正弦、余弦的诱导公式 两角和与差的正弦、余弦、正切(1)
第2课时 两角和与差的正弦、余弦、正切公式 课件(共13张PPT) 高一数学人教A版必修第一册

(3)
1+tan15°
1−tan15°
;
解:(1)原式 = sin (72°– 42°) = sin 30°=
1
;
2
(2)原式 = cos (20°+ 70°) = cos 90°= 0 ;
(3)原式 =
1+tan15°
1−tan15°
= tan (45°+ 15°) = tan (60°) = 3 .
5.5.1.2 两角和与差的正弦、余弦、正切公式
学习目标
新课讲授
课堂总结
1. 类比两角差的余弦公式的推导过程,能推导两角和与差的正弦、余弦、
正切公式;(重点)
2. 会利用两角和与差的正弦、余弦、正切公式进行简单的三角函数化简、
求值等.(难点)
学习目标
新课讲授
课堂总结
知识点 1 :两角和与差的正弦、余弦、正切公式
2 4
×
2
5
−
2
3
×(− )
2
5
=
7 2
;
10
于是有 sin ( − α) = sin ·cos α − cos
4
cos ( + α) = cos
tan(α −
)
4
4
4
3
;
4
4
3
tan α – tan 4
tan α – 1 – 4 – 1
=
=
=
=−7.
1 + tan α · tan 4 1 + tan α
tan α + tan β
T(α + β):tan (α + β) =
高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

(3)sin
1π2-
3cos
π 12.
解
方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β
=
.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β
两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)

( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.
练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin
5两角和与差的正弦、余弦和正切公式 (1)

sin cos cos sin
cos cos
cos cos
cos sin
cos sin
tan tan , 1 tan tan
cos cos cos cos
两角和的正切公式
tan(
)
tan tan 1 tan tan
(简记作 tan( )).
注意结构:分子是两角正切和分母是 1-两角正切积
3. 探究 tan( ) , tan( - )
你能根据正切函数与正弦函数、余弦函数的关系,从C(α ± β) ,S( α ± β)出发 ,推导出用
任意角α,β的正切表示 tan , tan- 的公式吗?(学生小组讨论合作)
通过推导,可以得到:
+
= 1− +
tan( )
−
= 1+ −
tan( - )
形化简成左侧的形式;公式 T( )
T T 1 TT
中,若,
之中有一个是
π 4
,则公式的结构会
更简洁.如:
−4
=
1+
−
4 4
=
1+
−1
3.数学思想方法上:整体代换思想,转化思想。
五.作业布置
1.教材 220 页练习 1
sin15°=s
=−
3 5
,如α是第三象限角,
得cos =− 1 −
2=−
1
−
(
−
3 5
)2
=−
4 5
s 4 − = sin 4
− cos 4
=−
2 10
cos
+
4
=
4
− sin 4
两角和与差的正弦、余弦和正切公式(基础知识+基本题型)(含解析)

