电机及液压泵参数计算公式
齿轮泵的功率计算公式

齿轮泵的功率计算公式一、齿轮泵功率的相关概念。
1. 功率的分类。
- 在齿轮泵中,主要涉及到输入功率和输出功率。
- 输入功率是指驱动齿轮泵运转的动力源(如电机等)提供给齿轮泵的功率。
- 输出功率是指齿轮泵对外输出的液压功率。
2. 单位。
- 功率的国际单位是瓦特(W),在工程实际中,也常用千瓦(kW),1kW = 1000W。
二、齿轮泵功率计算公式。
1. 输入功率计算公式。
- 对于齿轮泵,输入功率P_i(单位为W)的计算公式为:P_i=(2π nT)/(60)- 其中,n是齿轮泵的转速(单位为r/min),T是齿轮泵的输入转矩(单位为N·m)。
- 推导过程:根据功率的定义,功率等于功除以时间。
对于旋转机械,转矩T 乘以转角θ就是功W,即W = Tθ。
在旋转运动中,θ = 2π n t(t为时间),当t = 1分钟时,θ = 2π n(n为转速,单位r/min)。
功率P=(W)/(t),将W = Tθ = 2π nT(t = 1分钟= 60秒)代入可得P=(2π nT)/(60)。
2. 输出功率计算公式。
- 输出功率P_o(单位为W)的计算公式为:P_o=pQ- 其中,p是齿轮泵的出口压力(单位为Pa),Q是齿轮泵的流量(单位为m^3/s)。
- 推导过程:根据液压功率的定义,液压功率等于压力乘以流量。
压力p表示单位面积上的力,流量Q表示单位时间内流过的液体体积。
力乘以距离就是功,在液压系统中,压力p乘以体积V(V = Q× t,t为时间)就是功W,即W = pV=pQt,功率P=(W)/(t),所以P = pQ。
配套液压站计算公式

n:转速(rpm)
p:压力(Mpa) 80 6
T:分钟 1.266666667
请输入: S:行程(mm) S= T= X=
T:时间(秒) 2500 76 80
X:缸径(mm)
程走多少行程,可得油缸需要的流量后,再计算泵或马达的流量 请输入 :q:几何排量(CC/rev) n:转速(rpm) q= 30 n= 1450 请输入: Q:流量(升/分钟) p:压力(Kgf) Q= 30 p= 160
计算结果: 油缸缸径 X(mm) F(kg) 13.03270425
80
p(公斤) 60
1Mpa=10Kg 1T=1000Kg 1L=1000ML 缸径 行程 容积
1立方分米等于1升 油缸推力 F(公斤) X(CM) 3014.4 p(公斤) 8 60
63 300 0.9351728
油缸流量 V V(升/分钟) X:米 9.915789474
0.4
S:分米 25
备注:无杆腔单位时间内行程走多少行程,可得油缸需要 泵或马达每分钟可以泵出的液量 Q Q(升/分钟) q(毫升) n:转速(rpm) 43.5 30 1450
泵所需电机功率 P(kw) 7.843137255
P
请输入: F:推力(kg) F= p=
p:压力(Mpa) 80 6
请输入: X:缸径(mm) X= p=
油泵电机选型计算

1.02
1.53
2.55
3.57
5.11
6.64
8.17
10.21
12.77
30
1.23
1.84
3.06
4.29
6.13
7.97
9.80
12.25
15.32
35
1.43
2.14
3.57
5.00
7.15
9.29
11.44
14.30
17.87
40
1.63
2.45
4.08
5.72
8.17
10.62
13.07
4
0.16
0.25
0.41
0.57
0.82
1.06
1.31
1.63
2.04
5
0.20
0.31
0.51
0.71
1.02
1.33
1.63
2.04
2.55
6
0.25
0.37
0.61
0.86
1.23
1.59
1.96
2.45
3.06
81.14
1.63
2.12
2.61
3.27
4.08
10
40.85
51.06
120
4.90
7.35
12.25
17.16
24.51
31.86
39.22
49.02
61.27
140
5.72
8.58
14.30
20.02
28.59
37.17
45.75
57.19
71.49
160
液压系统计算公式表

