九年级数学24.1.弧_弦_圆心角、圆周角

合集下载

人教版九年级数学上第24章24.1圆的基本性质教案

人教版九年级数学上第24章24.1圆的基本性质教案

圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)

人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)
1.讨论主题:学生将围绕“圆周角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.培养学生的数学抽象能力:让学生从具体的圆周角实例中抽象出一般性规律,理解圆周角与圆心角、弧和弦之间的关系,提升数学抽象思维。
4.培养学生的数学建模能力:通过解决与圆周角相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学应用能力。
三、教学难点与重点
1.教学重点
-圆周角的概念:强调圆周角定义中“顶点在圆上,两边分别与圆相交”的特点,以及与圆心角的关系。
a.圆周角定理:圆周角等于其所对的圆心角的一半。
b.圆周角推论:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
二、核心素养目标
1.培养学生的几何直观能力:通过观察圆周角与圆心角的关系,使学生能够直观理解圆周角的概念及定理,提高空间想象力和几何直观感知。
2.发展学生的逻辑推理能力:在学习圆周角定理及其推论的过程中,引导学生运用严密的逻辑推理,掌握证明方法,增强解决问题的能力。
-掌握圆周角定理的证明:学生需要掌握如何运用严密的逻辑推理证明圆周角定理,并能够灵活运用。
-圆周角推论的应用:学生需学会将圆周角推论应用于解决实际问题,如求弧长、弦长等。
举例1:针对圆周角定义的难点,教师可通过以下步骤帮助学生理解:
a.展示不同类型的角,让学生辨别哪些是圆周角,哪些是圆心角。
b.通过动态演示,让学生观察圆周角与圆心角的变化关系,加深理解。

圆周角的概念和圆周角定理-课件

圆周角的概念和圆周角定理-课件

∴∠AOB=∠AOK―∠BOK
x+y
=2y=2∠AFB
即:∠AFB=
1 2
∠AOB
C M H
O
2x
N K
P
x
引入新知
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观
察得到的∠ACB的顶点及两边各有什么特征? C
O. z.xx.k
A
B
A C
M
圆周角定理
探究新知
人教版数学九年级上册第24章第一节第4课时
DN
HHale Waihona Puke M ExC
F
O
2x
P
x
探究新知
探究新知
人教版数学九年级上册第24章第一节第4课时
D H
G M E
C
F
O
N
圆周角定理
归纳新知
人教版数学九年级上册第24章第一节第4课时
圆周角定理
DC
E
M H
一条弧所对的圆周角等于它
所对的圆心角的一半.
F
N O
P
圆周角推论1:同弧或等弧所对的圆 周角相等。
人教版数学九年级上册第24章第1节第4课 24.1.4 圆周角定理
为什么?
概念辨析
探索:判断下列各图中,哪些是圆周角,为什么?
顶点 在圆 上, 两边 都与 圆相 交
探究新知
C
A
∠ACO=
1 2
∠AOD
O D
B
∠BCO=
1 2
∠BOD
∴∠BCO+∠ACO= 12(∠BOD+∠AOD)
∠ACB=
1 2
∠AOB
探究新知
O

人教版九年级上册数学《24-1-4 圆周角 第1课时 圆周角定理及其推论》课件

人教版九年级上册数学《24-1-4 圆周角 第1课时 圆周角定理及其推论》课件

活动2 探究新知
改变动点C在圆周上的位置,看看圆周 角的度数有没有变化?你发现了什么?
C
O
B
A
同弧所对的圆周 角的度数都相等
活动2 探究新知
如果把上述发现的结论中的“同弧”改为“等弧”,结论还正
确吗? 如图,若 CD EF, ∠A与∠B相 等吗? 相等
AB E
O
CD EF,COD EOF.
相等的圆周角所对的弧相等.
圆周角定 理的推论
90°的圆周角所对的弦是直径.
作业布置
(1)教材P89 习题24.1第5, 6,14题; (2)《名师测控》《精英新课 堂》对应练习.
教学重难点
重点
理解圆周角定理的推论,并运用推论进行有关的计算 和证明.
难点
1.运用分类讨论的数学思想证明圆周角定理. 2.独自探索并证明圆周角定理的推论并能应用该推论 解决问题.
教学设计
活动1 新课导入
1.(1)圆心角指顶点在 圆心 的角;
A
B
(2)如图,AB,CD是⊙O的两条弦: ①如果AB=CD,那么 AB CD ,
O
O
A
B
A
B
∠ACB的顶点在☉O上,角的
两边分别交☉O于B,A两点.
仿照圆心角的定义 给这类角取一个名 字并下个定义
活动2 探究新知
C
A B
圆心角定义中为什 么没有提到“两边 都与圆相交”呢?
活动2 探究新知
发现∠ACB与∠AOB对着同一条弧AB,它们之间存在什么 关系呢?下面我们就来研究这个问题.
在Rt△ABD中,AD2+BD2=AB2,
AD BD 2 AB 2 10 5 2(cm).
2

