高分子材料性能测试与表征
高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。
高分子材料性能测试实验报告

高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料力学性能

高分子材料力学性能姓名:程小林学号:5701109004 班级:高分子091 学院:材料学院研究背景:在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势,將是2 1世纪最活跃的材料支柱.高分子材料在我们身边随处可见。
在我们的认识中,高分子材料是以高分子化合物为基础的材料。
高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。
今天,我想就高分子材料为主线,简单研究一下高分子材料所具有的一些方面的力学性能。
从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量,达到至少1 万以上,或几百万至千万以上所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶研究理论:高分子材料的使用性能包括物理、化学、力学等性能。
对于用于工程中作为构件和零件的结构高分子材料,人们最关心的是它的力学性能。
力学性能也称为机械性能。
任何材料受力后都要产生变形,变形到一定程度即发生断裂。
这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。
同时, 环境如温度、介质和加载速率对于高分子材料的力学行为有很大的影响。
因此高分子材料的力学行为是外加载荷与环境因素共同作用的结果。
常用高分子材料性能检测标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法2 GB/T 1034-1998 塑料吸水性试验方法3 GB/T 1036-1989 塑料线膨胀系数测定方法4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法6 GB/T 1039-1992 塑料力学性能试验方法总则7 GB/T 1040-1992 塑料拉伸性能试验方法8 GB/T 1041-1992 塑料压缩性能试验方法9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验16 GB/T 1446-2005 纤维增强塑料性能试验方法总则17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法25 GB/T 1462-2005 纤维增强塑料吸水性试验方法26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料31 GB/T 1636-1979 模塑料表观密度试验方法32 GB/T 1843-1996 塑料悬臂梁冲击试验方法33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂36 GB/T 2035-1996 塑料术语及其定义37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法40 GB/T 2409-1980 塑料黄色指数试验方法41 GB/T 2410-1980 透明塑料透光率和雾度试验方法42 GB/T 2411-1980 塑料邵氏硬度试验方法43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和性能测定44 GB/T 2547-1981 塑料树脂取样方法45 GB/T 2572-2005 纤维增强塑料平均线膨胀系数试验方法46 GB/T 2573-1989 玻璃纤维增强塑料大气暴露试验方法47 GB/T 2574-1989 玻璃纤维增强塑料湿热试验方法48 GB/T 2575-1989 玻璃纤维增强塑料耐水性试验方法49 GB/T 2576-2005 纤维增强塑料树脂不可溶分含量试验方法50 GB/T 