5.5.1两角和与差的正弦、余弦和正切公式(基础知识+基本题型)知识点一、两角差的余弦公式 如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B ,则)sin ,(cos ),sin ,(cos ββαα==OB OA . 由向量数量积的定义,有)cos()cos(||||βαβα-=-=⋅OB OA OB OA ,由向量数量积的坐标表示,得βαβαsin sin cos cos +=⋅OB OA . 于是有βαβαβαsin sin cos cos )cos(+=-. 由以上的推导过程可知,βα,是任意角,则)(βα-也应为任意角,即对于任意角βα,有βαβαβαsin sin cos cos )cos(+=-,此公式称为差角的余弦公式,简记为)(βα-C【提示】(1)适用条件:公式中的βα,都是任意角,可以为常量,也可以为变角(2)公式结构:公式右端的两部分为同名三角函数的积,连接符号与左边角的连接符号相反 【拓展】(1)逆用:)cos(sin sin cos cos βαβαβα-=+(2)角变换后使用:ββαββαββααsin )sin(cos )cos(])cos[(cos +++=-+= (3)移项使用:βαβαβαsin sin )cos(cos cos --=;βαβαβαcos cos )cos(sin sin --=(4)特殊化使用导出诱导公式:ααπαπαπsin sin 2sincos 2cos)2cos(=+=-知识点二 两角和的余弦公式 运用)(βα-C 和诱导公式,有)](cos[)cos(βαβα--=+ )sin(sin )cos(cos βαβα-+-= βαβαsin sin cos cos -=,即βαβαβαsin sin cos cos )cos(-=+此公式就是两角和的余弦公式,简记作)(βα+C 提示:(1)公式中的βα,都是任意角(2)两角和与差的余弦公式右边函数名的排列顺序为:余⋅余 正⋅正,左右两边加减运算符号相反 (3)一般情况下,两角和的余弦公式不能按分配律展开,即βαβαcos cos )cos(+≠+ 【拓展】要学会顺用(从左至右,即展开)、逆用(从右至左,即化简)、变用(移项变形)公式()C αβ± (1)顺用公式()C αβ±,如:()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦;()cos 2cos 2cos sin 2sin αβαβαβ+=-,()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦(2)逆用公式()C αβ±,如:()()()()cos cos sin sin αβαβαβαβ+--+- ()()cos cos 2αβαβα=++-=⎡⎤⎣⎦(3)变用公式()C αβ±,如:()cos sin sin cos cos αβαβαβ++=; ()cos cos cos sin sin αβαβαβ--=知识点三 两角和与差的正弦公式 运用()C αβ-和诱导公式,有()()sin cos cos 22ππαβαβαβ⎡⎤⎡⎤⎛⎫+=-+=-- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦cos cos sin sin sin cos cos sin 22ππαβαβαβαβ⎛⎫⎛⎫=-+-=+ ⎪ ⎪⎝⎭⎝⎭.即()sin sin cos cos sin αβαβαβ+=+.这就是两角和的正弦公式,简记作sin cos cos sin αβαβ+()S αβ+. 在公式()S αβ+中,用β-代替β,可得()()()sin sin cos cos sin sin cos cos sin αβαβαβαβαβ+-=-+-=-⎡⎤⎣⎦,即()sin sin cos cos sin αβαβαβ-=-. 这就是两角差的正弦公式,简记作()S αβ-. 【提示】(1)公式中的,αβ均为任意角.(2)两角和与差的正弦公式右边函数名的排列顺序为:正余±余正,左右两边加减运算符号相同. (3)一般情况下,两角和与差的正弦公式不能按分配律展开,即()sin sin sin αβαβ±=±.知识点四 两角和与差的正切公式 ()()()sin sin cos cos sin tan tan tan cos cos cos sin sin 1tan tan αβαβαβαβαβαβαβαβαβ++++===+--, 即()tan tan tan 1tan tan αβαβαβ++=-.这就是两角和的正切公式,简记作()T αβ+. 以β-代替上式中β,可得 ()()()tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβ+--+-==⎡⎤⎣⎦--+,即()tan tan tan 1tan tan αβαβαβ--=+.这就是两角差的正切公式,简记作()T αβ-. (1)适用条件:公式()T αβ±只有在(),,Z 222k k k k πππαπβπαβπ≠+≠+±≠+∈时才成立,否则不成立,这是由正切函数的定义域决定的.(2)特殊情况:当tan α或tan β或()tan αβ±的值不存在时,不能使用()T αβ±处理有关问题,但可改用诱导公式或其他方法.