N-M 0.828025478
752.8846154
液压系统计算公式
几何排量(cm3/r) 27 流量(L/min) 39.15 转速(r/min) 1450 压力(Bar) 60 容积效率 1
几何排量(cm3/r) 27 轴转矩(N/m) 25.79617834 流量(L/min) 39.15
230.8917197 8
129.8765924 296.8607825 油缸推力(N)
无杆腔力 有杆腔力 30144 13188 3000 需要推力 需要压力(Bar) 5.97133758 13.64877161 马达输出扭矩计算(按容积效率0.9计算) 压力 马达排量q 压力/扭矩比 bar 60 cm3/r 52 马达转速
油缸数量 1 所需流量(L/min) 1.5072 0.6594
速比I 5.45
3 4 5
6
Байду номын сангаас
管径DN(mm) 37.21028084 14.4114798
23.53384796 管壁厚度δ(mm) 0.585365854 0.87804878 1.170731707 流量(L/min) 40.192 无杆腔流量 37.366 有杆腔流量 差动速度
(mm/s)
7
实际速度(mm/s)
液压系统
注:红色为自动计算,不能更改 1 2 流量(L/min) 39.15 液压功率(KW) 3.915 电机功率(KW) 22 泵\马达理论轴转矩(N/m) 25.79617834 轴功率(KW) 3.916697235 液压功率热当量(KJ/h) 31685.7024 液压功率热当量(Kcal/h) 7568 油箱散热面积(m2) 4.116553029
液压泵液压缸液压马达的型号及参数以及精编版

液压、气动一、液压传动1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。
2、组成原件1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵2 、调节、控制压力能的液压控制阀3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)4 、传递压力能和液体本身调整所必需的液压辅件液压系统的形式3、部分元件规格及参数衡力,磨损严重,泄漏较大。
叶片泵:分为双作用叶片泵和单作用叶片泵。
这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。
柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。
一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。
还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。
适用工况和应用举例【KCB/2CY型齿轮油泵】工作原理:2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。
A为入吸腔,B为排出腔。
泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。
被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。
KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数:【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图电动机KCB200~960与2CY8~150安装尺寸图双联叶片泵(两个单级泵并联组成,有多种规格)以下为YYB—AA型YYB—AB型ηη(2)液压马达:是把液体的压力能转换为机械能的装置分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和制动,调速和换向的灵敏度高。
液压系统设计计算

液压系统设计计算有的液压系统简单,有的液压系统复杂。
这是由负载的工艺要求决定的。
我们在这里介绍的液压系统是简单的开关型液压系统,也即普通液压系统,不是伺服或者电液比例液压系统。
关于伺服或者电液比例液压系统,我们以后再研究。
我公司原有一台工程油缸试验台,采用的是高低压泵合流。
额定流量为100升,系统额定最高压力为31.5MPa。
为了突出重点,便于叙述,适当做了一些简化。
一液压基本回路一个实用的液压系统原理图都是由液压基本回路组成的。
液压基本回路可以在机械设计手册,或者其他液压设计资料中查到。
1 液压基本回路的分类设计资料中介绍的液压基本回路分类很详细。
但总括起来无非是,泵-电机组,压力控制回路,流量控制回路,方向控制回路和执行机构。
参看图1油缸试验台液压原理图。
在图1中,电机M1 Y112M-4和斜盘柱塞泵10YCY14-1B,电机Y160M-4和叶片泵YB1-80,组成泵-电机组,为系统提供动力;先导卸荷阀③,安全溢流阀④,电磁溢流阀⑤,组成压力控制回路;电液换向阀⑥和先导式液控单向阀⑦,组成方向控制回路。
一般说来,流量控制往往会伴随着压力的损失。
例如,在薄壁节流小孔中,流量d Q C A = (1) 此公式的使用条件为0.5l d≤。
式中Q —经过薄壁小孔的流量,3/m s ;d C —薄壁小孔流量系数,对于紊流,0.600.61d C = ; 0A —孔口面积,2m ; ρ—流体的密度,3/kg m ; p ∆—压力差,12p p p ∆=−,Pa ;d —小孔的直径,m ; l —小孔的长度,m 。
这种压力能损失往往转化为热能,使液压系统升温。
在理论上,变量泵不会因为流量或压力的变量产生能量损失。
2 液压基本回路的联结液压基本回路,特别是液压元件,在液压原理图中的联结,要么是并联,要么是串联。
二 液压系统原理图1 液压系统原理图应该包括的的基本内容一个符合要求的液压原理图除了表示系统外,还应该包括两个基本内容:液压元件明细表和电磁铁动作顺序表。
液压泵液压缸液压马达的型及参数以及精选文档

液压泵液压缸液压马达的型及参数以及精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-液压、气动一、液压传动1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。
2、组成原件1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵2 、调节、控制压力能的液压控制阀3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)4 、传递压力能和液体本身调整所必需的液压辅件液压系统的形式3、部分元件规格及参数(1)液压泵液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。
分类:齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。
叶片泵:分为双作用叶片泵和单作用叶片泵。
这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。
柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。
一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。
还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。
适用工况和应用举例【KCB/2CY型齿轮油泵】工作原理:2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。
A为入吸腔,B为排出腔。
泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。
被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。
KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数:【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图KCB200~960与2CY8~150安装尺寸图双联叶片泵型号参数:双联叶片泵(两个单级泵并联组成,有多种规格)型号识别说明液压泵的主要技术参数和计算公式(2)液压马达:是把液体的压力能转换为机械能的装置分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和制动,调速和换向的灵敏度高。
液压马达扭矩计算方法