2577-2005 玻璃纤维增强塑料树脂含量试验方法51 GB/T 2578-1989 纤维缠绕增强塑料环形试样制作方法52 GB/T 2913-1982 塑料白度试验方法53 GB/T 2914-1999 塑料氯乙烯均聚和共聚树脂挥发物(包括水)的测定54 GB/T 2916-1997 塑料氯乙烯均聚和共聚树脂用空气喷射筛装置的筛分析55 GB/T 2918-1998 塑料试样状态调节和试验的标准环境56 GB/T 3139-2005 纤维增强塑料导热系数试验方法57 GB/T 3140-2005 纤维增强塑料平均比热容试验方法58 GB/T 3354-1999 定向纤维增强塑料拉伸性能试验方法59 GB/T 3355-2005 纤维增强塑料纵横剪切试验方法60 GB/T 3356-1999 单向纤维增强塑料弯曲性能试验方法61 GB/T 3365-1982 碳纤维增强塑料孔隙含量检验方法(显微镜法)62 GB/T 3366-1996 碳纤维增强塑料纤维体积含量试验方法63 GB/T 3398-1982 塑料球压痕硬度试验方法64 GB/T 3399-1982 塑料导热系数试验方法护热平板法65 GB/T 3400-2002 塑料通用型氯乙烯均聚和共聚树脂室温下增塑剂吸收量的测定66 GB/T 3402.1-2005 塑料氯乙烯均聚和共聚树脂第1部分:命名体系和规范基础67 GB/T 3403-1982 氨基模塑料命名68 GB/T 3681-2000 塑料大气暴露试验方法69 GB/T 3682-2000 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定70 GB/T 3807-1994 聚氯乙烯微孔塑料拖鞋71 GB/T 3854-2005 增强塑料巴柯尔硬度试验方法72 GB/T 3855-2005 碳纤维增强塑料树脂含量试验方法73 GB/T 3856-2005 单向纤维增强塑料平板压缩性能试验方法74 GB/T 3857-2005 玻璃纤维增强热固性塑料耐化学介质性能试验方法75 GB/T 3960-1983 塑料滑动摩擦磨损试验方法76 GB/T 3961-1993 纤维增强塑料术语77 GB/T 4170-1984 塑料注射模具零件技术条件78 GB/T 4217-2001 流体输送用热塑性塑料管材公称外径和公称压力79 GB/T 4550-2005 试验用单向纤维增强塑料平板的制备80 GB/T 4610-1984 塑料燃烧性能试验方法点着温度的测定81 GB/T 4616-1984 酚醛模塑料丙酮可溶物(未模塑态材料的表观树脂含量)的测定82 GB/T 4944-2005 玻璃纤维增强塑料层合板层间拉伸强度试验方法83 GB/T 5258-1995 纤维增强塑料薄层板压缩性能试验方法84 GB/T 5349-2005 纤维增强热固性塑料管轴向拉伸性能试验方法85 GB/T 5350-2005 纤维增强热固性塑料管轴向压缩性能试验方法86 GB/T 5351-2005 纤维增强热固性塑料管短时水压失效压力试验方法87 GB/T 5352-2005 纤维增强热固性塑料管平行板外载性能试验方法88 GB/T 5470-1985 塑料冲击脆化温度试验方法89 GB/T 5471-1985 热固性模塑料压塑试样制备方法90 GB/T 5472-1985 热固性模塑料矩道流动固化性试验方法91 GB/T 5478-1985 塑料滚动磨损试验方法92 GB/T 5563-1994 橡胶、塑料软管及软管组合件液压试验方法93 GB/T 5564-1994 橡胶、塑料软管低温曲挠试验94 GB/T 5565-1994 橡胶或塑料软管及纯胶管弯曲试验95 GB/T 5566-2003 橡胶或塑料软管耐压扁试验方法96 GB/T 5567-1994 橡胶、塑料软管及软管组合件真空性能的测定97 GB/T 5568-1994 橡胶、塑料软管及软管组合件无屈挠液压脉冲试验98 GB/T 6011-2005 纤维增强塑料燃烧性能试验方法炽热棒法99 GB/T 6111-2003 流体输送用热塑性塑料管材耐内压试验方法100 GB/T 6342-1996 泡沫塑料与橡胶线性尺寸的测定101 GB/T 6343-1995 