解析几何第19讲-与斜率和,斜率积有关的定点定值
椭圆中斜率之积为定值的问题

椭圆中斜率之积为定值的问题
哎呀,啥是椭圆中斜率之积为定值的问题呀?这对我这个小学生来说,简直就像一个超级大怪兽!
我们先来看看椭圆是啥吧。
椭圆就像一个被压扁的圆,它有两个焦点,就像两个小眼睛盯着你。
那斜率又是什么呢?想象一下,你在山坡上往上爬,山坡的陡峭程度就是斜率。
那在椭圆里,斜率之积为定值,这可太神奇啦!比如说,有两个点在椭圆上,它们连接起来的线的斜率相乘,结果居然是一个不变的数!这难道不像魔法吗?
我就想啊,这和我们平常玩的游戏有啥不一样?比如说跳皮筋,每次跳的高度都不一样,可在椭圆里,这斜率之积居然就固定啦!
老师给我们讲的时候,我瞪大眼睛,心里直犯嘀咕:“这咋就这么难理解呢?”同桌也一脸迷茫,小声跟我说:“这比数学作业还难!”
我们一起努力思考,互相讨论。
我问他:“你说这是不是就像我们跑步,速度和时间的乘积是路程,在椭圆里就是斜率和啥啥的乘积是个定值?”他摇摇头说:“我也不太清楚呢!”
后来,老师又给我们举了好多例子,画了好多图,慢慢地,好像有点懂啦。
我觉得吧,这椭圆中斜率之积为定值的问题,虽然一开始让人头疼,但只要我们不放弃,努力去想,还是能搞明白的。
就像爬山,虽然过程很累,但爬到山顶看到美景的那一刻,一切都值得啦!所以呀,遇到难题别害怕,加油冲就对啦!。
对一类斜率之积与定点关系的探究

对一类斜率之积与定点关系的探究
斜率指的是函数图像中线段的倾斜程度,它在很多不同科目中具有重要意义。
将两条线段的斜率分别记为m1和m2,则两条线段的斜率之积可表示为m1×m2.其次,从几何图形的角度来看,求得四点式线段的斜率方程,其中定点关系是m1×m2=-1.再次,由于斜率是表示两点之间斜率的变化量,所以可以推出两点式斜率的定点关系,只要斜率m1和m2均为一定数值,定点关系即为m1×m2=-1,如果斜率m1或m2均是正负值,则定点关系也同样守恒。
可以从物理方面来看,如果将斜率m1和m2分别解读为力的强度,则由力的平衡关系可计算得出定点关系,即m1×m2=-1.
综上所述,可以得出结论,两条线段的斜率之积与定点关系存在着密不可分的关联,无论是从几何图形的角度,还是从物理方面,均可计算得出定点关系,即m1×m2=-1.。
2020年二轮微专题椭圆中两直线斜率之积为定值的问题

微专题34 椭圆中两直线斜率之积为定值的问题定点定值问题是圆锥曲线中十分重要的研究课题,蕴含着动、静依存的辩证关系,深刻体现了数学的魅力,在高考中常常涉及此类问题且位于中档题的位置.本专题以椭圆中两直线斜率之积为条件,从具体问题入手,通过对解决方法进行总结辨析,使学生能够根据问题的条件寻找与设计更合理、更简捷的运算途径,并引导学生发现这类问题所具有的更一般性规律.过椭圆C :x 24+y 2=1的上顶点A 作互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 过定点,并求出该定点坐标.本题考查的是定点问题,由题意可知,题中的两已知直线存在斜率,且斜率之积为-1,利用此结论,结合韦达定理及代数恒等变形,导出动直线可化为点斜式方程,其中所过的点是一个定点,从而证明动直线过定点.在平面直角坐标系xOy 中,椭圆C :x 24+y 23=1的左顶点为A ,P ,Q 是椭圆C 上的两个动点.(1)如图34-1,当P ,O ,Q 三点共线时,直线P A ,QA 分别与y轴交于M ,N 两点,求证:AM →·AN →为定值;(2)设直线AP ,AQ 的斜率分别为k 1,k 2,当k 1·k 2=-1时,求证:直线PQ 经过定点R.图34-1在平面直角坐标系xOy 中,已知椭圆T的方程为x 22+y 2=1.设A ,B ,M 是椭圆T 上的三点(异于椭圆顶点),且存在锐角θ,使OM→=cos θOA →+sin θOB →.(1)求证:直线OA 与OB 的斜率之积为定值;(2)求OA 2+OB 2的值.(江苏卷)如图34-2,在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左、右顶点为A ,B ,设过点T (9,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.图34-2求证:直线MN必过x轴上的一定点(其坐标与m无关).已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A为椭圆C的左顶点,直线l过点D(1,0),且与椭圆C 相交于E,F两点.图34-3(1)求椭圆C的方程;(2)若△AEF的面积为10,求直线l的方程;(3)已知直线AE,AF分别交直线x=3于点M,N,线段MN的中点为Q,设直线l和QD的斜率分别为k(k≠0),k′,求证:k·k′为定值.(本小题满分16分)(2019·南京一模) 已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆C相交于P,Q两点.(1)求椭圆C的方程;(2)设椭圆的左顶点为A,记直线AP、AQ的斜率分别为k1、k2.①若m=0,求k1k2的值;②若k 1k 2=-14,求实数m 的值. (1)x 24+y 23=1;(2)①-34;②m =1.因为椭圆C 的两个焦点间距离为2,两准线间的距离为2×a 2c =8,所以a =2,c =1,所以b 2=3,所以椭圆的方程为x 24+y 23=1. …………………………3分(求出椭圆方程)①设P (x 0,y 0),由于m =0,则Q (-x 0,-y 0),由x 204+y 203=1,得y 20=3-3x 204…………………………5分(设出点P (x 0,y 0)求出关系式y 20=3-34x 20)所以k 1k 2=y 0x 0+2·-y 0-x 0+2=y 20x 20-4=3-3x 204x 20-4=-34.