九年级上册数学第24章《圆》知识点梳理完整版

九年级上册数学第24章《圆》知识点梳理完整版

【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

九年级数学上册24.1圆垂径定理圆心角圆周角124.1.2垂径定理课件(新人教版)_1

九年级数学上册24.1圆垂径定理圆心角圆周角124.1.2垂径定理课件(新人教版)_1

即AE=BE
⌒ ⌒⌒ ⌒
AD=BD,AC=BC
·O
E
A
B
D
垂径定理:垂直于弦的直径平分弦,并且平分
弦所对的两条弧.
思考: 平分弦的直径垂直于这条弦吗?
平分弦的直径垂直于弦( )
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
1.被平分的
C
弦不是直径
O
A
E
D
2.被平分的弦是直径
CD是直径
AE=BE AB不是直径
⑦在圆中,如果一条直线经过圆心且平分弦,
必平分此弦所对的弧
7.2米
37.4米
1300多年前,我国隋朝建的赵州石 拱桥(如图)的桥拱是圆弧形,它的跨 度(弧所对是弦的长)为 37.4 m,拱高 为7.2m,求桥拱的半径(精确到0.1m).
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国 古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的 长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱 的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折,重复几次,你 发现了什么?由此你能得到什么结论?
第24章
24.1圆、、垂径定理、圆心角、圆周角(1) 24.1.2垂径定理
学习目标:
• 1.理解圆的轴对称性。 • 2.掌握垂径定理及推论,能用垂径定理及其推论进行有关
计算和证明,进一步应用垂径定理解决实际问题。 • 3.学习中通过对比理解垂径定理及其推论,应用中将实际
问题转化为数学问题,培养建模思想和提高分析问题、解 决问题的能力。
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

人教版数学九年级上册 第24章 圆 24.1.4 圆周角 课件(共16张PPT)优质课件PPT

2.与圆周角有关的问题: 弦的条件需转化成弧 的条件。

我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力是人自我调节系
统中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备
D
的圆周角”的数量关系,就转化为圆
内接四边形的对角之间的数量关系,
也就是本节课的主题。
探究性质
B
O
A
C
D
圆内接四边形ABCD的对角 有什么数量关系?
通过学生自己动手画图、测量、 猜想,最后证明结论,探究得出 圆内接四边形的性质
B
性质:
50
圆内接四边形的对角互补.
O
延伸:
A
130 50C D
圆内接四边形的任意一个 外角等于它的内对角.
自我激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自
家的后院练习棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,
难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。如果把困难看作对自己的诅咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力
O A OB
C
C
AB 2.半圆(或直径)所
O
对的圆周角是直
O
角, 90的圆周角

陕西省石泉县九年级数学上册 24.1.1 圆教案 (新版)新人教版-(新版)新人教版初中九年级上册数

《学案》P73页巩固练习:1、2、6题。
六、作业
必做:教科书第89页 第1,2题.
选作:《学案》P73页:探究3
让学生亲自动手进行实验,探究,得出结论,激发学生的求知欲望.
通过问题引导学生探究,发现圆的集合定义,初步感知圆
学生理解概念
让学生通过练习进一步理解概念,培养学生的应用意识和能力
二、学情分析
九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
三、教学目标
24.1.1 圆
课标依据
(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;
(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
一、教材分析
本节课是人教版数学九年级上册第24章第1节《圆》第1课时。圆是常见的几何图形之一,不仅在日常生活中的许多物体是圆形的,而且在工农业生产,交通运输,土木建筑等方面都可以看到圆。些相关概念。圆的概念又是进一步研究圆和其他图形的位置,数量关系的依据,是全章的基础。
1.有关圆的图片欣赏
根据画圆的过程给出圆的描述性定义,及圆心、半径的概念,强调“在一个平面内”.根据圆的定义可知“圆”指的是“圆周”而非“圆面”.
(学生用圆规画圆,观察体验,归纳总结,合作交流,发现结论
老师提问,学生尝试作答,教师点评总结)
.圆上各点到定点(圆心O)的距离有什么规律?
到定点(圆心O)的距离等于定长的点又有什么特点?
6.直径与弦的区别与联系是什么?

