距离。

我们可以做一个有趣的实验:在一个长方体的上面N点放上食品,在长方体侧面ABCD上M点放一只蚂蚁(如图3),蚂蚁从侧面经过棱AD到N有无穷多种走法(如图4),我们关心的问题是蚂蚁怎样走路程最短

在这个立体图形中找出答案是很困难的,直接连结MN则不经过棱AD,与条件不符.为了使问题简化,我们将长方体展成平面图形,连结MN交AD于P.由公理,两点之间线段最短,可知蚂蚁从M点沿直线MP爬到P后,再由P点沿直线PN爬到N时走过的路程最短。

题目25.如图11某次划船比赛规定从A点出发,先到左岸然后到右岸然后再到B点,时间少者取胜.请你设计一条航线,使船走的路程最短.

由于两点间的距离线段最短,我们想办法把问题转化为求两点距离问题。

如图,找到A点关于左岸的轴对称点,B点关于右岸的轴对称点,连结A′B′,与左岸、右岸分别有交点C、D,沿折线ACDB航行就是最短航线。

十二、学写说理题

题目26.23个不同的自然数的和是4845。问:这23个数的最大公约数可能达到的最大的值是多少写出你的结论,并说明理由。

.17。

解:设这23个彼此不同的自然数为

a1,a2,…,a22,a23,

并且它们的最大公约数是d,则

a1=db1,a2=db2,…,a22=db22,a23=db23。

依题意,有

4845=a1+a2+…+a22+a23

=d(b1+b2+…+b22+b23)。

因为b1,b2,…,b22,b23也是彼此不等的自然数,所以

b1+b2+…+b23≥1+2+…+23=276。

因为4845=d(b1+b2+…+b22+b23)≥276×d,所以

又因为4845=19×17×15,因此d的最大值可能是17。

当a1=17,a2=17×2,a3=17×3,…,a21=17×21,a22=17×22,

a23=17×32时,得

a1+a2+…+a22+a23

=17×(1+2+…+22)+17×32

=17×253+17×32=17×285=4845。

而(a1,a2,…,a22,a23)=17。所以d的最大值等于17。

解题在于实践:

题目27.设a

1,a

2

,a

3

,a

4

,a

5

,a

6

是1到9中任意6个不同的正整数,并且a

1

<a

2<a

3

<a

4

<a

5

<a

6

。试用这6个数分别组成2个三位数,使它们的乘积最

大。

分析与解:由于a1,…,a6具体大小不清楚,因此先取特殊数1,2,3,4,5,6这6个不同的数考虑。要使2个三位数的乘积最大,必须使这2个数的百位数最大,应分别是6,5;而十位数次大,应分别为4,3,个位数最小,应分别为2,1。

因为当2个数之和一定时,这2个数之差越小,它们的乘积越大,所以这2个数是631和542。

题目28.8个互不相同的正整数的总和是56,如果去掉最大的数及最小的数,那么剩下的数的总和是44。问:剩下的数中,最小的数是多少

解:因为最大数与最小数的和是56-44=12,所以最大数不会超过11。去掉最大和最小数后剩下的6个互不相同的自然数在2~10之间,且总和为44,这6个数只能是4,6,7,8,9,10。

题目29.采石场采出了200块花岗石料,其中有120块各重7吨,其余的每块各重9吨,每节火车车皮至多载重40吨,为了运出这批石料,至少需要多少节车皮

解:每节车皮所装石料不能超出5块,故车皮数不能少于200÷5=40(节),而40节车皮可按如下办法分装石料:每节装运3块7吨的和两块9吨的石料,故知40节可以满足要求。

题目30.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管

分析本题没给出排水管的排水速度,因此必须找出排水管与进水管之间的数量关系,才能确定至少要打开多少个进水管.

解:本题是具有实际意义的工程问题,因没给出注水速度和排水速度,故需引入参数.设每个进水管1小时注水量为a,排水管1小时排水量为b,根据水池的容量不变,我们得方程(4a-b)×5=(2a-b)×15,化简,得:4a-b=6a-3b,即a=b.这就是说,每个进水管1小时的注水量等于排水管1小时的排水量.

再设2小时注满水池需要打开x个进水管,根据水池的容量列方程,得

(xa-a)×2=(2a-a)×15,化简,得 2ax-2a=15a,即 2xa=17a.