…………………………8分(利用上面关系式,推证k 1k 2=定值.) ②由(1)得A (-2,0).设P (x 1,y 1),设直线AP 的方程为AP :y =k 1(x +2),联立⎩⎨⎧ x 24+y 23=1y =k 1(x +2),消去y ,得(3+4k 21)x 2+16k 21x +16k 21-12=0,所以x A ·x 1=16k 21-123+4k 21,…………………………10分(联立方程组,写出韦达定理)所以x 1=6-8k 213+4k 21, 代入y =k 1(x +2)得y 1=12k 13+4k 21, 所以P (6-8k 213+4k 21,12k 13+4k 21).…………………………12分(求出点P 的坐标) 由k 1k 2=-14,得k 2=-14k 1,所以Q (24k 21-21+12k 21,-12k 11+12k 21).…………………………13分(由点P 坐标求得Q 坐标) 设M (m ,0),由P ,Q ,M 三点共线,得PM →=λQM →,即12k 13+4k 21×(24k 21-21+12k 21-m )=-12k 11+12k 21×(6-8k 213+4k 21-m ), 化简得(m -1)(16k 21+4)=0,所以m =1. …………………………16分(由三点共线构建方程,并求出m 的值)设P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧ x 24+y 23=1y =k (x -m ),消去y ,得(3+4k 2)x 2-8mk 2x +4m 2k 2-12=0,所以x 1+x 2=8mk 23+4k 2,x 1·x 2=4m 2k 2-123+4k 2…………………………10分 而k 1k 2=y 1x 1+2·y 2x 2+2=k (x 1-m )x 1+2·k (x 2-m )x 2+2=k 2[x 1x 2-m (x 1+x 2)+m 2]x 1x 2+2(x 1+x 2)+4=-14,13分 化简得k 2(3m 2-12)4m 2k 2+16mk 2+16k2=-14,即m 2k 2+mk 2-2k 2=0. 因为k 2≠0,所以m 2+m -2=0,解得m =1或m =-2(舍去). 当m =1时,Δ>0,所以,m =1. …………………………16分答题模板 第一步:求出椭圆方程;第二步:设点P 坐标,推出点P 坐标满足的等式,y 20=3-34x 20;第三步:利用第二步中的等式推出k 1k 2=-34;第四步:联立方程组,写出韦达定理;第五步:写出点P 的坐标;第六步:由条件求出Q 点坐标;第七步:由P ,M ,Q 共线,列出关于m 的方程,并求得解.作业评价已知椭圆x 216+y 24=1的左顶点为A ,过A 作两条弦AM ,AN 分别交椭圆于M ,N 两点,直线AM ,AN 的斜率记为k 1,k 2,满足k 1·k 2=-2,则直线MN 经过的定点为________.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .则直线OM 的斜率与l 的斜率的乘积为____________.如图34-4所示,已知椭圆C :x 24+y 2=1的上、下顶点分别为A ,B ,点P 在椭圆上,且异于点A ,B ,直线AP ,BP 与直线l :y =-2分别交于点M ,N .当点P 运动时,以MN 为直径的圆经过的定点是______.图34-4已知椭圆C :x 24+y 22=1的上顶点为A ,直线l :y =kx +m 交椭圆于P ,Q 两点,设直线AP ,AQ 的斜率分别为k 1,k 2.若k 1·k 2=-1,则直线l :y =kx +m 过定点________.(1)求椭圆E 的方程;(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .(i )设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值;(ii )设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.已知椭圆C :x 2a 2+y 2b 2=1()a >b >0的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切.(1)求椭圆C 的方程;(2)设A ()-4,0,过点R ()3,0作与x 轴不重合的直线l 交椭圆C于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,且过点P(22,12),记椭圆的左顶点为A.(1)求椭圆的方程;(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点,且k1k2=2,求证:直线DE恒过定点.在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A、B,焦距为2,直线l与椭圆交于C,D两点(均异于椭圆的左、右顶点).当直线l过椭圆的右焦点F且垂直于x轴时,四边形ACBD的面积为6.⑴求椭圆的标准方程;(2)设直线AC,BD的斜率分别为k1,k2.①若k2=3k1,求证:直线l过定点;②若直线l过椭圆的右焦点F,试判断k1k2是否为定值,并说明理由.。
解析几何中定值和定点问题

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。
圆锥曲线定点定值及其他常用结论个人整理,已经没错误