《圆周角》九年级数学初三上册PPT课件


时间:20XX
前言
学习目标
1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。
2.掌握圆周角定理及推论,并会运用这些知识进行简单的计算和证明;
3.学习中经理操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角的、定理的探索。
重点难点
重点:理解并掌握圆周角定理及推论。
难点:圆周角定理的证明。
Concise And Concise Do Not Need Too Much Text
时间:20XX
第二十四章 圆
24.1.4 圆周角
人 教 版
数 学 九 年 级 上 册
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text

圆心角和圆周角之间存在的关系
情景二(证明∠BAC=
1 2
3
5
D
4
6
1
∠BOC):
2
连接AO,延长AO,与⊙O相交于点D
证明二:
OA=OC=>∠4=∠2
OA=OB=>∠1=∠3
∠5=∠1 +∠3
∠6=∠5 +∠4
∠=∠5+∠6

=> ∠ = ∠。

圆心角和圆周角之间存在的关系
情景三(证明∠BAC=
B
A
个圆上,这个多边形叫做圆内接多边形。
O
这个圆叫做这个多边形的外接圆。
例:四边形ABCD是⊙O的内接四边形,
⊙O是四边形ABCD的外接圆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又因为OE
所以
、OF是AB与CD对应边上的高,
O
·
F
D
OE = OF.
C
2.如图,AB是⊙O的直径, ⌒ = ⌒ = ⌒ , ∠COD=35°, BC CD DE 求∠AOE的度数.
解: E D C

= ⌒ = ⌒ BC CD DE
BOC=COD=DOE=35
A
O
·
AOE 180 3 35
∠ COD
1 1 ∠BAD+∠CAD= ∠ BOD+ ∠COD 2 2 1 即∠BAC= ∠BOC 2
3.第三种情况:
A
证明:作射线AO交⊙O于D。
O
∠ BOD 1 1 ∠CAD-∠BAD= ∠ COD- ∠BOD 2 2 1 即∠BAC= ∠BOC 2
2 1 ∠BAD= 2
由第1种情况得 1 ∠CAD= ∠ COD
因此,弧AB与弧A1B1 重合,AB与A′B′重合.
⌒ AB
⌒ A1B1 AB A ' B '.
四、定理
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的 相等 圆心角_____, 所对的弦________; 相等 在同圆或等圆中,如果两条弦相等,那么他们所对的 相等 相等 圆心角______,所对的弧_________. 同圆或等圆中, 两个圆心角、两 条弧、两条弦中 有一组量相等, 它们所对应的其 余各组量也相 等.
C D B
归纳总结
圆周角定理
C
D
A
O
在同圆或等圆中,同弧(或等弧)所对 的圆周角相等;同弧(或等弧)所对的 圆周角等于圆心角的一半. 推 论
A
·
B
E
C2 C1 C3
直径(或半圆)所对的圆周角是 直角, 90°的圆周角所对的弦是 直径.
· O
B
五、例题
⌒ ⌒
例1 如图在⊙O中,AB=AC ,∠ACB=60°,
三、探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现 哪些等量关系?为什么? A′ A′ B B B′ B′
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
AB CD (3)如果∠AOB=∠COD,那么_____________,____________. 相 等
A E B
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么? 因为AB=CD ,所以∠AOB=∠COD. 又因为AO=CO,BO=DO, 所以△AOB ≌ △COD.
小结:
1.圆周角定义:顶点在圆上,并且两边都和圆相
交的角叫圆周角.
2.半圆或直径所对的圆周角等于90° 90°的圆周角所对的弦是直径 3.在同圆(或等圆)中,同弧或等弧所对的圆周角相 等,同弧或等弧所对的圆周角等于圆心角的一半;相
等的圆周角所对的弧相等。
⌒ ⌒
求证:∠AOB=∠BOC=∠AOC.
证明:∵AB=AC A