(a≠0)所以x=

因此至少要打开9个进水管,才能在2小时内将水池注满.注意:x=,这里若开8个水管达不到2小时内将水池注满的要求;开个水管不切实际.因此至少开9个进水管才行.

题目31.用1,2,3,4,5,6,7,8,9这九个数字各一次,组成一个被减数,减数,差都是三位数的正确的减法算式,那么这个减法算式的差最大是多少

解:要想差最大必须考虑被减数取最大,那么先考虑百位为9,同样考虑减数最小,百位为1,再通过试算得出936-152=784,此时差为最大既784。

题目32.有一个正整数的平方,它的最后三位数字相同但不为零,试求满足上述条件的最小正整数。

1444。解:平方数末位只能为0,1,4,5,6,9。因为111,444,555,666,999均非平方数,而1000,1111也不是平方数,但1444=382,故满足题设条件的最小正整数是1444。

题目33.从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。

13. 从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。另从15到27的任意一数是可以组合的。

自我评价:还成()不错()得意()酷()

日积月累:

____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___________________________

精神快餐:遇到难题题要尽力思考,一时答不上来绝不要灰心、沮丧,也不要急于翻看答案,因为反复思考的过程比得到正确的答案更重要。

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

小学奥数最值问题

最值问题 1、理解并掌握数学中的极值思想。 2、学会并会灵活运用枚举比较法。 3、运用已有知识和生活常识,着眼于“极端”情形,解决最大最小问题。 1、培养学生分析,判断,推理能力。 2、运用最大值与最小值问题,解决生活实际当中的极端问题。 将军饮马 古希腊亚历山大里压城有一位久负盛名的学者,名叫海伦。有一天,有位将军,不远千里专程向海伦求教一个百思不得其解的问题:从甲城出发到河边饮马(如图),然后再去乙地,聪明的你能告诉将军该走什么样的路线最短? 和是10的两个自然数,这两个数的乘积最大是多少?最小是多少? 列举法: 数1 1 2 数2 9 8 和10 10 积9 16 乙 甲

1、用30厘米长的铁丝围成一个长方形(长和宽都是整厘米数),要使长方形面积最大,长和宽应该是多少厘米?最大面积是多少? 2、和是9的两个数,它们的积最大又是多少呢? 乘积是42的两个自然数,它们的和最小是多少?最大是多少? 列举法: 数1 1 2 数2 42 21 积42 42 和43 23 1、张大爷要用篱笆围成一个面积为64平方米的长方形菜园,当菜园的长和宽各为多少时,所用的篱笆最少?最少要用多少米的篱笆? 2、两个自然数的积是24,这两个自然数的和最大是多少?最小是多少? 完成上表,从上面的数 据你能发现规律吗? 完成表格,从数据 中你能发现规律 吗?

把10拆成若干个自然数的和,使这些自然数的积最大是几?若拆11呢,积最大是 几? 1、把25分成几个自然数的和,这几个自然数乘积最大是多少? 2、有三个数字,用它们可以组成6个不同的三位数,这六个数的和等于1998,那么其中最大的三位数是多少? 有8个西瓜.它们的重量分别是2kg 、3kg 、4kg 、4kg 、5kg 、6kg 、8.5kg 、10kg ,把 它们分成三堆.要使最重的一堆西瓜,尽可能轻些,那么,最重的一堆就应是多少千克? 你能否用列举法尝试下呢? 10=1+4+5 =1+2+3+4 =1+2+7…… 例1不是总结了规律吗?和一定,数字要接近,才能使积最大吗? 把一个自然数拆分成若干个自然数的和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不能超过2个。 三堆总重量是多少呢?发现什么总重量不变,那还是不懂怎么分呢?