泡沫塑料和橡胶表观(体积)密度的测定102 GB/T 6594.2-2003 塑料聚苯乙烯(PS)模塑和挤出材料第2部分: 试样制备和性能测定103 GB/T 6670-1997 软质聚氨酯泡沫塑料回弹性能的测定104 GB/T 6671-2001 热塑性塑料管材纵向回缩率的测定105 GB/T 6672-2001 塑料薄膜和薄片厚度测定机械测量法106 GB/T 6673-2001 塑料薄膜和薄片长度和宽度的测定107 GB/T 7129-2001 橡胶或塑料软管容积膨胀的测定108 GB/T 7139-2002 塑料氯乙烯均聚物和共聚物氯含量的测定109 GB/T 7141-1992 塑料热空气暴露试验方法110 GB/T 7142-2002 塑料长期热暴露后时间-温度极限的测定111 GB/T 7190.1-1997 玻璃纤维增强塑料冷却塔第1部分:中小型玻璃纤维增强塑料冷却塔112 GB/T 7190.2-1997 玻璃纤维增强塑料冷却塔第2部分:大型玻璃纤维增强塑料冷却塔113 GB/T 7559-2005 纤维增强塑料层合板螺栓连接挤压强度试验方法114 GB/T 7948-1987 塑料轴承极限PV试验方法115 GB/T 8323-1987 塑料燃烧性能试验方法烟密度法116 GB/T 8324-1987 模塑料体积系数试验方法117 GB/T 8332-1987 泡沫塑料燃烧性能试验方法水平燃烧法118 GB/T 8333-1987 硬泡沫塑料燃烧性能试验方法垂直燃烧法119 GB/T 8802-2001 热塑性塑料管材、管件维卡软化温度的测定120 GB/T 8804.1-2003 热塑性塑料管材拉伸性能测定第1部分:试验方法总则121 GB/T 8804.2-2003 热塑性塑料管材拉伸性能测定第2部分: 硬聚氯乙烯(PVC-U)、氯化聚氯乙烯(PVC-C)和高抗冲聚氯乙烯(PVC-HI)管材122 GB/T 8804.3-2003 热塑性塑料管材拉伸性能测定第3部分: 聚烯烃管材123 GB/T 8805-1988 硬质塑料管材弯曲度测量方法124 GB/T 8806-1988 塑料管材尺寸测量方法125 GB/T 8807-1988 塑料镜面光泽试验方法126 GB/T 8808-1988 软质复合塑料材料剥离试验方法127 GB/T 8809-1988 塑料薄膜抗摆锤冲击试验方法128 GB/T 8810-1988 硬质泡沫塑料吸水率试验方法129 GB/T 8810-2005 硬质泡沫塑料吸水率的测定130 GB/T 8811-1988 硬质泡沫塑料尺寸稳定性试验方法131 GB/T 8812-1988 硬质泡沫塑料弯曲试验方法132 GB/T 8813-1988 硬质泡沫塑料压缩试验方法133 GB/T 8815-2002 电线电缆用软聚氯乙烯塑料134 GB/T 8846-1988 塑料成型模具术语135 GB/T 8846-2005 塑料成型模术语136 GB/T 8924-2005 纤维增强塑料燃烧性能试验方法氧指数法137 GB/T 9341-2000 塑料弯曲性能试验方法138 GB/T 9342-1988 塑料洛氏硬度试验方法139 GB/T 9343-1988 塑料燃烧性能试验方法闪点和自燃点的测定140 GB/T 9345-1988 塑料灰分通用测定方法141 GB/T 9350-2003 塑料氯乙烯均聚和共聚树脂水萃取液pH值的测定142 GB/T 9352-1988 热塑性塑料压缩试样的制备143 GB/T 9572-2001 橡胶和塑料软管及软管组合件电阻的测定144 GB/T 9573-2003 橡胶、塑料软管及软管组合件尺寸测量方法145 GB/T 9575-2003 工业通用橡胶和塑料软管内径尺寸及公差和长度公差146 GB/T 9639-1988 塑料薄膜和薄片抗冲击性能试验方法自由落镖法147 GB/T 9641-1988 硬质泡沫塑料拉伸性能试验方法148 GB/T 9647-2003 热塑性塑料管材环刚度的测定149 GB/T 9979-2005 纤维增强塑料高低温力学性能试验准则150 GB/T 10006-1988 塑料薄膜和薄片摩擦系数测定方法151 GB/T 10007-1988 