5三角形

合集下载

5全等三角形的判定

5全等三角形的判定

5 全等三角形的判定1、如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC2、如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF3、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.44、如图,已知AB∥CD,AE=CF,则下列条件中不一定能使△ABE≌△CDF的是()A.AB=CD B.BE∥DF C.∠B=∠D D.BE=DF5、在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF6、如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个7、下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形8、在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,要证明△ABC≌△A′B′C′,须添加一个条件,这个条件可以是①∠A=∠A′、②∠B=∠B′、③BC=B′C′中的()A.①或②或③B.①或②C.①或③D.②或③9、如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有()A.3对B.4对C.5对D.6对10、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC 11、如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,且AO平分∠BAC,那么图中全等三角形共有()对.A.2 B.3 C.4 D.512、如图,BA=BC,DA=DC,则判定△ABD和△CBD全等的依据是()A.SSS B.ASA C.HL D.SAS13、如图所示,已知∠1=∠2,要使△ABC≌△ADE,还需条件()A.AB=AD,BC=DE B.BC=DE,AC=AEC.∠B=∠D,∠C=∠E D.AC=AE,AB=AD14、如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.甲和乙B.乙和丙C.只有乙D.只有丙15、如图,已知∠1=∠2,下列条件,①AB=AC;②∠B=∠C;③AD=AE,增加其中一个条件,能使△ABE≌△ACD的条件有()A.0个B.1个C.2个D.3个16、下列命题中,真命题的个数是()①如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等;②如果两个三角形有两条边和其中一边所对的角对应相等,那么这两个三角形全等;③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等;④如果两个直角三角形有两条边对应相等,那么这两个三角形全等.A.1个B.2个C.3个D.4个17、如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对18、图中全等的三角形是()A.Ⅰ和ⅢB.Ⅱ和ⅢC.Ⅰ和ⅡD.Ⅱ和Ⅳ19、已知:如图,在等边三角形ABC,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是()A.5 B.4 C.3 D.220、如图,∠BAC=∠ABD,请你添加一个条件:,能使△ABD≌△BAC(只添一个即可).21、线段AC与BD交于点O,且OA=OC,要说明△ABO≌△CDO若以“AAS”为依据,还要添加的条件为.22、在平面直角坐标系中,已知点A(0,1)、B(2,1)、C(4,3),要使△ABD与△ABC全等,那么点D的坐标.23、如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.24、如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).25、如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.26、如图,E、C在BF上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.27、已知:如图在△ABC中,∠ACB=90°,D是AC的中点,DF∥BC,点E在BC的延长线上,且DE=AF.求证:(1)△ADF≌△DCE;(2)△ADF≌△CDF.28、如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD中点,连接AE,AF求证:△ABE≌△ABF.29、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BD=CE,∠DEF=∠ABC.(1)求证:△EDB≌△FEC.(2)若点D、E、F分别在AB、BC、CA边或它们某一方的延长线上(至少一个点在延长线上),其他条件不变,画出一种符合题意的图形,并要求且说明此时(1)中的结论仍成立.30、已知:在直角坐标系中有点A(1,2),B(5,5),C(5,2)三点,问是否存在点D,使△ACD与△CAB全等,若存在,求出这样点的坐标.31、证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等32、如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(0,5).直线m过点A且垂直于x轴.点p在线段OA上运动(含O、A),点Q是直线m 上的动点,且线段PQ=AB.问点P、Q在运动过程中是否存在使△ABO和△QPA 全等情况?如果存在请求出点P、Q的坐标;不存在请说明理由.33、如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D.(1)△ACD≌△CBE.(2)若AD=2.5cm,DE=1.1cm.求BE的长.34、如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC⑴证明:△C′BD≌△B′DC;⑵证明:△AC′D≌△DB′A;⑶对△ABC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?35、求证:两个角及第三个角的角平分线对应相等的两个三角形全等.36、如图,在△ABC中,AB=AC,延长BC至D使CD=BC,点E在AC上,过E 作EF∥CD,过C作CG∥AB交EF于G,连BG,DE,求证:△BCG≌△DCE.。