小学奥数第1讲 最值问题(含解题思路)

1、最值问题 【最小值问题】 例1 外宾由甲地经乙地、丙地去丁地参观。甲、乙、丙、丁四地和甲乙、 乙丙、丙丁的中点,原来就各有一位民警值勤。为了保证安全,上级决定在沿 途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都 相等。现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少 要增加______位民警。 (《中华电力杯》少年数学竞赛决赛第一试试题) 讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有 一位民警,共有7位民警。他们将上面的线段分为了2个2500米,2个4000米,2个2000米。现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。 由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民 警数是(5000+8000+4000)÷500+1=35(名)。 例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图 5.92所示,它们爬行的速度相等。若要求它们同时出发会面,那么,应选择哪 点会面最省时? (湖南怀化地区小学数学奥林匹克预赛试题) 讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须 三者同时到达,即各自行的路程相等。 我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。 故,O点即为三只蚂蚁会面之处。 【最大值问题】 例1 有三条线段a、b、c,并且a<b<c。判断:图5.94的三个梯形中,第几个图形面积最大? (全国第二届“华杯赛”初赛试题) 讲析:三个图的面积分别是: 三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。其问题实质上是把这个定值拆成两个数,求这两个数为何值时,乘积最大。由等周长的长方形面积最大原理可知,(a+b)×c这组数的值最接近。 故图(3)的面积最大。 例2 某商店有一天,估计将进货单价为90元的某商品按100元售出后,能卖出500个。已知这种商品每个涨价1元,其销售量就减少10个。为了使这一天能赚得更多利润,售价应定为每个______元。 (台北市数学竞赛试题) 讲析:因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品按单价90元进货,共进了600个。 现把600个商品按每份10个,可分成60份。因每个涨价1元,销量就减少1份(即10个);相反,每个减价1元,销量就增加1份。

小学奥数教程:最值中的数字谜(一)全国通用(含答案)

1. 掌握最值中的数字谜的技巧 2. 能够综合运用数论相关知识解决数字谜问题 数字谜中的最值问题常用分析方法 1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以 转化为竖式数字谜; 2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等. 3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、 分解质因数法、奇偶分析法等. 4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的 最值的可能值,再验证能否取到这个最值. 5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、 方程、估算、找规律等题型。 【例 1】 有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11469,那么 其中最小的四位数是多少? 【考点】加减法的进位与借位 【难度】3星 【题型】填空 【解析】 设这四个数字是a b c d >>>,如果0d ≠,用它们组成的最大数与最小数的和式是 11469 a b c d d c b a +,由个位知9a d +=,由于百位最多向千位进1,所以此时千位的和最多为10, 与题意不符.所以0d =,最大数与最小数的和式为0 011469a b c c b a + ,由此可得9a =,百位没有向千位进位,所以11a c +=,2c =;64b c =-=.所以最小的四位数cdba 是2049. 【答案】2049 【例 2】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数,如果新数比原数大7902,那么所有符 合这样条件的四位数中原数最大的是 . 例题精讲 知识点拨 教学目标 5-1-2-4.最值中的数字谜(一)

小学奥数教师版(合辑):5-2-4 整数分拆之最值应用.教师版

旗开得胜 5-2-2.整数分拆之最值应用 教学目标 1.熟练掌握整除的性质; 2.运用整除的性质解最值问题; 3.整除性质的综合运用求最值. 知识点拨 一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 1

3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除. 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11 或13整除. 【备注】(以上规律仅在十进制数中成立.) 二、整除性质 性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b). 性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a. 用同样的方法,我们还可以得出: 性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那 么b∣a,c∣a. 性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a. 例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12. 性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数); 性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c, 2

小学奥数 容斥原理之最值问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; A B A B +-1 A B 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, C 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++--- A B C 3A B C ++-

小学奥数最大值最小值问题归纳

小学奥数最大值最小值问题汇总 1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。 3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。 4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。 5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。 6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。 7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。 8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。 9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。 10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。二、解答题(30分) 1.把19分成若干个自然数的和,如何分才能使它们的积最大? 2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。 3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。前后轮可在适当时候交换位置。问一辆自行车同时换上一对新轮胎,最多可行驶多少千米? 4.如下图,有一只轮船停在M点,

现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短? 5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。问:至少需要多少个空筐?如何装? B卷(50分)一、填空题(每题2分,共20分) 1.在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是_____。 2.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是______。 3.三个质数的和是100,这三个质数的积最大是______。 4.有一类自然数,自左往右它的各个数位上的数字之和为8888,这类自然数中最小的 (1)求最大量的最大值:让其他值尽量小。例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵?解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从“1”开始的公差为“1”的等差数列,依次为1、2、3、4,共10棵,则栽树最多的土地最多种树11棵。(2)求最小量的最小值:让其他值尽量大。例:6个数的和为48,已知各个数各不相同,且最大的数是11,则最小数最少是多少?解析:要求最小数的最小值,则使其他量尽可能的大,