硬质泡沫塑料剪切强度试验方法152 GB/T 10009-1988 丙烯腈-丁二烯-苯乙烯(ABS)塑料挤出板材153 GB/T 10703-1989 玻璃纤维增强塑料耐水性加速试验方法154 GB/T 10798-2001 热塑性塑料管材通用壁厚表155 GB/T 10799-1989 硬质泡沫塑料开孔与闭孔体积百分率试验方法156 GB/T 10802-1989 软质聚氨酯泡沫塑料157 GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法158 GB/T 11546-1989 塑料拉伸蠕变测定方法159 GB/T 11547-1989 塑料耐液体化学药品(包括水)性能测定方法160 GB/T 11548-1989 硬质塑料板材耐冲击性能试验方法(落锤法)161 GB/T 11793.2-1989 PVC 塑料窗力学性能、耐候性技术条件162 GB/T 11793.3-1989 PVC 塑料窗力学性能、耐候性试验方法163 GB/T 11997-1989 塑料多用途试样的制备和使用164 GB/T 11998-1989 塑料玻璃化温度测定方法热机械分析法165 GB/T 11999-1989 塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法166 GB/T 12000-2003 塑料暴露于湿热、水喷雾和盐雾中影响的测定167 GB/T 12001.3-1989 未增塑聚氯乙烯窗用模塑料第3部分:性能试验方法168 GB/T 12003-1989 塑料窗基本尺寸公差169 GB/T 12027-2004 塑料薄膜和薄片加热尺寸变化率试验方法170 GB/T 12584-2001 橡胶或塑料涂覆织物低温冲击试验171 GB/T 12586-2003 橡胶或塑料涂覆织物耐屈挠破坏性的测定172 GB/T 12587-2003 橡胶或塑料涂覆织物抗压裂性的测定173 GB/T 12588-2003 塑料涂覆织物聚氯乙烯涂覆层融合程度快速检验法174 GB/T 12600-2005 金属覆盖层塑料上镍+铬电镀层175 GB/T 12722-1991 橡胶和塑料软管组合件屈挠液压脉冲试验(半Ω试验)176 GB/T 12811-1991 硬质泡沫塑料平均泡孔尺寸试验方法177 GB/T 12812-1991 硬质泡沫塑料滚动磨损试验方法178 GB/T 12833-1991 橡胶和塑料撕裂强度及粘合强度多峰曲线的分析方法179 GB/T 12949-1991 滑动轴承覆有减摩塑料层的双金属轴套180 GB/T 13022-1991 塑料薄膜拉伸性能试验方法181 GB/T 13096.1-1991 拉挤玻璃纤维增强塑料杆拉伸性能试验方法182 GB/T 13096.2-1991 拉挤玻璃纤维增强塑料杆弯曲性能试验方法183 GB/T 13096.3-1991 拉挤玻璃纤维增强塑料杆面内剪切强度试验方法184 GB/T 13096.4-1991 拉挤玻璃纤维增强塑料杆表观水平剪切强度短梁剪切试验方法185 GB/T 13376-1992 塑料闪烁体186 GB/T 13455-1992 氨基模塑料挥发物测定方法187 GB/T 13525-1992 塑料拉伸冲击性能试验方法188 GB/T 13541-1992 电气用塑料薄膜试验方法189 GB/T 14152-2001 热塑性塑料管材耐外冲击性能试验方法时针旋转法190 GB/T 14153-1993 硬质塑料落锤冲击试验方法通则191 GB/T 14154-1993 塑料门垂直荷载试验方法192 GB/T 14155-1993 塑料门软重物体撞击试验方法193 GB/T 14205-1993 玻璃纤维增强塑料养殖船194 GB/T 14216-1993 塑料膜和片润湿张力试验方法195 GB/T 14234-1993 塑料件表面粗糙度196 GB/T 14447-1993 塑料薄膜静电性测试方法半衰期法197 GB/T 14484-1993 塑料承载强度试验方法198 GB/T 14519-1993 塑料在玻璃板过滤后的日光下间接曝露试验方法199 GB/T 14520-1993 