圆锥曲线定点定值及其他常用结论一、直线过定点问题过定点模型:是圆锥曲线上的两动点,是一定点,其中分别为的倾斜角,则有下面的结论:、为定值直线恒过定点;、为定值直线恒过定点;、直线恒过定点.方法:要证明直线过定点,只需要找到与之间的关系即可.确定定点,可以证明任意两个斜率相等即可.二、定值问题基本思路:转化为与两点相关的斜率与的关系式的关系式代数式形式的定值(多个参数)结论:①若代数式表达式结果为分式,且为定值,则系数对应成比例;形如,若,则该式为定值,与无关;(注意是变量,具有任意性,是主元)②若代数式表达式结果为整式,则无关参数的系数为0.例如:,当即时,该式为定值与无关. (注意是变量,具有任意性,是主元)三、椭圆经典结论1、过椭圆(上任一点任意作两条倾斜角互补的直线交椭圆于两点,则直线有定向且(常数).(求偏导可得到)(类似结论适合于双曲线,抛物线)2、设椭圆()的两个焦点为(异于长轴端点)为椭圆上任意一点,在中,记,,,则有.3. 椭圆与直线有公共点的充要条件是4.已知椭圆(),为坐标原点,为椭圆上两动点,且.(对原点张直角)1); 2)的最大值为; 3)的最小值是.4)直线PQ必经过一个定点;5)点到直线的距离为定值:.5 . 过椭圆()的右焦点作直线交椭圆于两点,弦的垂直平分线交轴于,则.类比.过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.6.设椭圆(a>b>0),M(m,0)或(0,m)为其对称轴上除中心,顶点外的任一点,过M引一条直线与椭圆相交于P、Q两点,则直线AP、AQ(AA为对称轴上的两顶点)的交点N在直线:(或)上.(用极点与极线直接写出来)7、椭圆中的过定点模型:是椭圆上异于的两动点,其中分别为的倾斜角,则可以得到下面几个充要的结论:(手电筒模型)直线恒过定点类比.给定双曲线C:,对C上任意给定的点,它的任一直角弦必须经过定点(.8、抛物线中的过定点模型:是抛物线上异于的两动点,其中分别为的倾斜角,则可以得到下面充要的结论:(手电筒模型)直线恒过定点特别地直线恒过定点.9、设点是椭圆()上异于长轴端点的任一点,为其焦点记,则 (1). (2).(双曲线(a>0,b>0)中,,其中θ=∠FPF.)10.椭圆的参数方程是,椭圆上的动点可设对于抛物线上的动点的坐标可设为,(抛物线独有的一点两设)以简化计算.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上)(4).双曲线焦点到渐近线的距离总是.顶点到渐近线的距离为(5).双曲线称为等轴双曲线,其渐近线方程为,离心率.抛物线常用设为过抛物线焦点的弦,,直线的倾斜角为,则1. 2.3. 4. 5 .圆锥曲线的切线问题(用极点与极线直接写出来)(证明需要求偏导)1.过圆C:(x-a)+(y-b)=R上一点P(x,y)的切线方程为(x-a)(x-a)+(y-b)(y-b)=R.2. 若在椭圆上,则以为切点的切线的椭圆的切线方程是.3.若在双曲(a>0,b>0)上,则过的双曲线的切线方程是.4.已知点M(x,y)在抛物线C:y=2px(p≠0)上时,M为切点的切线l:yy=p(x+x).(切点弦结论完全相同,用极点与极线直接写出来)圆锥曲线的中点弦问题(点差法)(广义的垂径定理)(也适合于相切情况)AB 是椭圆的不平行于对称轴的弦,M为AB的中点,则=e-1,即。
解析几何中的定点和定值问题

2019年高三数学二轮复习-----解析几何中的定点定值问题(一)定点问题:1.(2014丰台高三上期末19)已知抛物线C :22y px =(0p >)的焦点为F (1,0),点O 为坐标原点,A ,B 是曲线C 上异于O 的两点.(Ⅰ)求曲线C 的方程;(Ⅱ)若直线OA ,OB 的斜率之积为12-,求证:直线AB 过定点. 解:(Ⅰ)24y x =. (Ⅱ)定点(8,0)2. (2011昌平二模)已知椭圆C :12222=+by a x ,左焦点)0,3(-F ,且离心率23=e (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆C 交于不同的两点N M ,(N M ,不是左右顶点), 且以MN 为直径的圆经过椭圆C 的右顶点A. 求证:直线l 过定点,并求出定点的坐标.解 (Ⅰ)1422=+y x (II )定点)0,56(3.(2015朝阳二模18已知点M 为椭圆22:3412C x y +=的右顶点,点,A B 是椭圆C 上不同的两点(均异于点M ),满足直线MA 与直线MB 斜率之积为14. (Ⅰ)求椭圆C 的离心率及焦点坐标;(Ⅱ)试判断直线AB 是否过定点?若是,求出定点坐标;若否,说明理由. 解:(Ⅰ)离心率为12,焦点为(1,0),(1,0)-. (Ⅱ)(4,0)-.4(2015延庆一模)已知椭圆G ,短轴端点分别为(01),(01)A B -,,. (Ⅰ)求椭圆G 的方程;(Ⅱ)若C,D 是椭圆G 上关于Y 轴对称的两个不同点,直线AC,BD 与x 轴分别交于点M,N,试判断以MN 为直径的圆是否过定点,如经过,求出定点坐标;解:(Ⅰ)椭圆方程为2212x y += (Ⅱ)圆E 恒过定点)2,0(± 5.(2010朝阳二模)已知动点M 到点(1, 0)F 的距离等于它到直线1x =-的距离. (Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线C 于点,A B 和,M N .设线段AB ,MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点; 解:(Ⅰ)24y x =. (Ⅱ)(3, 0)E6.(2018·丰台区期末·19)在平面直角坐标系xOy 中,动点P 到点()1,0F 的距离和它到直线1x =-的距离相等,记点P 的轨迹为C .(Ⅰ)求C 得方程;(Ⅱ)设点A 在曲线C 上,x 轴上一点B (在点F 右侧)满足AF FB =.平行于AB 的直线与曲线C 相切于点D ,试判断直线AD 是否过定点?若过定点, 求出定点坐标;若不过定点,请说明理由.解:(Ⅰ)24y x =. (Ⅱ)直线AD 过定点()1,0.(二)定值问题:1.(2014东城12月调研)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,A 、B 为过F 1的直线与椭圆的交点,且△F 2AB 的周长为43。