小学奥数韩信点兵典型例题和解题思路

小学奥数韩信点兵典 型例题和解题思路Revised on November 25, 2020

韩信点兵典型例题与解题思路 一、基本原理: ?a÷b...r 表示方式b|(a-r),b|(a+b-r),其中r为余数,减去余数就 可以整除;b-r意味着如果再补这么多数据,就可以整除。如10÷ 3=3...1。如余数为1,10-1=9,可以整除;1缺少2,如果补3-1=2,就可以整除,也就是10+2可以整除。 ?m|a,n|a,p|a,相当于【m,n,p】|a (1)A÷3...1;A÷4...1;A÷6...1 【3,4,6】|(A-1)---A-1=12K---A=12K+1 (2)A÷3...2;A÷4...3;A÷6...5;补数相同为1,【3,4,6】|(A+1)---A+1=12K---A=12K-1 二、基本规律 1)减同余 若a÷m...r;a÷n...r;则【m,n】|(a-r) 2)加同补(补数,除数-余数) 若a÷m...r1;a÷n...r2;且m-r1=n-r2则【m,n】|(a+m-r) 3)逐级满足 (1)A÷3 (2) (2)A÷5 (3) 由(2)得A-3=5K A=5K+3 (3) 将(3)代入(1),的(5K+3)÷3 (2) 3|(5K+3-2)

3|(3K+2K+1) 3|(2K+1) K最小为1 A=5×1+3=8 三、例题 例1、一个大于10的自然数除以4余3,除以6余3,则这个数最小为多少解:A÷4...3 A÷6...3----------[4,6]|(A-3) A-3 = 12K A=12K+3 K=1,A=15 例2、一百多个苹果,3个3个数多2个,5个5个数剩2个,7个7个数缺5个,则苹果有多少个! 解:A÷3...3 A÷5...2 A÷7...2----------[3,5,7]|(A-2) A-2= 105K A=105K+2,当K=1,A=107 例3、一个自然数除以6余2,除以8余4,这个数最小为多少解:A÷6...2 A÷8...4------------【6,8】|(A+4) A+4 =24K A=24K+4 当K=1时,A=24×1-4=20 例4,一个自然数除以7余1,除以9余2,这个自然数最小为多少(1)A÷7 (1) (2)A÷9 (2) 由(2)得 A=9K+2 (3) 将(3)代入(1),的(9K+2)÷7 (1) 7|(9K+1) 7|(7K+2K+1)

小学数学六年级奥数《最值问题(2)》练习题(含答案)

小学数学六年级奥数《最值问题(2)》练习题(含答案) 一、填空题 1.下面算式中的两个方框内应填 ,才能使这道整数除法题的余数最大. □÷25=104…□ 2.在混合循环小数 2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大.写出新的循环小数: 3.一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是 . 4.将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个最大乘积等于 . 5.一个五位数,五个数字各不同,且是13的倍数.则符合以上条件的最小的数是 . 6.把1、2、3、4...、99、100这一百个数顺序连接写在一起成一个数. Z =1234567891011 (9899100) 从数Z 中划出100个数码,把剩下的数码顺序写成一个Z ',要求Z '尽可能地大.请依次写出Z '的前十个数码组成一个十位数 . 7.用铁丝扎一个空心的长方体,为了使长方体的体积恰好是216cm 3,长方体的长,宽,高各是 cm 时,所用的铁丝长度最短. 8.若一个长方体的表面积为54平方厘米,为了使长方体的体积最大,长方体的长,宽,高各应为 厘米. 9.把小正方体的六个面分别写上1、2、3、4、5、6.拿两个这样的正方体,同时掷在桌子上.每次朝上的两个面上的数的和,最小可能是 .最大可能是 ,可能出现次数最多的两个面的数的和是 . 10.将进货的单价为40元的商品按50元售出时,每个的利润是10元,但只能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个.为了赚得最多的利润,售价应定为 . 二、解答题 11.王大伯从家(A 点处)去河边挑水,然后把水挑到积肥潭里(B 点处).请帮他找一条最短路线,在下图表示出来,并写出过程. 12.某公共汽车线路上共有15个车站(包括起点站和终点站),公共汽车从起点站到终点站的行驶过程中,每一站(包括起点站)上车的人中恰好在以后的各站都各有1人下车,要使汽车在行驶中乘客都有座位,那么在车上至少要安排乘客A B · · 河