气相色谱分析法测定不饱和聚酯树脂增强塑料中的残留苯乙烯单体含量200 GB/T 14522-1993 机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法201 GB/T 14694-1993 塑料压缩弹性模量的测定202 GB/T 14904-1994 钢丝增强的橡胶、塑料软管和软管组合件屈挠液压脉冲试验203 GB/T 14905-1994 橡胶和塑料软管各层间粘合强度测定204 GB/T 15047-1994 塑料扭转刚性试验方法205 GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法206 GB/T 15560-1995 流体输送用塑料管材液压瞬时爆破和耐压试验方法207 GB/T 15596-1995 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定208 GB/T 15598-1995 塑料剪切强度试验方法穿孔法209 GB/T 15662-1995 导电、防静电塑料体积电阻率测试方法210 GB/T 15738-1995 导电和抗静电纤维增强塑料电阻率试验方法211 GB/T 15907-1995 橡胶、塑料软管燃烧试验方法212 GB/T 15908-1995 织物增强液压型热塑性塑料软管和软管组合件213 GB/T 15928-1995 不饱和聚酯树脂增强塑料中残留苯乙烯单体含量测定方法214 GB/T 16276-1996 塑料薄膜粘连性试验方法215 GB/T 16419-1996 塑料弯曲性能小试样试验方法216 GB/T 16420-1996 塑料冲击性能小试样试验方法217 GB/T 16421-1996 塑料拉伸性能小试样试验方法218 GB/T 16422.1-1996 塑料实验室光源曝露试验方法第1部分:通则219 GB/T 16422.2-1999 塑料实验室光源暴露试验方法第2部分:氙弧灯220 GB/T 16422.3-1997 塑料实验室光源曝露试验方法第3部分:荧光紫外灯221 GB/T 16422.4-1996 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯222 GB/T 16578-1996 塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法223 GB/T 16778-1997 纤维增强塑料结构件失效分析一般程序224 GB/T 16779-1997 纤维增强塑料层合板拉-拉疲劳性能试验方法225 GB/T 17037.1-1997 热塑性塑料材料注塑试样的制备第1部分:一般原理及多用途试样和长条试样的制备226 GB/T 17037.3-2003 塑料热塑性塑料材料注塑试样的制备第3部分: 小方试片227 GB/T 17037.4-2003 塑料热塑性塑料材料注塑试样的制备第4部分: 模塑收缩率的测定228 GB/T 17200-1997 橡胶塑料拉力、压力、弯曲试验机技术要求229 GB/T 17603-1998 光解性塑料户外暴露试验方法230 GB/T 18022-2000 声学1~10 MHz频率范围内橡胶和塑料纵波声速与衰减系数的测量方法231 GB/T 18042-2000 热塑性塑料管材蠕变比率的试验方法232 GB/T 18252-2000 塑料管道系统用外推法对热塑性塑料管材长期静液压强度的测定233 GB/T 18422-2001 橡胶和塑料软管及软管组合件透气性的测定234 GB/T 18423-2001 橡胶和塑料软管及非增强软管液体壁透性测定235 GB/T 18424-2001 橡胶和塑料软管氙弧灯曝晒颜色和外观变化的测定236 GB/T 18426-2001 橡胶或塑料涂覆织物低温弯曲试验237 GB/T 18743-2002 流体输送用热塑性塑料管材简支梁冲击试验方法238 GB/T 18943-2003 多孔橡胶与塑料动态缓冲性能测定239 GB/T 18949-2003 橡胶和塑料软管动态条件下耐臭氧性能的评定240 GB/T 18950-2003 橡胶和塑料软管静态下耐紫外线性能测定241 GB/T 