《初中数学》5全等三角形的判定

《初中数学》5全等三角形的判定

全等三角形的判定知识集结知识元SSS 法证明三角形全等知识讲解1.1、SSS判定方法的语言描述•边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).2.2、SSS判定方法的证明结构若利用SSS来证明△ABC和全等,则标准表述如下:在△ABC和中,,∴.例题精讲SSS 法证明三角形全等例1.'如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.'例2.'已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.'例3.'如图,AD=CB,AB=CD,求证:△ACB≌△CAD.'全等性质和判定的综合应用-SSS知识讲解在证明边、角相等的题目中,常会用到的方法就是证明三角形全等,得到全等后,再利用全等三角形的性质得到对应边相等、对应角相等.在证明三角形全等的方法选择上,也要根据已知条件来决定,当已知条件多集中在边的时候,常会用到SSS法来证明.例题精讲全等性质和判定的综合应用-SSS例1.'已知:如图,AD=BC,AC=BD.猜想AE与BE的数量关系并证明.'例2.'已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.'SAS 法证明三角形全等知识讲解例题精讲SAS 法证明三角形全等例1.如图所示,全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ例2.'如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.'例3.'如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.'全等性质和判定的综合应用-SAS知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-SAS例1.'如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.'例2.'如图,△ABC中,过点B作射线BF∥AC,已知E点为BC边上一点,D点为射线BF上一点,且AC=BE,BC=BD.求证:AB=ED.'例3.'如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF,求证:BF⊥AE.'ASA 法证明三角形全等知识讲解例题精讲ASA 法证明三角形全等例1.'已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,∠A=∠C.求证:△ABE≌△CDF.'例2.'在△ABC中,AB=AC,点D是BC的中点,点E在AD上,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°.求证:△AEF≌△BCF.'例3.'如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.'全等性质和判定的综合应用-ASA知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-ASA例1.如图,某人把一块三角形的玻璃打碎成了三块,现在他要到玻璃店去配一块完全一样的玻璃,则他带的是第三块玻璃去,依据是()A.SSS B.SAS C.ASA D.AAS例2.'如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=42°,求∠BDE的度数.'例3.'如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.'AAS 法证明三角形全等知识讲解例题精讲AAS 法证明三角形全等例1.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.例2.'已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.'例3.'如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.'全等性质和判定的综合应用-AAS知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-AAS例1.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.2例2.'如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.'例3.'(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE 的关系如何?请予以证明.'HL 法证明三角形全等知识讲解1、HL判定方法的语言描述斜边和一条直角边应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、HL判定方法的证明结构若利用HL来证明Rt△ABC和全等,假设,则标准表述如下:在Rt△ABC和中,∴.例题精讲HL 法证明三角形全等例1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等例2.'如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.'例3.'如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌Rt△DFB,需添加什么条件?并写出你的证明过程.'全等性质和判定的综合应用-HL知识讲解在直角三角形中证明边、角相等时,首先要考虑利用直角三角形全等来证明.例题精讲全等性质和判定的综合应用-HL例1.'如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.'例2.'如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.'选择合适的方法证明三角形全等-分析型知识讲解根据已知条件分析具体可以使用哪种判定方法是非常重要的一种能力,例题精讲同时对几种判定方法的熟练掌握是掌握全等判定的基础.例题精讲选择合适的方法证明三角形全等-分析型例1.如图,在△ADO和△BCO中,下列给出的条件能使△ADO≌△BCO的是()A.OD=OC,BC=AD B.OA=OB,OC=ODC.OB=OA,AD=BC D.BD=AC,BC=AD例2.利用尺规作图,通过下面所示的条件,不能作出唯一三角形的是()A.已知三角形三条边的长度B.已知三角形两条边的长度和这两条边其中一边所对的角C.已知三角形两条边的长度及其夹角D.已知三角形的两个角及其夹边例3.'已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.'选择合适的方法证明三角形全等-证明型知识讲解根据已知条件分析具体可以使用哪种判定方法是非常重要的一种能力,同时对几种判定方法的熟练掌握是掌握全等判定的基础.规范证明过程的书写格式也是本章需要重点关注的内容.例题精讲选择合适的方法证明三角形全等-证明型例1.如图,点D,E分别在AB,AC上,AD=AE,BE与CD交于点O,下列条件不能判定△ABE≌△ACD的是()A.∠B=∠C B.BE=CDC.AB=AC D.∠CEB=∠BDC例2.'如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.求证:△CEB≌△ADC.'全等三角形判定的多次应用知识讲解两个三角形全等可以得到相应的对应边相等、对应角相等,而对应边相等、对应角相等也可以通过几种判定方法来证明三角形全等,所以比较复杂的综合问题就需要对这两个过程不断地循环使用,此类问题对综合分析能力要求较高.例题精讲全等三角形判定的多次应用例1.'已知:如图,OA=OB,OC=OD,∠AOB=∠BOC=∠COD,线段AC交线段OB于点M,线段BD交线段OC于点N,请说明OM=ON的理由.'例2.'如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.'例3.'如图,已知AB∥CD,CF∥BE,OB=OC,求证:AE=DF.'利用三角形全等处理动点问题知识讲解全等三角形主要的特点就是对应边、对应角相等,所以常会利用全等三角形的性质来处理动点问题中的三角形全等,此时需要注意的是分类讨论思想的应用,具体哪条边是对应边是一个典型的分类讨论的点.例题精讲利用三角形全等处理动点问题例1.'如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm.一条线段PQ=AB,并且P、Q两点分别在线段AC和过A点且垂直于AC的射线AM上运动.问当P点位于AC的什么位置时由P、Q、A点构成的三角形与△ABC全等?并说明理由.'例2.'如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?'当堂练习单选题练习1.如图,点D,E分别在AB,AC上,AD=AE,BE与CD交于点O,下列条件不能判定△ABE≌△ACD的是()A.∠B=∠C B.BE=CDC.AB=AC D.∠CEB=∠BDC练习2.利用尺规作图,通过下面所示的条件,不能作出唯一三角形的是()A.已知三角形三条边的长度B.已知三角形两条边的长度和这两条边其中一边所对的角C.已知三角形两条边的长度及其夹角D.已知三角形的两个角及其夹边练习3.如图,某人把一块三角形的玻璃打碎成了三块,现在他要到玻璃店去配一块完全一样的玻璃,则他带的是第三块玻璃去,依据是()A.SSS B.SAS C.ASA D.AAS练习1.'已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.'练习2.'已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.'练习3.'如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点E,连接BE.过点D作DF⊥CD交BC于点F.若BD=DE,求证:BF=CF.'练习4.'如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.'练习5.'如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.求证:AF=CD.'练习6.'如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.'练习7.'如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.'练习8.'如图,AB∥CD,AD∥BC,点E、F分别在AC、CD上,且AE=CF,求证:DE=BF.'练习9.'如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?'练习10.'如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.'练习11.'在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.'练习12.'图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.'练习13.'如图,△ABC中,过点B作射线BF∥AC,已知E点为BC边上一点,D点为射线BF上一点,且AC=BE,BC=BD.求证:AB=ED.'练习14.'如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.'。