小学奥数分类型讲解(60种)

小学奥数类型集锦 1、最值问题 【最小值问题】 例1 外宾由甲地经乙地、丙地去丁地参观。甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。 (《中华电力杯》少年数学竞赛决赛第一试试题) 讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。他们将上面的线段分为了2个2500米,2个4000米,2个2000米。现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。 由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。 例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。若要求它们同时出发会面,那么,应选择哪点会面最省时? (湖南怀化地区小学数学奥林匹克预赛试题) 讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。 我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。 故,O点即为三只蚂蚁会面之处。 【最大值问题】 例1 有三条线段a、b、c,并且a<b<c。判断:图5.94的三个梯形中,第几个图形面积最大? (全国第二届“华杯赛”初赛试题) 讲析:三个图的面积分别是: 三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。其问题实质上是把这个定值拆成两个数,求这两个数为何值时,乘积最大。由等周长的长方形面积最大原理可知,(a+b)×c这组数的值最接近。 故图(3)的面积最大。 例2 某商店有一天,估计将进货单价为90元的某商品按100元售出后,能卖出500个。已知这种商品每个涨价1元,其销售量就减少10个。为了使这一天能赚得更多利润,售价应定为每个______元。 (台北市数学竞赛试题) 讲析:因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品按单价90元进货,共进了600个。 现把600个商品按每份10个,可分成60份。因每个涨价1元,销量就减少1份(即10个);相反,每个减价1元,销量就增加1份。

小学数学培优:奥数--特殊解题方法(含解题思路)

特殊解题方法 【穷举法】解答某些数学题,可以把问题所涉及到的数量或结论的有限种情况,不重复不遗漏地全部列举出来,以达到解决问题的目的。这种解题方法就是穷 举法。 例1 从甲地到乙地有A、B、C三条路线, 从乙地到丙地有D、E、F、G四条路线。问从 甲地经过乙地到达丙地共有多少条路线?(如图) 分析:从甲地到乙地有3条路线,从乙地 到丙地有4条路线。从甲地经过乙地到达 丙地共有下列不同的路线。 解:3×4=12 答:共有12条路线。 例2 如果一整数,与1、2、3这三个数,通过加减乘除运算(可以添加括号) 组成算式,能使结果等于24,那么这个整数就称为可用的。在4、5、6、7、8、9、10、11、12这九个数中,可用的有_______个。 分析:根据题意,用列式计算的方法,把各算式都列举出来。 4×(1+2+3)=24 (5+1+2)×3=24 6×(3+2-l)=24 7×3+1+2=24 8×3×(2-1)=24 9×3-1-2=24 10×2+l+3=24 11×2+3-l=24 12×(3+1-2)=24 通过计算可知,题中所给的9个数与1、2、3都能够组成结果是24的算式。 答:可用的数有9个。 例3 从0、3、5、7中选出三个数字能排成_______个三位数,其中能被5整 除的三位数有_________个。 分析:根据题中所给的数字可知:三位数的百位数只能有三种选择:十位数在余下的三个数字中取一个数字,也有3种选择; 个位数在余下的两个数字中取一个数字,有2种选择。 解:把能排成的三位数穷举如下,数下标有横线的是能被5整除的。 305, 307, 350, 357, 370, 375;503, 507, 530, 537, 570, 573; 703, 705, 730, 735, 750, 753 答:能排成18个三位数,其中能被5整除的有10个数。 例4 数一数图3.30中有多少个大小不同的三角形? 分析:为了不重复不遗漏地数出图中有多少个大小不同的 三角形,可以把三角形分成A、B、C、D四类。 A类:是基本的小三角形,在图中有这样的三角形16个;