解析几何题型2——《解析几何中的定值定点问题》

解析几何题型——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。
解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
这类试题考查的是在运动变化过程中寻找不变量的方法。
典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。
(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。
典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。
(1)求动圆圆心的轨迹C 的方程;(2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。
典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。
(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。
典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。
(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。
解析几何中定点、定值、定直线问题

解析几何中定点定值问题例1 已知椭圆)1(1222>=+a y ax 的上顶点为M 〔0,1〕,过M 的两条动弦MA 、MB 满足MA ⊥MB.对于给定的实数)1(>a a ,证明:直线AB 过定点.解:由0MA MB ⋅=知MA MB ⊥,从而直线MA 与坐标轴不垂直, 故可设直线MA 的方程为1y kx =+,直线MB 的方程为11y x k=-+ 将1y kx =+代入椭圆C 的方程,整理得 2222(1)20a k x a kx ++=解得0x =或22221a k x a k -=+,故点A 的坐标为222222221(,)11a k a k a k a k --++ 同理,点B 的坐标为22222222(,)a k k a k a k a-++ 知直线l 的斜率为2222222222222211221k a a k k a a k a k a k k a a k ---++--++=221(1)k a k-+ 直线l 的方程为22222222212()(1)k a k k a y x a k k a k a --=-++++,即222211(1)1k a y x a k a --=-++∴直线l 过定点2210,1a a ⎛⎫-- ⎪+⎝⎭例3 已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. 〔1〕求椭圆的离心率;〔2〕设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.〔I 〕解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+ ),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得〔II 〕证明:由〔I 〕知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由〔I 〕知.21,23,23222221c b c a c x x ===+ 又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业〔13〕1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.82.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点,O 是椭圆的中心,OM AB k k ⋅=______22ab -3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使OB OA OM θθsin cos +=.则直线OA 与OB 的斜率之积为. 12-4.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是椭圆5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 若M 、N 分别是1C 、A B P α2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:当直线ON 垂直于x 轴时,|ON|=1,|OM|=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =〔显然22||>k 〕,则直线OM 的方程为x y k1-=.由⎩⎨⎧=+=1422y x kxy ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k kON ++=.同理121222||-+=k k OM .设O 到直线MN 的距离为d,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d=33.