第五单元《三角形》教案

第五单元《三角形》教案

第一课时三角形的特性导学案班级____姓名____学习内容:P80—81页的例1、例2、“做一做”以及练习十四第1—3题。

一、自学提纲:1、三角形有几条边?几个角?几个顶点?什么样的图形叫做三角形?、2、什么叫做三角形的高?什么叫做三角形的底?3、如何用符号表示三角形?4、说一说三角形在日常生活中的应用。

5、三角形具有什么特性?二、自学检测1、找一找:下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。

2、拿出平行四边形框架。

用手拉动,说一说有什么发现?去掉一条边,再扣上拼组成三角形框架。

再拉一拉有什么感觉?想一想这说明三角形具备什么特性?()3、例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?三、达标训练1、三角形有()个顶点,()条边,()个角。

2、写出下面三角形的各部分名称。

3、以BC边为底,高是()。

4、电线杆上有个三角形,这是根据三角形的()来设计的。

5、请画出每个三角形的一条高。

(教材86页第1题)四、达标检测1. 学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)2. 小明画了三角形的一条高,你说他画的对吗?为什么?第二课时三角形两边之和大于第三边导学案班级____姓名____学习过程:一、自主学习自学提纲:自学P82例3,思考下列问题1、从情境图中你获得哪些数学信息?2、小明从家到学校一共有几条路可走?假如你是小明选择那条路上学?为什么?3、通过动手实验操作,你发现了什么?4、你能找出三角形三边在长短上有什么关系?填下表验证猜测。