小学奥数思维训练-最值问题二通用版

2014年六年级数学思维训练:最值问题二 1.用0,1,2,…,9这10个数字各一次组成5个两位数a、b、c、d、e.请问:a﹣b+c﹣d+e最大可能是多少? 2.将135个人分成若干小组,要求任意两个组的人数都不同,最多可以分成多少组?这时,人数最少的那组有多少人? 3.有11个同学计划组织一场围棋比赛,他们准备分为两组,每组进行单循环比赛,那么他们最少需要比赛多少场? 4.我们知道,很多自然数可以表示成两个不同质数的和,例如8=3+5.有的数有几种不同的表示方法,例如100=3+97=11+89=17+83.请问:恰好有两种表示方法的最小数是多少? 5.一个三位数除以它的各位数字之和,商最大是多少?商最小是多少? 6.(1)在分母是一位数的最简真分数中,两个不相等的分数最小相差多少? (2)从1至9中选取四个不同的数字填人算式+中,使算式的结果小于1.这个 结果最大是多少? 7.如图,等腰直角三角形ABC中,CA=CB=4厘米,在其中作一个矩形CDEF,矩形CDEF 的面积最大可能是多少? 8.如图,从一个长方形的两个角上挖去两个小长方形后得到一个八边形,这个八边形的边长恰好为1、2、3、4、5、6、7、8这8个数,它的面积最大可能是多少? 9.在4×4的方格表中将一些方格染成黑色,使得任意两个黑格都没有公共顶点,请问:最多可以将多少个方格染成黑色? 10.古希腊有一位久负盛名的学者,名叫海伦.他精通数学、物理,聪慧过人.有一天,一位将军向他请教一个问题:如图16﹣3,将军从甲地骑马出发,要到河边让马饮水,然后再回到乙地的马棚,为了使走的路线最短,应该让马在什么地方饮水?

(完整)四年级奥数之最值问题

四年级奥数之最值问题 知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会 出现求最值问题,解决办法有: 一、枚举法 例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁? (北京市第三届“迎春杯”数学竞赛试题) 分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。这样最多要试的次数为:3+2+1=6(次)。 二、综合法 例2x3=84A(x、A均为自然数)。A的最小值是______。(1997年南通市数学通讯赛试题) 分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。 即A的最小值为(2×3×3×7×7=)882。 三、分析法 例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少? (广州市五年级数学竞赛试题) 分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。由乘除法关系得 43a+b=一个三位数 因为b是余数,它必须比除数小,即b<43b的最大值可取42。 根据上面式子,考虑到a不能超过23。(因为24×43>1000,并不是一个三位数)

当a=23时,43×23+10=999,此时b最大值为10。 当a=22时,43×22+42=988,此时b最大值为42。 显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。 四、公式法 例4两个自然数的和为18,那么,这两个自然数的积的最大值为多少?(广州市小学数学竞赛试题) 我们经常说的一句话就是"和一定,差小积大,差大积小"那么到底应该如何准确理解并应用它解决实际问题呢? A+B=C 和一定,指的是A与B的和是不变的,为C。 差小积大,'差'指的是A和B的差距,A和B差距越小,乘积越大; 差大积小,理解方法同上,A和B差距越大,乘积越小。 所以,当a=b=9时,这两个自然数的积最大。为91。 五、图表法 例5某公共汽车从起点站开往终点站,中途共有9个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中从这一站到以后的每一 站正好各有一位乘客上下车。为了使每位乘客都有座位。那么这辆汽车至少应有座位多少个? (北京市“迎春杯”数学竞赛试题) 分析与解根据题意,每站下车的乘客数最少要等于该站后面的车站数,列表如下: 从表中可以看出,车上乘客最多时,是在第五站乘客上下车后的人数,此时人数为 (10+9+8+7+6)-(1+2+3+4)=30(人) 所以这辆汽车至少应有座位30个。

(完整版)小学奥数最值问题

最值问题 内容概述 均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的. 典型问题 2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块? 【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖. 则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少. 这4袋糖的总和为20+20+21+21=82块. 方法二:设这4袋糖依次有a、b、c、d块糖, 有 61 61 61 61 a b c a b d a c d b c d ++≥ ? ?++≥ ? ? ++≥ ? ?++≥ ? ① ② ③ ④ ,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥81 1 3 ,因为 a+b+c+d均是整数,所以a+b+c+d的和最小是82. 评注:不能把不等式列为 a b c60 a+b+d60 a+c+d60 b+c+d60 ++? ? ?? ? ? ? ? ?? ? ① ② ③ ④ ,如果这样将①+②+③+④得到 3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决. 4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值. 【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总 1. _____________________________________________________ 三个自然数的和为15,这三个自然数的乘积最大可能是 _______________ 。 3. _________________________________________________ —个长方形周长为24厘米,当它的长和宽分别是_____________________ 厘米、_______ 厘米时面积最大,面积最大是__________ 平方厘米。 4. 现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个 鸡舍面积最大,长应是_________ 米,宽应是 _________ 米。 5 .将16拆成若干个自然数的和,要使和最大,应将16拆成__________ 。 6 .从1, 2 , 3,…,2003这些自然数中最多可以取 ____________ 个数,才能使其中任意两个数之差都不等于5。 7. __________________________________________________ —个两位小数保留整数是6,这个两位小数最大是____________________ ,最小是________ O 8. 用1克、2克、4克、8克、16克的砝码各一个和一架天平,最 多可以称出________ 种不同的整数的重量。 9. 有一架天平,左右都可以放砝码,要称出1?80克之间所有整克 数的重量,如果使砝码个数尽可能少,应该用__________ 的砝码。10 .如下图,将1?9这9个数填入圆圈中,使每条线上的和相等,使和为 A,A最大是_______ 。二、解答题(30分) 1. 把19分成若干个自然数的和,如何分才能使它们的积最大?