18964.2-2003 塑料抗冲击聚苯乙烯(PS-I)模塑和挤出材料第2部分: 试样制备和性能测定242 GB/T 19089-2003 橡胶或塑料涂覆织物耐磨性的测定马丁代尔法243 GB/T 19280-2003 流体输送用热塑性塑料管材耐快速裂纹扩展(RCP)的测定小尺寸稳态试验(S4试验)244 GB/T 19314.1-2003 小艇艇体结构和构件尺寸第1部分:材料:热固性树脂、玻璃纤维增强塑料、基准层合板245 GB/T 19466.1-2004 塑料差示扫描量热法(DSC)第1部分:通则246 GB/T 19466.2-2004 塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定247 GB/T 19466.3-2004 塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定248 GB/T 19467.1-2004 塑料可比单点数据的获得和表示第1部分:模塑材料249 GB/T 19467.2-2004 塑料可比单点数据的获得和表示第2部分:长纤维增强材料250 GB/T 19471.1-2004 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头偏角密封试验方法251 GB/T 19471.2-2004 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头负压密封试验方法252 GB/T 19532-2004 包装材料气相防锈塑料薄膜253 GB/T 19603-2004 塑料无滴薄膜无滴性能试验方法254 GB/T 19687-2005 闭孔塑料长期热阻变化的测定实验室加速测试方法255 GB/T 19712-2005 塑料管材和管件聚乙烯(PE)鞍形旁通抗冲击试验方法256 GB/T 19789-2005 包装材料塑料薄膜和薄片氧气透过性试验库仑计检测法257 GB/T 19806-2005 塑料管材和管件聚乙烯电熔组件的挤压剥离试验258 GB/T 19808-2005 塑料管材和管件公称外径大于或等于90mm的聚乙烯电熔组件的拉伸剥离试验259 GB/T 19811-2005 在定义堆肥化中试条件下塑料材料崩解程度的测定260 GB/T 19993-2005 冷热水用热塑性塑料管道系统管材管件组合系统热循环试验方法261 GB/T 20022-2005 塑料氯乙烯均聚和共聚树脂表观密度的测定262 GB/T 20024-2005 内燃机用橡胶和塑料燃油软管可燃性试验方法263 GB/T 20026-2005 橡胶和塑料软管内衬。
高分子材料拉伸性能实验

高分子材料拉伸性能实验1. 实验目的了解高分子材料的拉伸强度、模量及断裂伸长率的意义和测试方法,通过应力-应变曲线,判断不同高分子材料的性能特征。
2. 实验原理拉伸强度是用规定的实验温度、湿度和作用力速度,在试样的两端以拉力将试样拉至断裂时所需的负荷力,同时可得到断裂伸长率和拉伸弹性模量。
将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力-应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。
3. 实验材料实验原料:GPPS、PP、PC。
(1)拉伸样条:哑铃型样条,测试标准:ASTM D638。
样条如下:符号名称尺寸/mm 公差/mm 符号名称尺寸/mm 公差/mm4. 实验设备万能材料实验机及夹具5. 实验条件不同的材料由于尺寸效应不同,故应尽量减少缺陷和结构不均匀性对测定结果的影响,按表2选用国家标准规定的拉伸试样类型以及相应的实验速度。
表 2 拉伸试样类型以及相应的实验速度①Ⅲ试样仅用来测试拉伸强度实验速度为以下九种:A: 1mm/min ±50% B: 2mm/min ±20% C: 5mm/min ±20%D: 10mm/min ±20% E: 20mm/min ±10% F: 50mm/min ±10%G: 100mm/min ±10% H: 200mm/min ±10% I: 500mm/min ±10%6.实验步骤(1)实验环境:温度23℃,相对湿度50%,气压86~106KPa。