二、自学检测1.实验1:用三根小棒摆一个三角形。

在每个小组的桌上都有5根小棒,请大家随意拿三根来摆三角形,看看有什么发现?2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

(1)每个小组用以下四组小棒来摆三角形,并作好记录。

(2)观察上表结果,说一说不能摆成三角形的情况有几种?为什么?(3)能摆成三角形的三根小棒又有什么规律?四、达标训练1、剪出下面三组纸条(单位:厘米)(1)8、10、15 (2)6、6、12 (3)5、9、152、用每组纸条摆三角形。

人教版四年级数学下册5_三角形_三角形分类_三角形的分类 课时练习题

人教版四年级数学下册5_三角形_三角形分类_三角形的分类 课时练习题

“三角形的分类”练习1【题文】下面说法正确的是()。

A 有一个角是钝角的三角形是钝角三角形。

B 有两个角是钝角的三角形是钝角三角形。

C 三个角都是钝角的三角形是钝角三角形。

【分值】20【答案】A【详解】任意一个三角形最多有一个钝角,不可能有两个或三个钝角。

【错析】略【提示】略【结束】2【题文】两个完全相同的()一定可以拼成一个正方形。

A 等腰三角形B 等边三角形C 直角三角形D 等腰直角三角形【分值】20【答案】D【详解】正方形的4个角都是直角,4条边长度相等,所以需要两个相同的等腰直角三角形才能拼成。

【错析】略【提示】略【结束】3【题文】聪聪想用三根小棒围成一个等腰三角形,他应该选择下面()组小棒。

A 2厘米、3厘米、4厘米B 2厘米、2厘米、4厘米C 2厘米、4厘米、4厘米D 1厘米、2厘米、3厘米【分值】20【答案】C【详解】等腰三角形不仅要有两条相等的边,还要满足三角形任意两边之和大于第三边。

【错析】A组小棒中没有相等的边,B组和D组小棒不满足三角形的三边关系。

【提示】略【结束】4【题文】一个等腰三角形,它的其中两条边长度分别是4厘米和10厘米,它的另外一条边长度是()。

A 4厘米B 10厘米C 可能是4厘米也可能是10厘米【分值】20【答案】B【详解】首先三角形应该满足任意两边之和大于第三边,另外要考虑等腰三角形有两条边相等。

【错析】选A和C都是没有考虑到三角形任意两边之和大于第三边。

【提示】略【结束】5【题文】龙龙画了一个三角形,这个三角形有两条边长度相等,有一个角是直角,这个三角形是()。

A 锐角三角形B 直角三角形C 等腰直角三角形D 等边三角形【分值】20【答案】C【详解】有两条边相等,所以是等腰三角形;有一个角是直角,所以是直角三角形。

既是等腰三角形,又是直角三角形,因此是等腰直角三角形。

【错析】略【提示】略【结束】。

(人教新课标)数学四年级下册第五单元《三角形》单元教案(共4课时)

(人教新课标)数学四年级下册第五单元《三角形》单元教案(共4课时)

第五单元三角形一、单元教学目标1通过观察、操作和实验探索等活动,使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是1802通过分类、操作活动,使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

3联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。

4使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。

二、单元教材分析1三角形的特性。

(1)情境图。

教材提供了一幅三角形在生活中应用的直观图,目的是让学生联系生活实际思考并说一说“哪些物体上有三角形?”激发学生学习三角形的兴趣,而且引起学生对三角形及其在生活的作用的思考。