综上,O 到直线MN 的距离是定值.6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M 设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.证明:直线BP 的斜率为1212y k x =-,直线m 的斜率为112m x k y -=,则直线m 的方程为1012(2)x y y x y --=-, 2211111122(4)4(2)x x y x y x y --+=++2211111122(4)123(2)x x xx y x y --+-=++=111122x x x y y --+=112(1)x x y -+, 所以直线m 过定点(1,0)-.7.已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A 〔1〕求椭圆的方程;〔2〕设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;〔3〕过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.高二数学教学案〔13〕例1 已知椭圆)1(1222>=+a y ax 的上顶点为M 〔0,1〕,过M 的两条动弦MA 、MB 满足MA ⊥MB.对于给定的实数)1(>a a ,证明:直线AB 过定点.例2一束光线从点1(1,0)F -出发,经直线l :230x y -+=上一点P 反射后,恰好穿过点2(1,0)F . 〔1〕求P 点的坐标;〔2〕求以1F 、2F 为焦点且过点P 的椭圆C 的方程;〔3〕设点Q 是椭圆C 上除长轴两端点外的任意一点,试问在x 轴上是否存在两定点A 、B ,使得直线QA 、QB 的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A 、B 的坐标;若不存在,请说明理由.例3 已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B两点,OB OA +与)1,3(-=a 共线. 〔1〕求椭圆的离心率;〔2〕设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业〔13〕1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.2.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点,O 是椭圆的中心,OM AB k k ⋅=______3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使OB OA OM θθsin cos +=.则直线OA 与OB 的斜率之积为.4.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.A B P α 〔第4题〕6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M 设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.7.已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A 〔1〕求椭圆的方程;〔2〕设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;〔3〕过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与斜率和,斜率积有关的定点定值
1.基本结论:设),(00yxP为椭圆)0(12222babyax上的定点,AB是椭圆上一条动弦,
直线PBPAAB,,的斜率分别为21,,kkk;
(1)若2221abkk,则有000,0xykx,
(2)若2221abkk,则直线AB过定点,
(3)若021kk,则有02020,0yaxbky,
(4)若021kk,则直线AB过定点.
典例分析(2017一卷)
已知椭圆)0(1:2222babyaxC,四点)23,1(),23,1(),1,0(),1,1(4321PPPP中恰有三
点在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l不经过2P点且与C相交于BA,两点,若直线BPAP22,的斜率之和为1,证
明:直线l过定点.
解析:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点
.
又由222211134abab知,C不经过点P1,所以点P2在C上
.
因此222111314bab,解得2241ab. 故C的方程为
2
2
14xy
.
(2)设直线P2A与直线P2B的斜率分别为k1,k2,
如果l与x轴垂直,设l:x=t,由题设知0t,且2t,可得A,B的坐标分别为(t,242t),
(t,242t)
.
则22124242122ttkktt,得2t,不符合题设
.
从而可设l:ykxm(1m).将ykxm代入2214xy得
222
418440kxkmxm
,由题设可知
22
=16410km
.
设A(x1,y1),B(x2,y2),则x1+x2=2841kmk,
x1x2=224441mk.
而
12
12
12
11yykkxx
12
12
11kxmkxmxx
1212
12
21kxxmxxxx
.
由题设121kk,故
1212
2110kxxmxx
.
即22244821104141mkmkmkk.解得
12mk
.
当且仅当1m时,0,欲使l:12myxm,即1122myx,
所以l过定点(2,1)