(2)测量试样中间平行部分的宽度和厚度,精确到0.01mm,每个试样测量三点,取算术平均值。
高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法高分子材料是一类重要的材料,主要包括塑料、橡胶和纤维。
高分子材料的质量标准和检验方法对于保证产品质量的稳定性和可靠性至关重要。
本文将从材料物理性能、化学性能、耐候性能、力学性能、热性能和表面性能等方面介绍高分子材料的质量标准及检验方法。
一、材料物理性能的质量标准及检验方法高分子材料的物理性能包括密度、熔点、玻璃转化温度等。
对于高分子材料来说,密度是一个重要的物理性能,它直接影响材料的重量和成本。
检验方法一般采用浮力法或密度计进行测定。
二、材料化学性能的质量标准及检验方法高分子材料的化学性能包括与酸、碱和溶剂的耐受性、吸湿性以及电气性质等。
检验方法主要包括酸碱溶胀实验、吸湿实验和电性能测试。
三、材料耐候性能的质量标准及检验方法高分子材料的耐候性能是指材料在光、热、氧等外界环境作用下的稳定性能。
检验方法主要包括光照老化试验、热氧老化试验等。
四、材料力学性能的质量标准及检验方法高分子材料的力学性能包括拉伸强度、弯曲强度和冲击强度等。
检验方法主要包括拉伸试验机、弯曲测试仪和冲击试验机。
五、材料热性能的质量标准及检验方法高分子材料的热性能包括熔融温度、热稳定性和热导率等。
检验方法主要包括热分析仪和热导率测试仪。
六、材料表面性能的质量标准及检验方法高分子材料的表面性能包括光泽度、表面硬度和耐刮花性等。
检验方法主要包括光泽度计、硬度计和耐刮花试验机。
总之,高分子材料的质量标准及检验方法是保证材料质量的重要手段。
通过对材料的物理性能、化学性能、耐候性能、力学性能、热性能和表面性能的检测,可以有效评估材料的性能,从而保证产品的质量稳定性和可靠性。
在实际生产过程中,应根据产品的需求和使用环境来选择合适的标准和检验方法,确保高分子材料的优良性能。
七、投料和原材料的质量标准及检验方法除了对成品的质量进行检验外,对投料和原材料的质量也是非常重要的。
投料和原材料的质量直接影响着最终产品的质量稳定性和可靠性。
试验1高分子材料拉伸强度及断裂伸长率测定
实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
功能高分子材料学习总结
功能高分子材料学习总结功能高分子材料是一种具有特殊性质和特定功能的材料,常用于各个领域的应用,如能源、医疗、电子等。
在学习功能高分子材料的过程中,我发现了许多重要的知识和技能,下面是我对此的总结。
一、功能高分子材料的分类功能高分子材料可以根据其用途和性质进行分类。
基于用途,可以分为电子材料、光学材料、磁性材料、生物材料等。
不同类别的功能高分子材料有着不同的制备方法和性能特点,我们需要深入了解每个类别的特点,以便在实际应用中做出正确的选择。
二、功能高分子材料的制备方法功能高分子材料的制备方法多种多样,包括化学合成、物理方法、生物法等。
化学合成是最常用的方法,通过有机合成反应来制备所需的功能高分子材料。
物理方法包括溶液法、熔融法、拉伸法等,这些方法能够得到具有特定结构和性能的高分子材料。
生物法则是利用生物学体系合成天然高分子材料或者通过改性使其具有特殊功能。
三、功能高分子材料的性能与应用功能高分子材料的性能决定了其在不同领域中的应用。
举例来说,聚合物基复合材料具有较高的力学强度和化学稳定性,可以用于制作飞机和汽车零部件。
另外,具有光导电性和光学特性的高分子材料可以应用于光电子器件中,如发光二极管和太阳能电池。
通过深入研究和理解功能高分子材料的性能,我们可以找到更广泛的应用领域。
四、功能高分子材料的性能测试与表征为了确保功能高分子材料能够达到设计要求并保证其品质,我们需要进行各种性能测试与表征。
常用的测试方法包括拉伸测试、热分析、电性能测试等。
此外,结构表征也是十分重要的,如红外光谱、核磁共振等。
通过这些测试和表征手段,我们可以全面了解材料的性能和结构特点,为优化制备工艺和改进性能提供依据。
五、功能高分子材料的发展趋势功能高分子材料领域一直在不断发展,并呈现出一些重要的趋势。