(2)例1,有关三角形定义的教学。

在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。

在已学的垂直概念的基础上,引入了三角形的底和高。

最后,教材说明为了便于表述,如何用字母表示三角形。

(3)例2,三角形的稳定性,在生活中有着广泛的应用。

让学生对三角形有更为全面和深入的认识。

设计思路是“情景、问题—实验、解释—特性应用”。

(4)例3,三角形边的关系──任意两边的和大于第三边。

通过学生熟悉的生活实例创设问题情境,引发学生对三角形边的关系的思考。

然后让学生动手实验,探究规律。

2例4,三角形的分类。

(1)分两个层次编排。

第一层次,按角分,认识锐角三角形、直角三角形、钝角三角形;第二层次,按边分,认识特殊三角形:等腰三角形和等边三角形。

(2)用集合图直观地表示出,三角形整个集合与锐角三角形、直角三角形、钝角三角形之间整体与部分的关系。

(3)三角形按边分类,教材不强调分成了几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

3例5,三角形的内角和。

(1)先通过让学生度量不同类型的三角形的内角度数,并分别计算出它们的和,使学生初步感知到它们的内角和是180°。

最新人教版高中数学必修5第一章《解三角形》

最新人教版高中数学必修5第一章《解三角形》

数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。

人教部编版四年级数学下册《第5单元 三角形【全单元】》精品PPT优质课件

1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
(4)
8
8
11
11
11 8+11>11
11 √
8+11>11
11+11>8
结论 三角形任意两边的和大于第三边。
三、巩固运用,提高认识
1.哪条路最近?
2.在能拼成三角形的各组小棒下面 画“√”(单位:cm)。



用两条最短边相加跟长边进行比较最快。
3.用下面 6 根小棒,你能摆出几种 三角形(单位:cm)?
(1)6、7、8。 (2)4、5、9。 (3)3、6、10。 (4)8、11、11。
用三张小纸条摆三角形。看看能否摆 成三角形,并把数据记录在表格上。
二、动手操作,探究新知
“三角形三边关系”实验记录单
能摆成三角形
不能摆成三角形
第一张 第二张 第三张
第一张 第二张 第三张
编号 纸条 纸条 纸条 编号 纸条 纸条 纸条
3 4 5
A
2 3 5
B
3 1
5 C
3.从下面的小棒中选出 3 根拼成三角形, 可以怎样选?有几种选法?
有3种选法:(1)4cm、5cm、5cm; (2)5cm、5cm、5cm; (3)5cm、5cm、9cm;
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;

三角形的五“心”及其性质

三角形的五“心”及其性质
三角形的五心是指三角形内部的五个特殊点,包括重心、外心、内心、垂心和旁心。

1. 重心:三角形三个顶点与其对边的中点连接所交于一点,这个点被
称为重心。

重心到三角形三边的距离相等,重心将三角形划分为三个
面积相等的小三角形。

2. 外心:三角形三个顶点的垂直平分线相交于一点,这个点被称为外心。

外心是三角形外接圆圆心,即三角形三个顶点与外心的连线的长
度相等。

3. 内心:三角形三个顶点的角平分线相交于一点,这个点被称为内心。

内心是三角形内切圆圆心,即三角形三条边与内心的连线的垂直距离
相等。

4. 垂心:三角形三个顶点的高的延长线相交于一点,这个点被称为垂心。

垂心是三角形三条高的交点,即垂心到三角形三个顶点所在的直
线距离相等。

5. 旁心:三角形的旁心有三个,分别对应三条边。

旁心是指三角形的
外切圆圆心,即三角形的一条边外边的一条角的角平分线与另外两条
边延长线的交点。

这些五心有一些重要的性质:
- 重心是三角形的重要重心之一,它将三角形分成三个面积相等的小三
角形。

- 外心是三角形外接圆圆心,外接圆的直径是三角形的边长,外心到三
个顶点的距离相等。

- 内心是三角形内切圆圆心,内接圆与三个边相切,内心到三个边的距
离相等。

- 垂心是三角形三条高的交点,垂心到三个顶点所在的直线距离相等。

- 旁心是三角形外切圆圆心,外切圆与三条边相切,旁心到相对应的边
的距离相等。

2020届中考数学热点冲刺5 三角形四边形问题(江苏版)(含解析)