小学奥数——最值问题

最值问题 一、例题讲解 例题1.把1、2、3……16分别填进图中16个三角形里,使每边上的7个小三角形里的数之和相等,问:这个和的最大值是多少? 例题2.一把钥匙只能开一把锁,现在有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁,那么最多要试开多少次才能配对好全部的钥匙和锁? 例题3.一种购物券的面值只有1元、3元、5元、7元和9元五种,为了直接付清1元、2元、3元……98元、99元、100元各种整数元的物品,至少要准备多少张什么样的购物券? 例题4.猴妈妈摘来一筐桃,将它们三等分之后还剩2个桃;取出2份,将它们三等分之后还剩2个桃;再取出2份,将它们三等分之后还剩2个桃 .猴妈妈至少摘了几个桃? 例题5.a 和b 是小于100的两个不同的自然数(非0),那么, 的最大值是多少? 例题6.把14拆成几个自然数相加的形式,再把拆成的这些自然数乘起来,如果想让所乘的积最大,应该怎么拆? 例题7.10、9、8、7、6、5、4、3、2、1这十个数,在每相邻的两个数之间添上一个加号或一个减号,组成一个算式,使它符合下面两个要求:① 算式的结果等于37,② 这个算式中所有的减数(前面添了减号的数)的乘积尽可能的大,那么这些减数的最大乘积是多少? 例题8.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,这三个数中,最小的数是多少? 例题9.有三个数字,能组成6个不同的三位数,这6个数的和是2886,那么所组成的6个三位数中,最小的三位数是几? a - b a + b

二、举一反三 ① 如果四个人的平均年龄是30岁,并且在这四个人中没有小于21岁的,那么年龄最大的人是几岁? ② 将5、6、7、8、9、10六个数分别填入下面的圆圈内,使三角形每边上三个数的和相等,这个和最大是多少? ③ 现在有1元、2元、5元和10元的人民币若干张,如果要付清1元、2元、3元……98元、99元、100元各种整数元,至少需要准备多少张什么样的人民币? ④ x 和y 是小于50的两个不同的自然数(非0),并且x >y ,那么, 的最小值是多少? ⑤ 把50拆成几个自然数的和,要使这些自然数的乘积最大,应该怎么拆? ⑥ a 、b 、c 是从大到小排列的三个数,且a – b = b – c ,前两个数的积与后两个数的积之差是280,如果b = 35,那么c 是多少? ⑦ 把135个苹果分成若干份,使任意两份的苹果数都不相同,最多可以分成多少份? ⑧ 育才小学六(1)班51名学生一共植树251棵,已知植树最少的同学植树3棵,又知最多有11名同学植树的棵树相同,植树最多的同学可能植树多少棵? ⑨ 有一架天平,只有5克和30克的砝码各一个,现在要把300克的盐分成3等份,那么最少需要称几次? ⑩ 一个布袋里有大小相同、颜色不同的一些小球,其中红的10个、白的9个、黄的8个、蓝的2个,一次最少取多少个球,才能保证有4个球颜色相同? x - y x + y

值问题解题思路奥数

值问题解题思路奥数

————————————————————————————————作者:————————————————————————————————日期:

