北师大版数学必修3课件:2.3.1 条件语句

合集下载

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
3、频率是概率的近似值,随着试 验次数的增加,频率会越来越接近 概率。
例2.某市统计近几年新生儿出生数及其中男婴数(单位:人) 如下: 时间 1999年 21840 11453 2000年 23070 12031 2001年 2002年 20094 19982 10297 10242
出生婴儿数 出生男婴数
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524 . 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
不可能事件
随机事件
数学理论
在一定条件下 必然事件:在一定条件下必然要发生的事件叫必然事件。
木柴燃烧,产生热量

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
件A发生的概率的近似值,

P ( A)

北师大版数学必修三课件:第3章§2 2.2 建立概率模型

北师大版数学必修三课件:第3章§2 2.2 建立概率模型

评析:法(一) 利用树状图列出了试验的所有可能结果(共24
Байду номын сангаас
种),可以计算4个人依次摸球的任何一个事件的概率.
法(二) 利用试验结果的对称性,只考虑前两个人摸球的情 况,所有可能结果减少为12种. 法(三)只考虑球的颜色,对2个白球不加区分,所有可能结 果减少为6种. 法(四)只考虑第二个人摸出的球的情况,所有可能的结果 变为4种,该模型最简单!
例2.口袋里装有1个白球和1个黑球,这 2 个球除了颜色外
完全相同,2 个人按顺序依次从中摸出一个球.试计算第二 个人摸到白球的概率.
分析:1.完成一次试验是指什么?
2.总的基本事件数是多少? 3.符合要求的基本事件数是多少?
1 答案: 2
第 一 人
第 二 人
第 一 人
第 二 人
变式1.袋里装有2个白球和2个黑球,这4个球除颜色外完
1 现1,2,3,4,5,6点的概率都是_______. 6
(2)若考虑向上的点数是奇数还是偶数,则分别出现奇数
1 或偶数的概率都是________. 2
(3)若要在掷一粒均匀骰子的试验中,欲使每一个结果出
现的概率都是1/3,怎么办?
把骰子的6个面分为3组(如相对两面为一组),分别涂 上三种不同的颜色.
能的结果用“树状图”直观地表示出来.
四个球分别用
1
2
1 2
表示,用树状图表示
所有可能的结果如下: 2 1 1 2 1 2 2 2 2 1 2 1 2 2 1 2 2 1 1 1 2 2 1 2 1 1 2 1 2 1 1 1
1
2 2 1 2 2 1
2 2 2 1 1 2
1 2 1
1 2 1 1

必要条件与充分条件(1)课件-高一上学期数学北师大版(2019)必修第一册

必要条件与充分条件(1)课件-高一上学期数学北师大版(2019)必修第一册
(3)当 = 1时, − 1 = — 1 = 0,所以 ⟹ ,所以q是p的必要条件.
(4)当 = −2时, − 2 ≤ ≤ 5成立,但是−1 ≤ ≤ 5不成立,所以 ⇏ ,
所以q不是p的必要条件.
(5)0是自然数,但是0不是正整数,所以 ⇏ ,所以q不是p的必要条件.
(6)等边三角形一定是等腰三角形,所以 ⇒ ,所以q是p的必要条件.
出这两个三角形的对应角相
等;而一旦两个三角形的对
应角不相等,那么这两个三
角形一定不是全等三角形.
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
怎么理解必要条件呢?仔细分析下面三个定理,找出必要条件,并
分析体会何为“必要”.
结论:
上面三个定理(命题)都可以写成相同的形式:
“如果成立,那么成立”(或“若p成立,则q成立”),
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
判断下列说法是否正确,正确的在它后面的括号里画“√”,错误的画“×”.
(1)已知 ⟹ ,则“若,则”是真命题. ()
(2)已知 ⟹ ,则的充分条件是,的必要条件是.()
(3)是的必要条件是指“要使成立,必须要有成立”也就是说“若不
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
将下面的性质定理写成“若p,则q”的形式,并指出必要条件.
(1)平面四边形的外角和是360°;
(2)在平面直角坐标系中,关于x轴对称的两个点的横坐标相同.
解:(1)“平面四边形的外角和是360°”可表述为
“若平面多边形为四边形,则它的外角和为360°”,

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
3.1.1随机事件的概率
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
还能举出生活中的随机事件、必然事件、不可能事件的实例吗?
随机事件,知道它发生的可能性很重要
怎么衡量这个可能性?用概率 概率是客观存在的 概率怎么来,最直接的方法就是试验(观察)
试验 • 每人取一枚硬币,做10次掷硬币试验 • 在书上记录实验结果
同桌比较一下,试验结果一样吗?为什么
• 小组长迅速统计本组结果 • 完成书上表格
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
出现正 面的频 率m n

摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)

试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
件A发生的概率的近似值,

P ( A)
m n
,(其中P(A)为事件A发生的概率)
注意点:
1.随机事件A的概率范围 任何事件发生的概率都满足:0≤P(A)≤1
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
出现正 面的频 率m n

摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)