2020届中考数学热点冲刺5 三角形四边形问题考向1 三角形的性质1. (2019 江苏省淮安市)下列长度的3根小木棒不能搭成三角形的是( ) A .2cm ,3cm ,4cm B .1cm ,2cm ,3cm C .3cm ,4cm,5cmD .4cm ,5cm ,6cm【解析】解:A 、2+3>4,能构成三角形,不合题意; B 、1+2=3,不能构成三角形,符合题意; C 、4+3>5,能构成三角形,不合题意; D 、4+5>6,能构成三角形,不合题意.故选:B.2. (2019 江苏省泰州市)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【解析】根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,△点D是△ABC重心.故选:A.3. (2019 江苏省徐州市)下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,10【解析】224+=Q,2∴,2,4不能组成三角形,故选项A错误,Q,55612+<∴,6,12不能组成三角形,故选项B错误,Q,5+=527∴,7,2不能组成三角形,故选项C错误,Q,66810+>∴,8,10能组成三角形,故选项D正确,故选:D.4. (2019 江苏省盐城市)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.【解析】△点D、E分别是△ABC的边BA、BC的中点,△DE是△ABC的中位线,△DE=AC=1.5.故选:D.5. (2019 江苏省南京市)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分△ACB.若AD=2,BD=3,则AC的长.【解析】△BC的垂直平分线MN交AB于点D,△CD=BD=3,△△B=△DCB,AB=AD+BD=5,△CD平分△ACB,△△ACD=△DCB=△B,△△A=△A,△△ACD△△ABC,△=,△AC2=AD×AB=2×5=10,△AC=.故答案为:.考向2等腰三角形的性质与判定1. (2019 江苏省徐州市)函数1=+的图象与x轴、y轴分别交于A、B两点,点C在x轴y x上.若ABC∆为等腰三角形,则满足条件的点C共有个.【解析】以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;2. (2019 江苏省镇江市)如图,直线a△b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,△A=20°,则△1=°.【解析】△△BCD是等边三角形,△△BDC=60°,△a△b,△△2=△BDC=60°,由三角形的外角性质可知,△1=△2﹣△A=40°,故答案为:40.3. (2019 江苏省连云港市)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【解析】(1)证明:△AB=AC,△△B=△ACB,△△ABC平移得到△DEF,△AB△DE,△△B=△DEC,△△ACB=△DEC,△OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:△AB=AC,E为BC的中点,△AE△BC,BE=EC,△△ABC平移得到△DEF,△BE△AD,BE=AD,△AD△EC,AD=EC,△四边形AECD是平行四边形,△AE△BC,△四边形AECD是矩形.考向3全等三角形的性质与判定1. (2019 江苏省南京市)如图,D是△ABC的边AB的中点,DE△BC,CE△AB,AC与DE相交于点F.求证:△ADF△△CEF.【解析】证明:△DE△BC,CE△AB,△四边形DBCE是平行四边形,△BD=CE,△D是AB的中点,△AD=BD,△AD=EC,△CE△AD,△△A=△ECF,△ADF=△E,△△ADF△△CEF(ASA).2. (2019 江苏省泰州市)如图,线段AB=8,射线BG△AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使△EAP=△BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP△△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.【解析】(1)证明:△四边形APCD正方形,△DP平分△APC,PC=P A,△△APD=△CPD=45°,△△AEP△△CEP(AAS);(2)CF△AB,理由如下:△△AEP△△CEP,△△EAP=△ECP,△△EAP=△BAP,△△BAP=△FCP,△△FCP+△CMP=90°,△AMF=△CMP,△△AMF+△P AB=90°,△△AFM=90°,△CF△AB;(3)过点C作CN△PB.△CF△AB,BG△AB,△FC△BN,△△CPN=△PCF=△EAP=△P AB,又AP=CP,△△PCN△△APB(AAS),△CN=PB=BF,PN=AB,△△AEP△△CEP,△AE=CE,△AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.3. (2019 江苏省无锡市)如图,在ABC∆中,AB AC=,=,点D、E分别在AB、AC上,BD CE BE、CD相交于点O.(1)求证:DBC ECB∆≅∆;(2)求证:OB OC=.【解析】(1)证明:△AB=AC,△△ECB=△DBC在中与ECB DBC ∆∆,△ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=△ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ △△DCB=△EBC △OB=OC4. (2019 江苏省镇江市)如图,四边形ABCD 中,AD △BC ,点E 、F 分别在AD 、BC 上,AE =CF ,过点A 、C 分别作EF 的垂线,垂足为G 、H . (1)求证:△AGE △△CHF ;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.