马到成功奥数专题:离散最值 引言:在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题。解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手: 1.着眼于极端情形; 2.分析推理——确定最值; 3.枚举比较——确定最值; 4.估计并构造。 离散最值问题渗透到小升初的各个奥数专题中,学好它可为解决数论,计数,应用问题等打下扎实的基础。 一、从极端情形入手 从极端情形入手,着眼于极端情形,是求解最值问题的有效手段。 题目1.一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的? 解:假设摸出的8个球全是红球,则数字之和为(4×8=)32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故。 用一个绿球换一个红球,数字和可增加(6-4=)2,用一个黄球换一个红球,数字和可增加(5-4=)1。为了使红球尽可能地多,应该多用绿球换红球,现在7÷2=3……1,因此可用3个绿球换红球,再用一个黄球换红球,这样8个球的数字之和正好等于39。所以要使8个球的数字之和为39,其中最多可能有(8-3-1=)4个是红球。 题目2.有13个不同正整数,它们的和是100。问其中偶数最多有多少个?最少有多少个?解:①2+4+6+8+10+12+14+16=72还要有5个奇数,但和是奇数,100是偶数,所以只能少一个偶数,2+4+6+8+10+12+14=56 100-56=42 42=1+3+5+7+9+17,最多有7个偶数。 ②1+3+5+7+9+11+13+15=64还要5个偶数,100-64=36 36=2+4+6+8+16 最少有5个偶数。 题目3.一种小型天平称备有1克、3克、5克、7克、9克5种砝码。为了能称出1克到91克的任意一种整数克重量,如果只允许在天平的一端放砝码,那么最少需要准备砝码多少个。 解:要能称出1克到91克的任意一种整数克重量,要有9个9克、1个5克、1个3克、2个1克,它们的和是91,这样即可。需要9+1+1+2=13个。

有关的最值问题的五种解题方法

有关向量的最值问题的四种解题方法 函数法 (1)已知向量a =(3sin θ,1),b =(1,cos θ),则a ·b 的最大值为________. (2)已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则CP → ·(BA → -BC → )的最大值为________. 参数法 (1)(2017·北京,文)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO → ·AP → 的最大值 为________. (2)(2017·课标全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP → =λAB → +μAD → ,则λ+μ的最大值为( ) A .3 B .2 2 C. 5 D .2 (3)给定两个长度为1的平面向量OA → 和OB → ,它们的夹角为 2π 3 .如图所示,点C 在以O 为圆心的圆弧AB ︵ 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值. 数形结合法 (1)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·DC → 的最大值为________. (2)(2013·湖南,理)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1] B .[2-1,2+2] C .[1,2+1] D .[1,2+2] (3)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.2 2

小学奥数 最优方案与最佳策略 含解题思路

3、最优方案与最佳策略 【最优方案】 例1 某工厂每天要生产甲、乙两种产品,按工艺规定,每件甲产品需分别在A、B、C、D四台不同设备上加工2、1、4、0小时;每件乙产品需分别在A、B、C、D 四台不同设备上加工2、2、0、4小时。已知A、B、C、D四台设备,每天最多能转 动的时间分别是12、8、16、12小时。生产一件甲产品该厂得利润200元,生产一 件乙产品得利润300元。问:每天如何安排生产,才能得到最大利润? (中国台北第一届小学数学竞赛试题) 讲析:设每天生产甲产品a件,乙产品b件。由于设备A的转动时间每天最多 为12小时,则有:(2a+2b)不超过12。 又(a+2b)不超过8, 4a不超过16, 4b不超过12。 由以上四个条件知, 当b取1时,a可取1、2、3、4; 当b取2时,a可取1、2、3、4;

当b取3时,a可取1、2。 这样,就是在以上情况下,求利润200a+300b的最大值。可列表如下: 所以,每天安排生产4件甲产品,2件乙产品时,能得到最大利润1400元。 例2 甲厂和乙厂是相邻的两个服装厂。它们生产同一规格的成衣,每个厂的人员和设备都能进行上衣和裤子生产。由于各厂的特点不同,甲厂每月 联合生产,尽量发挥各自的特长多生产成衣。那么现在比过去每月能多生产成衣______套。 (1989年全国小学数学奥林匹克初赛试题) 的时间生产上衣。所以,甲厂长于生产裤子,乙厂长于生产上衣。 如果甲厂全月生产裤子,则可生产 如果乙厂全月生产上衣,则可生产 把甲厂生产的裤子与乙厂生产的上衣配成2100套成衣,这时甲厂生产150条裤子的时间可用来生产成套的成衣

相关文档
最新文档