(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524 . 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
抛掷100枚质地均匀的硬币,有下列一些说法:
①全部出现正面向上是不可能事件;
②至少有1枚出现正面向上是必然事件; ③出现50枚正面向上50枚正面向下是随机事件, 以上说法中正确说法的个数为 A.0个 B.1个 C.2个 D.3个 (B )
下列说法正确的是 ( C ) A.任何事件的概率总是在(0,1)之间 B.频率是客观存在的,与试验次数无关 C.随着试验次数的增加,频率一般会非常接近概率 D.概率是随机的,在试验前不能确定
3.1.1随机事件的概率
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
的概率约是0.52.
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;

高中数学必修3输入、输出语句和赋值语句课件


语句n 语句n+1
探究新知
程序设计语言有很多种。如BASIC,Foxbase,C语言,C++,J++,VB等。为了实现算法中的 三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的 算法语句: 输入语句 输出语句 赋值语句 条件 语句 循环 语句 这就是这一节所要研究的主要内容——基本算法语句。今天,我们先一起来学习输入、输出语句 和赋值语句。
输出S
PRINT “S=”; S
〖思考〗:在课本图1.1-2程序框图中的输出框的内容怎样用输出语句来表达? 参考答案: 输出框:PRINT “n是质数.” PRINT “n不是质数.”
探究新知
【例题解析】 〖例2〗:编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
课堂小结
基本算法语句
三、赋值语句 1、一般格式:
变量=表达式
2、说明: ①作用是将表达式所代表的值赋给变量,计算。 ②赋值语句中的“=”称为赋值号。 ③赋值语句右边必须是一个数据、常量和算式,左边必须是变量,不能为表达式。 ④赋值号左右不能对换。 ⑤不能用赋值号进行代数式的演算。 ⑥一个语句只能给一个变量赋值; ⑦可先后给一个变量赋多个不同的值,但变量的取值总是最近被赋予的值。
y=x^3+3*x^2-24*x+30 ---------赋值语句
PRINT x -------------------------输出语句
PRINT y -------------------------输出语句
END -------------------------表示结束
探究新知

高一数学北师大版必修3第二章2.3 循环结构

安边中学高一年级下学期数学学科导学稿执笔人:王广青总第课时备课组长签字:王广青包级领导签字:学生:上课时间:第周集体备课个人空间一、课题: 2.3循环结构二、学习目标1.理解循环结构的有关概念.2.能正确地运用循环结构框图表示具体问题的算法.三、教学过程【自主预习】1.循环结构的概念在算法中,从某处开始,按照一定的条件________某些步骤的结构称为循环结构.反复执行的______称为循环体;控制着循环的______和______的变量,称为循环变量;决定是否继续执行循环体的________,称为循环的终止条件.【1-1】算法框图中的三种基本逻辑结构是().A.顺序结构、选择结构和循环结构B.输入、输出结构、判断结构和循环结构C.输入、输出结构、选择结构和循环结构D.顺序结构、判断结构和循环结构2.循环结构的设计过程设计循环结构之前需要确定的三件事:(1)确定循环变量和________;(2)确定算法中________的部分,即循环体;(3)确定循环的______条件.【2-1】如图所示的程序框图中,属于循环结构的是().A.①②B.②③C.③④D.②④【合作探究】1、(福建高考,文)阅读下图所示的程序框图,运行相应的程序,输出的结果是().A.3 B.11 C.38 D.123 【检测训练】1、下列四个说法:①任何一个算法都离不开顺序结构;②算法框图中,根据条件是否成立有不同的流向;③循环体是指按照一定条件,反复执行的某一处理步骤;④循环结构中一定有选择结构,选择结构中一定有循环结构.其中正确的个数为().A.1 B.2 C.3 D.42、阅读如图所示的算法框图,该算法框图输出的结果为().A.81 B.3 C.5 D.153、阅读下面的程序框图,则输出的数据S为__________.反思栏。

高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)


件A发生的概率的近似值,

P ( A)
m n
,(其中P(A)为事件A发生的概率)
注意点:
1.随机事件A的概率范围 任何事件发生的概率都满足:0≤P(A)≤1
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
事件的表示:以后我们用A、B、C等大写字母表示随 机事件,简称事件.
数学运用
例1.判断哪些事件是随机事件,哪些是必然事件, 哪些是不可能事件? 事件A:抛一颗骰子两次,向上的面的数字之和 大于12. 不可能事件 事件B:抛一石块,下落
必然事件 随机事件
事件C:打开电视机,正在播放新闻
事件D:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队 随机事件
不可能事件
随机事件
数学理论
在一定条件下 必然事件:在一定条件下必然要发生的事件叫必然事件。
木柴燃烧,产生热量
在一定条件下 不可能事件:在一定条件下不可能发生的事件叫不可 能事件。
实心铁块丢入水中,铁块浮起
在一定条件下 随机事件:在一定条件下可能发生也可能不发生的事 件叫随机事件。
两人各买1张彩票,均中奖
3、频率是概率的近似值,随着试 验次数的增加,频率会越来越接及其中男婴数(单位:人) 如下: 时间 1999年 21840 11453 2000年 23070 12031 2001年 2002年 20094 19982 10297 10242
出生婴儿数 出生男婴数
班级 实验总次数 10 500
试验结果是 随机事件
正面朝上总次数 正面朝上的比例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档