【解析】(1)证明:△AG △EF ,CH △EF , △△G =△H =90°,AG △CH , △AD △BC , △△DEF =△BFE ,△△AEG =△DEF ,△CFH =△BFE , △△AEG =△CFH ,在△AGE 和△CHF 中,,△△AGE△△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE△△CHF,△AG=CH,△AG△CH,△四边形AHCG是平行四边形,△线段GH与AC互相平分.考向4平行四边形的性质与判定1. (2019 江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′△BD,故答案为:AC′△BD;(2)EB与ED相等.由折叠可得,△CBD=△C'BD,△AD△BC,△△ADB=△CBD,△△EDB=△EBD,△BE=DE.2. (2019 江苏省淮安市)已知:如图,在△ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.【解析】证明:△四边形ABCD是平行四边形,△AD△BC,AD=BC,△点E、F分别是△ABCD边AD、BC的中点,△DE=AD,BF=BC,△DE=BF,△四边形BFDE是平行四边形,△BE=DF.3. (2019 江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.【解析】证明:(1)Q四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,∴∠=∠,BCD ECG∴∠-∠=∠-∠,BCD ECF ECG ECF∴∠=∠;ECB FCG(2)Q四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G=,∠=∠,AD CG=,B G∴∠=∠,BC CG又ECB FCGQ,∠=∠∴∆≅∆.()EBC FGC ASA4. (2019 江苏省扬州市)如图,在平行四边形ABCD中,AE平分△DAB,已知CE=6,BE=8,DE=10.(1)求证:△BEC=90°;(2)求cos△DAE.【解析】(1)证明:△四边形ABCD是平行四边形,△DC=AB=,AD=BC,DC△AB,△△DEA=△EAB,△AE平分△DAB,△△DAE=△EAB,△△DAE=△DEA△AD=DE=10,△BC=10,AB=CD=DE+CE=16,△CE2+BE2=62+82=100=BC2,△△BCE是直角三角形,△BEC=90°;(2)解:△AB△CD,△△ABE=△BEC=90°,△AE===8,△cos△DAE=cos△EAB===.考向5矩形的性质与判定1. (2019 江苏省徐州市)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC 的中点.若4MN=,则AC的长为.【解析】MQ、N分别为BC、OC的中点,∴==.28BO MNQ四边形ABCD是矩形,AC BD BO∴===.216故答案为16.2. (2019 江苏省宿迁市)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解析】(1)证明:△在矩形ABCD中,AB=4,BC=2,△CD=AB=4,AD=BD=2,CD△AB,△D=△B=90°,△BE=DF=,△CF=AE=4﹣=,△AF=CE==,△AF=CF=CE=AE=,△四边形AECF是菱形;(2)解:过F作FH△AB于H,则四边形AHFD是矩形,△AH=DF=,FH=AD=2,△EH=﹣=1,△EF===.考向6菱形的性质与判定1. (2019 江苏省苏州市)如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .12【解析】由菱形的性质得28AO OC CO BO OD B O '''======,90AOB AO B ''∠=∠=o ,AO B ''∴V 为直角三角形10AB '∴= 故选C2. (2019 江苏省无锡市)下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360︒ B .对角线互相平分 C .对角线相等D .对角线互相垂直【解析】本题考查了矩形和菱形的性质,显然对角线相等是矩形有而菱形不一定有的. 故选C考向7 正方形的性质与判定1. (2019 江苏省扬州市)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN .若AB =7,BE =5,则MN = .DB【解析】连接CF,△正方形ABCD和正方形BEFG中,AB=7,BE=5,△GF=GB=5,BC=7,△GC=GB+BC=5+7=12,△=13.△M、N分别是DC、DF的中点,△MN==.故答案为:.2.(2019 山东省东营市)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O 作射线OM、ON分别交BC、CD于点E、F,且△EOF=90°,OC、EF交于点G.给出下列结论:△△COE△△DOF;△△OGE△△FGC;△四边形CEOF的面积为正方形ABCD面积的;△DF2+BE2=OG•OC.其中正确的是()A.△△△△B.△△△C.△△△D.△△【解析】△△四边形ABCD是正方形,△OC=OD,AC△BD,△ODF=△OCE=45°,△△MON=90°,△△COM=△DOF,△△COE△△DOF(ASA),故△正确;△△△EOF=△ECF=90°,△点O、E、C、F四点共圆,△△EOG=△CFG,△OEG=△FCG,△OGE△△FGC,故△正确;△△△COE△△DOF,△S△COE=S△DOF,△,故△正确;△)△△COE△△DOF,△OE=OF,又△△EOF=90°,△△EOF是等腰直角三角形,△△OEG=△OCE=45°,△△EOG=△COE,△△OEG△△OCE,△OE:OC=OG:OE,△OG•OC=OE2,△OC=AC,OE=EF,△OG•AC=EF2,△CE=DF,BC=CD,△BE=CF,又△Rt△CEF中,CF2+CE2=EF2,△BE2+DF2=EF2,△OG•AC=BE2+DF2,故△错误,故选:B.。

