图论(Graph Theory)学习笔记8
代数结构-图论

记作Nn,特别地,称N1为平凡图(Trivial graph)。 在图的定义中规定结点集V为非空集,但在图的运算
中可能产生结点集为空集的运算结果,为此规定结
点集为空集的图为空图(Empty Graph),并将空图
记为。阶为有限的图称为有限图(Finite Graph),
否则称为无限图(Infinite Graph)。结点没有标号
的图称为非标号图(Unlabeled Graph),否则为标
号图(Labeled heory
10.2 图与图模型
如果图中存在某两条边的端点都相同,则称该
图为多重图(Multigraph),该两条边称为平行边。
如果一条边关联的两个结点是相同的结点,则称该边 为圈或自环(Loop)。
请你思考?
如何找到物流运输的最优路径? 如何找到最优的网络通信线路? 如果你想周游全国所有城市,如何设计旅游线路? 化学化合物分析:结构是否相同? 程序结构度量:程序是否结构相似? 如何为考试分配教室,使得资源利用率最优? 如何安排工作流程而达到最高效率? 如何设计为众多的电视台频道分配最优方案? 如何设计通信编码以提高信息传输效率? 操作系统中,如何调度进程而使得系统效率最优?
图的类型:
(1)有向图/无向图;简单图/多重图/伪图;零图,平凡图,空图; 有限图/无限图;带权图、标记图;
(2)特殊图:环图(Cn)、轮图(Wn)、立方图(Qn)、网格、正则图 (r-图);偶图(G(V1,V2), 二分图/二部图, Bipartite graph) 、 完全偶图(Km,n);
(3)特殊图:子图、完全图、补图 (4)特殊图:Euler图、Hamilton图、树图、平面图
主要内容
8
中国地质大学计算机学院
第八章 图论8.4树及其应用.ppt

⑥ G中每一对结点之间有惟一一条基本通路。(n≥2)
2017/10/10 82-9
定理4.2.1 分析
直接证明这 6 个命题两两等价工作量太大,一 般采用循环论证的方法,即证明
(1) (2) (3) (4) (5) (6) (1) 然后利用传递行,得到结论。
2017/10/10
证明 TG = <VT, ET> 是 G = <V, E> 的生 分析 必要性:假设 必要性由树的定义即得,充分性利用构造性 成树,由定义 4.2.1 , TG 是连通的,于是 G 也是连通的。 方法,具体找出一颗生成树即可
充分性:假设G = <V, E>是连通的。如果G中无回 路, G 本身就是生成树。如果 G 中存在回路 C1 ,可删除 C1中一条边得到图G1,它仍连通且与G有相同的结点集。 如果G1中无回路,G1就是生成树。如果G1仍存在回路C2, 可删除 C2 中一条边,如此继续,直到得到一个无回路 的连通图H为止。因此,H是G的生成树。
2017/10/10 82-22
思考题
1、一个图的生成树是不是唯一的呢?
2、如果不是唯一的,3个顶点的无向完全图有几棵 生成树?4个顶点的无向完全图又有几棵生成树?n 个顶点的无向完全图又有几棵生成树?
完全图是边数最 多的简单无向图
2017/10/10
82-23
定理4.2.3
一个图G = <V, E>存在生成树TG = <VT, ET>的充分 必要条件是G是连通的。
由定理4.2.1(4) 在结点给定的无向图中, 由定理4.2.1(5) 树是边数最多的无回路图 树是边数最少的连通图 由此可知,在无向图G = (n, m)中, 若m<n-1,则G是不连通的 若m>n-1,则G必含回路
图论课件-PPT课件

学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c
图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
图论path的概念