汽车机械基础技术应用
5、液压马达的容积效率和转速
液压马达的容积效率:
V
液压马达的转速:
qVt qV
qV n V V
汽车机械基础技术应用
6、液压马达的机械效率和转矩
液压马达的机械效率:
T m Tt
液压马达的转矩:
pV T m 2
7、液压马达的总效率
Po mV Pi
高速额定转速大于500rmin低速额定转速小于500rmi按照排量能否调节定量变量按照输油方向能否改变单向双向按照输出转矩是否连续旋转式摆动式液压泵与液压马达的性能参数1液压泵的压力1工作压力p指泵实际工作时输出油液的压力其值取决于外界负载
课题:液压元件应用
汽车机械基础技术应用
液压元件
( 泵 马达 缸)
汽车机械基础技术应用
再 见!
汽车机械基础技术应用
汽车机械基础技术应用
概述
功 用 液压泵: 将电动机或其它原动机输入的机械能 转换为液体的压力能,向系统供油。 液压马达:将泵输入的液压能转换为机械能(旋 转运动)而对负载做功。 液压缸:将液压泵供给的液压能转换为机械能而对
负载作功,实现往复直线运动或摆动。
液压泵与液压马达关系
功用上 — 相反
汽车机械基础技术应用
液压泵的分类:
按输出流量能否调节: 定量 变量
按结构形式 :齿轮式 按输油方向能否改变:
按使用压力: 低压
叶片式 单向
柱塞式 双向
中压
中高压 高压
汽车机械基础技术应用
汽车机械基础技术应用
汽车机械基础技术应用
汽车机械基础技术应用
齿轮泵 分类: 按啮合形式可分为:外啮合 内啮合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机及液压泵参数计算公式
在工程领域中,电机及液压泵是常用的设备,它们在各种机械系统中起着至关
重要的作用。
为了正确地选择和使用电机及液压泵,工程师们需要了解它们的参数计算公式,以便进行合理的设计和运行。
本文将介绍电机及液压泵的参数计算公式,并对其应用进行详细的分析和讨论。
电机参数计算公式。
电机的参数计算是电气工程中的重要内容,它涉及到电机的功率、效率、转速
等多个方面。
以下是一些常用的电机参数计算公式:
1. 电机的输出功率(P)计算公式为:
P = V × I ×η。
其中,V为电压,I为电流,η为效率。
2. 电机的转速(N)计算公式为:
N = 120f/p。
其中,f为电源频率,p为极对数。
3. 电机的效率(η)计算公式为:
η = Pout / Pin。
其中,Pout为输出功率,Pin为输入功率。
液压泵参数计算公式。
液压泵是工程中常用的动力装置,它将机械能转换为液压能,并驱动液压系统
的运行。
以下是一些常用的液压泵参数计算公式:
1. 液压泵的流量(Q)计算公式为:
Q = A × V。
其中,A为活塞面积,V为活塞速度。
2. 液压泵的功率(P)计算公式为:
P = Q × p。
其中,p为液压系统的压力。
3. 液压泵的效率(η)计算公式为:
η = Pout / Pin。
其中,Pout为输出功率,Pin为输入功率。
电机及液压泵参数计算的应用。
了解电机及液压泵的参数计算公式对于工程师们来说是非常重要的,它们可以帮助工程师们正确地选择和设计电机及液压泵,以及合理地运行和维护它们。
下面将分别介绍电机及液压泵参数计算的应用。
1. 电机参数计算的应用。
在工程设计中,工程师需要根据具体的工作要求来选择合适的电机。
通过电机的参数计算公式,工程师可以计算出电机的输出功率、转速和效率等参数,从而选择合适的电机型号。
此外,电机的参数计算还可以帮助工程师们进行电机的性能分析和优化设计。
2. 液压泵参数计算的应用。
液压泵在液压系统中起着至关重要的作用,它的参数计算对于液压系统的设计和运行至关重要。
通过液压泵的参数计算公式,工程师可以计算出液压泵的流量、
功率和效率等参数,从而选择合适的液压泵型号。
此外,液压泵的参数计算还可以帮助工程师们进行液压系统的性能分析和优化设计。
结论。
电机及液压泵是工程中常用的设备,了解它们的参数计算公式对于工程师们来
说是非常重要的。
本文介绍了电机及液压泵的参数计算公式,并对其应用进行了详细的分析和讨论。
通过深入了解和应用电机及液压泵的参数计算公式,工程师们可以更好地选择、设计和运行这些设备,从而为工程项目的顺利进行提供有力的支持。