3 4 5的三角形角度

3 4 5的三角形角度作为几何学中的基本形状之一,三角形具有独特的性质和特点。

其中,3 4 5的三角形是一种特殊的直角三角形,其三个内角分别为30度、60度和90度。

本文将从这个角度出发,探讨三角形的几何性质、应用以及与人类生活的关系。

我们来看一下3 4 5的三角形的基本性质。

根据勾股定理,3 4 5的三角形的斜边长度为5,两个直角边分别为3和4。

这意味着如果我们在一个直角三角形中,两个直角边的长度分别为3和4,那么它们的斜边长度一定是5。

这一性质不仅在几何学中有重要的应用,也在实际生活中具有一定的意义。

在建筑领域中,三角形的特性被广泛应用。

例如,在设计房屋或其他建筑物时,工程师们需要考虑结构的稳定性和平衡性。

三角形是一种非常稳定的结构形状,可以有效地分散荷载并保持结构的坚固性。

因此,在建筑设计中,常常会使用三角形的原理来设计支撑结构,使建筑物更加稳定和安全。

除了建筑领域,三角形还在其他领域中发挥着重要的作用。

在航空航天工程中,航天器的外形通常采用三角形或类似的形状,这是因为三角形具有较小的阻力,能够减少空气阻力对航天器的影响,提高飞行速度和效率。

此外,三角形还被广泛应用于地理测量、地图制作、电子工程、计算机图形学等领域。

除了在科学和工程领域中的应用,三角形还与人类生活息息相关。

例如,在视觉艺术中,三角形的形状常常被用来表达稳定、均衡和和谐的感觉。

艺术家们通过巧妙地运用三角形的形状,创造出各种美丽的画作、雕塑和建筑作品。

此外,在日常生活中,我们还可以发现许多与三角形相关的事物,比如三角形的路标、交通标志、餐具等等。

总的来说,3 4 5的三角形是一种特殊的直角三角形,它具有独特的几何性质和特点。

三角形的形状和性质在科学、工程和艺术等领域中都有广泛的应用。

它不仅在建筑设计中起到支撑结构的作用,还在航空航天工程、地理测量、地图制作等领域发挥着重要的作用。

此外,三角形还与人类的生活密切相关,被广泛运用于视觉艺术、日常用品等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 三角形
一、三角形的特性
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三
角形。三角形有三条边、三个角和三个顶点。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,
这条对边叫做三角形的底。 每个三角形都有3条高。重点:三角形高的画法。
3、用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
4、三角形的特性:
①物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
②边的特性:任意两边之和大于第三边。
二、三角形的分类:
1、按照角大小来分:锐角三角形,直角三角形,钝角三角形。
2、按照边长短来分:等边三角形(正三角形)、等腰三角形、三条边都不相等的三角形
*三个角都是锐角的三角形叫做锐角三角形。
*有一个角是直角的三角形叫做直角三角形。(其他两个角必定是锐角)
*有一个角是钝角的三角形叫做钝角三角形。(其他两个角比定是锐角)
*两条边相等的三角形叫做等腰三角形。(等腰三角形的特点:两腰相等,两个底角相等)
*三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60度)。
它是特殊的等腰三角形
*每个三角形都至少有两个锐角;每个三角形都至多有1个直角或1个钝角。
三、三角形的内角和
三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是540°
四、图形的拼组
1、用任意2个完全一样的三角形一定能拼成一个平行四边形。
2、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
3、用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的
直角的三角形。

相关文档
最新文档