AB=AC, △ABC 等腰三角形.
O
又∠ACB=60°, ∴ △ABC是等边三角形,AB=BC=CA. B ∴ ∠AOB=∠BOC=∠AOC.
·
C
六、练习
1.如图,AB、CD是⊙O的两条弦.
⌒ = ⌒ AOB COD (1)如果AB=CD,那么___________,_________________. AB CD AOB COD AB=CD (2)如果 ⌒ = ⌒ ,那么____________,______________. AB CD ⌒ =⌒ AB=CD
O
D
C
点此继续
练习:
1、如图,在⊙O中,ABC=50°, 则∠AOC等于( D ) A、50°; B、80°; C、90°; D、100°
A B O C
2、如图,△ABC是等边三角形,动点P 在圆周的劣弧AB上,且不与A、B重 合,则∠BPC等于( ) B A、30°; B、60°; C、90°; D、45°

B

75

∵把圆心角等分成360份,则每一份的圆心 角是1º .同时整个圆也被分成了360份.
则每一份这样的弧叫做1º 的弧. 这样,1º 的圆心角对着1º 的弧, 1º 的弧对着1º 的圆心角.
n°弧


1°弧
n º 的圆心角对着nº 的弧,
n º 的弧对着nº 的圆心角.
性质:弧的度数和它所对圆心角的度数相等.
A C

A C

A C B

O B
O
O
B
圆周角∠BAC与圆心角∠BOC的大小关系.
1.第一种情况:
∵ OA=OC ∴∠A=∠C 又 ∠BOC=∠A+∠C ∴∠BOC=2∠A
B O
A
C
1 即∠A= 2
∠BOC
2.第二种情况:
A
证明:由第1种情况得
1 ∠BAD= 2
O B D C
∠ BOD
1 ∠CAD= 2
在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等,那
么它们所对应的其余两个量都分别相等。
探 究
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察 得到的∠ACB有什么特征? C
O A
.
B
顶点在圆上
两边都与圆相交

这样的角叫圆周角。
如图,观察圆周角∠ABC与圆心角∠AOC,它们的大
小有什么关系? • 说说你的想法,并与同伴交流.
白泥中心校九年级数学
主讲人:王攀
2013.10.24
一、思考
圆是中心对称图形吗?它的对称中心在哪里? 圆是中心对称图形, 它的对称中心是圆心.
·
把圆O的半径ON绕圆心O旋转任意一个角度,
N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N

O
把圆O的半径ON绕圆心O旋转任意一个角度,
N' N
小结
判断
在两个圆中,分别有 AB和CD , 若 AB 的度
数和 CD 相等,则有
(1)AB 和 CD 相等
(2)AB 所对的圆心角和 CD 所对的圆 心角相等
试一试
⌒ ⌒ ´中,AB和A B´所对的圆心 ´ 1.在半径相等的⊙O和⊙O 角都是60°. ⌒ ⌒ ´ ´ (1)AB和A B各是多少度? ⌒ ⌒ (2)AB和A B´相等吗? ´ (3)在同圆或等圆中,度数相度的弧相等.为什么? 2.若把圆5等分,那么每一份弧是多少度?若把圆8等分,那么 每一份弧是多少度?
C
A P
B
小结:
圆心角:我们把顶点在圆心的角叫做圆心角 在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
在同圆或等圆中,如果两条弧相等,那么它们所 对的圆心角相等, 所对的弦相等; 在同圆或等圆中,如果两条弦相等,那么他们所 对的圆心角相等,所对的弧相等 在同圆(或等圆)中,如果圆心角、弧、弦有一组 量相等,那么它们所对应的其余两个量都分别相等

O
把圆O的半径ON绕圆心O旋转任意一个角度,
N' N

O
把圆O的半径ON绕圆心O旋转任意一个角度,
由此可以看出,点N'仍落在圆上。 N' N

O
定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。
二、概念
圆心角:我们把顶点在圆心的角叫做圆心角.
A O· B 如图中所示, ∠AOB就是一个圆心角。
3.圆心到弦的距离叫做这条弦的弦心距.求证:在同圆或 等圆中,相等的圆心角所对的弦的弦心距相等.
结束
例2:如图,在⊙O中,弦AB所对的劣弧为圆的
1 3
,圆的半径为4cm,求AB的长
O
A C
B
A
知识延伸
B
如图,AC与BD为⊙O的两条互 相垂直的直径. ⌒ ⌒ ⌒ ⌒ 求证:AB=BC=CD=DA; AB=BC=CD=DA. 证明: ∵AC与BD为⊙O的两条互相垂直的直径, ∴∠AOB=∠BOC=∠COD=∠DOA=90º ⌒ ⌒ ⌒ ⌒ ∴ AB=BC=CD=DA AB=BC=CD=DA(圆心角定理)
相关文档
最新文档