首先,材料的多功能性和智能化正成为发展的主要方向,也就是材料在不同环境下具有不同的性能和功能。
其次,可持续发展和环境友好型材料的需求越来越大,传统的高分子材料正在逐渐被可降解材料所取代。
高分子材料的动态力学性能分析
高分子材料的动态力学性能分析在现代材料科学的领域中,高分子材料以其独特的性能和广泛的应用成为了研究的重点之一。
而高分子材料的动态力学性能更是其中一个关键的方面,对于深入理解和优化其在各种实际场景中的应用具有重要意义。
首先,我们来了解一下什么是高分子材料的动态力学性能。
简单来说,就是指高分子材料在动态载荷(如振动、冲击等)作用下表现出的力学行为和特性。
这种性能反映了材料在不同频率和温度条件下对能量的吸收、储存和释放能力。
高分子材料的动态力学性能通常通过动态力学分析(DMA)技术来进行研究。
在这个过程中,会施加一个周期性的应变或应力,然后测量材料的响应,从而得到诸如储能模量、损耗模量和损耗因子等重要参数。
储能模量代表了材料储存弹性变形能量的能力,它反映了材料的刚度。
损耗模量则反映了材料在变形过程中能量的损耗,与材料的粘性相关。
而损耗因子则是损耗模量与储能模量的比值,能够很好地反映材料的阻尼特性。
温度对高分子材料的动态力学性能有着显著的影响。
随着温度的升高,高分子材料会经历从玻璃态到高弹态再到粘流态的转变。
在玻璃态下,分子链的运动被冻结,材料表现出较高的模量和较低的阻尼。
当温度升高到玻璃化转变温度(Tg)时,分子链开始获得一定的运动能力,模量急剧下降,阻尼迅速增大。
继续升温进入高弹态,材料的弹性和粘性并存。
而当温度进一步升高到粘流温度以上时,材料变为可流动的粘性液体。
频率也是影响高分子材料动态力学性能的一个重要因素。
在低频下,分子链有足够的时间响应外力,材料表现出更多的粘性特征;而在高频下,分子链来不及响应,材料表现出更多的弹性特征。
高分子材料的结构和组成对其动态力学性能有着决定性的影响。
分子链的长度、分子量分布、支化程度以及交联结构等都会改变材料的动态力学性能。
例如,分子量较大且分布较窄的高分子材料通常具有更高的模量和更好的力学性能。
交联结构可以增加材料的刚度和耐热性,但可能会降低其韧性。
不同类型的高分子材料具有不同的动态力学性能特点。
(橡胶)高分子老化测试的7种方法和老化测试标准
(橡胶)高分子老化测试的7种方法和老化测试标准什么是老化试验?老化试验主要是指针对橡胶、塑料产品、电器绝缘材料及其他材料进行的热氧老化试验;或者针对电子零配件、塑化产品的换气老化试验。
老化试验又分为温度老化、阳光辐照老化、加载老化等等高温老化一般分几个等级进行,工业的一般用70度,4个小时,15度一个等级,一般有40度、55度、70度、85度几个等级,时间一般都是4个小时。
根据老化试验产品的多少分为2种方法测试1、老化箱主要针对塑胶产品,而且数量和体积不很大的产品比较实用。
2、老化柜或是老化房主要针对高性能电子产品(如:计算机整机,显示器,终端机,车用电子产品,电源供应器,主机板、监视器、交换式充电器等)仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。
七大老化试验方法目前,研究高分子材料的老化试验方法有很多,主要包括气候老化试验,紫外老化试验,臭氧老化试验,热空气老化试验,高低温交变老化试验,湿热老化试验,介质老化试验,盐雾老化试验等。
1、气候老化试验所谓气候老化试验就是将高分子材料试验样品暴露于大气环境条件下,从而获得材料样品在大气环境暴露下的老化规律,对高分子材料的性能进行分析,并预测其使用寿命的一种研究方法。
气候老化试验又可以分为两种:其中一种便是自然暴露试验,即将高分子材料试验样品暴露于真实的大气环境下,以获得材料在真实环境下的老化行为,这种老化试验方法所获得的老化信息最为准确,是获得高分子材料老化行为的最为有效的方法,但是这种试验方法周期时间太长,费时费力。
在美国的佛罗里达州、中国的万宁、漠河以及武汉等地都有人进行过为期超过一年的大气暴露试验。
另外一种便是人工气候老化试验,人工气候老化试验即是指人通过在室内对真实大气环境条件进行模拟或者是加强某一环境因素以在短时间内获得材料老化行为的老化试验方法,这又被称为人工模拟老化或者人工加速老化。