图论path的概念图论(Graph Theory)是研究图的组合结构和定量特性的数学分支学科。
在图论中,Path是指由边依次连接起来的一系列节点,这些节点间没有重复,也没有形成环的情况。
Path是图中最基本的概念之一,研究Path的性质和算法在图论中具有重要意义。
一、Path的定义和类型Path是由边依次连接起来的一系列节点,这些节点间没有重复,也没有形成环的情况,它是一条单向路线。
路径起始点和终点的节点分别被称之为起点和终点。
具体来说,Path可分为以下两种类型:1. 简单Path:简单Path是指除起点和终点外,Path上的所有其他节点都只经过一次的Path。
简单Path可以含有重复的边(两个节点之间的边可能会被反复经过),但是不允许有重复的节点。
2. 回路(Circuit):回路是指Path的起点和终点都是同一个节点的Path。
回路允许经过相同的节点或边,但是相同的边不能重复经过。
二、Path的性质Path作为图论中的基本概念之一,具有以下重要性质:1. 长度:Path的长度是指连接起点和终点之间经过的边数。
2. 相交:在同一张图上,两个不同的Path可以重叠,但是它们不能穿过彼此,也就是说两条Path不能通过完全相同的节点和边同时连接起点和终点。
3. 连通:在一个无向图中,如果两个节点之间存在一条Path,那么这两个节点就是连通的。
特别地,如果一幅无向图中,每一个节点都可以通过Path到达所有其他节点,则该图是连通的。
4. 路径的存在性:对于无向图和有向图来说,两个节点之间存在Path的充分必要条件就是它们连通,即起点和终点之间必须存在通路。
三、Path的算法Path是许多图论算法的基础,也是许多实际问题中需要解决的问题。
在图论算法中, Path算法是指通过搜索、遍历等方式寻找连接两个节点之间的Path的算法。
常用的Path算法有以下几种:1. 深度优先搜索(DFS):深度优先搜索算法是图论算法中用于遍历或搜索图形和树的一种算法。
图论-图的基本概念

证明:按每个顶点的度来计数边,每条边恰数了两次。 推论 1.1.1 任何图中,奇度顶点的个数总是偶数(包括 0)。 4. 子图
子图(subgraph):如果 V (H ) ⊆ V (G) 且 E(H ) ⊆ E(G) ,则称图 H 是 G 的子图,记为 H ⊆G。
生成子图(spanning subgraph): 若 H 是 G 的子图且V (H ) = V (G) ,则称 H 是 G 的生成子图。
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
《离散数学》图论 (上)

无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
华南理工大学 运筹学 第7章 图论-2(简) 工商管理学院

节点标号—对已标号未检查的节点v1,对与其相邻 、未标号的节点v4(前向非饱和弧)进行标号。
[+vs,4]
(7,3) v1 (7,2)
[+v1,4]
v4 (9,6)
(5,1) v2
[-, ∞]
vs
(8,4)
(4,0) (7,1) (16,5) (6,4) v5
18
(10,4)
vt
(4,0)
(10,4)
[-, ∞]
vs
(10,4)
(4,0) (10,4) v3
(16,5)
(6,4) v5
22
Ford-Fulkerson标号算法示例1
(第2轮迭代) 1-搜索过程:
节点标号—对节点v4(前向非饱和弧)进行标号。
[+vs,1]
(7,6) v1 (7,5)
[+v1,1]
v4 (9,9)
(5,1) v2
图G为流量网络。
2
最大流问题示例1
Petro公司的天然气管道输送网络:vs为Petro公 司的制气厂,vt为输送目的地的储气库,其它 中间节点为流量检测和控制站。各点间的弧代 表输送管道,其权值的两个数字分别表示容量 和当前的流量。问:如何利用输送管道,可以 使从制气厂运输到目的地的天然气最多?
(1) 已标号已检查;(2)已标号未检查;(3)未标号。
检查是指从一个已取得标号、未检查的节点vi 出发,搜寻与之邻接的其它未取得标号的节点 vj ,并根据vi的标号计算得到vj的标号。
7
Ford-Fulkerson标号算法
节点vj的标号为[+vi,θj]或[−vi,θj]:
5.图论

注意:在无向图中,无向边(a,b)是从顶点a到顶点b的 线段,无方向.在有向图中,有向边<a,b>是有方向的, 且箭头必须从a指向b.也常用e=<vi,vj>表示边.有时 用G泛指无向图或有向图,而D只能表示有向图. 几个概念: 设G=<V,E>为一无向图或有向图, (1)若V,E都是有穷集合,则称G是有限图. (2)若|V|=n,则称G为n阶图.(此处|V|表示V中元素个 数;这里n≥1) (3)若E=,则称G为零图(仅包含孤立结点的图).特别 的,若此时又有|V|=1,则称G为平凡图(只有一个结点 的图).
第三部分 图论
在计算机科学领域,如开关理论,逻辑设 计,形式语言,操作系统,编译程序,数据结 构和信息检索等,都以图论为工具来解决实 际问题和理论问题,图论有着广泛的应用. 图论的内容十分丰富,涉及面也比较广, 本部分所涉及的只是图论中最基本的,但在 实际中经常用到的知识.
第7章 图的基本概念
7.1 无向图和有向图
定义 一个无向图G是一个二元组<V,E>, 即 G=<V,E>,其中
(1)V是一个非空的集合(在图的运算中,有时产生 顶点集合为的结果,因而规定顶点集为的图 是无意义的),称为G的顶点集,V中元素称为顶 点或结点. (2)E是无序积V&V的一个多重子集(元素可重复出 现的集合为多重集),E中元素称为无向边,也简 称边. 在一个图G=<V,E>中,为了表示V和E分别为G的顶 点集和边集,常将V记成V(G),E记成E(G).
在上图中,(2),(3)均为(1)的子图,(3)是生成图,(2) 是顶点集{v1,v2}的导出子图,也是边子集{e4,e5}的 导出子图.(3)是边子集{e1,e3,e4}的导出子图. (5),(6)是(4)的子图,(5)是生成子图,也是边子集 {e1,e2}的导出子图.(6)边子集{e1}的导出子图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论学习笔记(8)
基本概念
图的匹配M是有一些边组成的集合,其中的任何两个边都不关联。
注:设X,Y是二分图G中的两个部分,则图G一个匹配中的每一条边关联的两个结点满足:一个在X中,另一个在Y中。
事实上,图G的每条边也都满足。
若X中的每个结点都关联于匹配M中的一条边,则称M为从X到Y的一个完全匹配。
注:此时M未必是从Y到X的一个完全匹配。
若M是从X到Y的一个完全匹配也是从Y到X的一个完全匹配,则称M为一个完美匹配。
这要求|X| = |Y|,即图G是平衡的,从X到Y的一个完全匹配仅要求|X|≤|Y|。
若匹配M在图G的所有匹配中最大,则称M为最大匹配。
也就是说,若M'是图G的任意一个匹配,则|M'|≤|M|。
若不存在更大的匹配M'包含匹配M,则称M为一个极大匹配。
因此,极大匹配是指不能通过增加边而扩大的匹配。
设M是图G的一个匹配。
图G的M-交错路是由在M中的边和不再M中的边交替出现构成的。
若结点v与M中的某条边相关联,则称v为M-匹配的,否则,称v为M-不匹配的。
M-增广路是指连接两个M-不匹配结点的交错路。
注:
M-增广路不必包含M的所有边。
M-增广路开始并终止于不在M中的边。
基本定理
定理8.1 Berge匹配定理图G的匹配M是最大匹配当且仅当G中没有M-增广路。
预备:对于结点v,用n(v)表示所有与v邻接的结点集。
对于图G结点集的任意子集S,N(S)表示所有与S中的结点相邻接的结点集的并集,即N(S)=n(v)。
定理8.2 Hall匹配定理二分图G的两个部分为X、Y,若存在从X到Y的完全匹配当且仅当对任意S⊆X,都有|N(S)|≥|S|。
定理8.3 Hall婚配定理二分图G的两个部分X、Y满足|X| = |Y|时,图G存在完美匹配当且仅当对任意子集S⊆X,都有|N(S)| ≥|S|。
引理8.3.1 正则二分图G一定平衡,即G的两个部分X、Y一定有相同的结点数。
定理8.4 若二分图是正则图,则它一定存在完美匹配。