例如,化简tan 2πβ⎛⎫- ⎪⎝⎭,因为tan 2π的值不存在,不能利用公式()T αβ-,所以改用诱导公式来解.sin cos 2tan 2sin cos 2πβπββπββ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭. (3)公式()T αβ-也可以这样推导: ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ---==-+若cos cos 0αβ≠,则将上式得分子、分母都除以cos cos αβ,得()tan tan tan 1tan tan αβαβαβ--=+.【拓展】(1)正切公式的逆用: ()()()tan tan tan tan 1tan tan αβααβαβαβα+-=+-=⎡⎤⎣⎦++;tantan 1tan 4tan 1tan 41tan tan 4πααπαπαα++⎛⎫==+ ⎪-⎝⎭-(2)正切公式的变形应用:()()tan tan tan 1tan tan αβαβαβ+=+-; ()()tan tan tan 1tan tan αβαβαβ-=-+; ()tan tan 1tan tan tan αβαβαβ+-=+;()tan tan 1tan tan tan αβαβαβ-+=-知识点五 辅助角公式辅助角公式:()sin cos tan b a x b x x a ϕϕ⎛⎫++= ⎪⎝⎭推导过程:sin cos a x b x x x ⎫+=+⎪⎭令cos ϕϕ==,)sin cos sin cos cos sin a x b x x x ϕϕ++()x ϕ+其中角ϕ所在象限由,a b 的符号确定,角ϕ的值由tan ba ϕ=确定或由cos ϕϕ==共同确定【提示】 (1)关于形如sin cos a x b x +(,a b 不同时为零)的式子,引入辅助角可以变形为()sin A x ϕ+的形式,有时也变形为()cos A x ϕ+的形式(2)辅助角公式能将异名三角函数式转化为同名三角函数式,它本身就是一个化简得过程,化简后,可轻松地求出函数的周期、最值、单调区间等考点一 三角函数式的化简 【例1】 化简下列各式 (1)sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)()2sin50sin101⎡⎤︒+︒︒⎣⎦;(3)()()1sin cos sin 2sin 2αβααββ+-+-⎡⎤⎣⎦ 解:(1)原式()()sin 158cos15sin8sin15cos8cos15sin8cos15sin8tan15cos 158sin15sin8cos15cos8sin15sin8sin15sin8︒-︒+︒︒︒︒-︒︒+︒︒==︒︒-︒-︒︒︒︒+︒︒-︒︒()1tan 45tan 30tan 45301tan 45tan 30︒-︒=︒-︒==+︒︒2=-(2)原式2sin 50sin10⎛=︒+︒ ⎝⎭2sin 50cos102sin10cos50cos10︒︒+︒︒⎡⎤=︒⎢⎥︒⎣⎦)sin 50cos10sin10cos50=︒︒+︒︒()5010=︒+︒== (3)原式()()()1sin cos sin sin 2αβαααβαβα=+-++-+-⎡⎤⎣⎦ ()()1sin cos 2sin cos 2αβαααβ=+-+⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ ()sin sin αβαβ=+-= 化简三角函数式的标准和要求: (1)能求出值得应求出值;(2)使三角函数式的种数、项数及角的种类尽可能少; (3)使三角函数式的次数尽可能低; (4)使分母中尽量不含三角函数式和根式 考点二 三角函数的求值 【例2.】.(1)求sin105︒的值;(2)已知3sin 5θ=-,且θ是第三象限角,求cos 6πθ⎛⎫+ ⎪⎝⎭的值;(3)已知1tan ,tan 20,322ππαβαβπ⎛⎫==-<<<< ⎪⎝⎭,求()tan αβ-及αβ+的值解:(1)()sin105sin 6045︒=︒+︒sin 60cos45cos60sin 45=︒︒+︒︒ (2)因为3sin 5θ=-,且θ是第三象限角,所以4cos 5θ=-所以413cos cos cos sin sin 666525πππθθθ⎛⎫⎛⎫⎛⎫+=---⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)因为1tan ,tan 23αβ==-,所以()12tan tan 3tan 721tan tan 13αβαβαβ+--===+- ()12tan tan 3tan 121tan tan 13αβαβαβ-++===--+ 因为0,,22ππαβπ<<<<所以 322ππαβ<+<所以34παβ+=三角函数的求值问题主要包括三类:给角求值、给值求值、给值求角 (1)给角求值的求解策略求解的关键是能将所求角转化为特殊角,并注意公式的选用 (2)给值求值的求解策略已知角,αβ的某种三角函数值,求αβ±的余弦、正弦或正切的方法;先根据平方关系求出,αβ的另一种三角函数值,求解过程中应注意先根据角的范围判断所求三角函数值的符号,再根据求得的函数值和已知函数值代入和角或差角的正弦、余弦、正切公式中,求出和角或差角的正弦、余弦、正切(3)给值求角的方法解答这类题目的步骤:①求出角的某一个三角函数值;②确定角所在的范围;③求角 考点三 三角恒等式的证明 【例3】求证:()()sin 2sin 2cos .sin sin αββαβαα+-+=证明:因为sin 0α≠,()()sin 22cos sin αβαβα+-+()()=sin 2cos sin αβααβα++-+⎡⎤⎣⎦()()()sin cos cos sin 2cos sin αβααβααβα=+++-+ ()()sin cos cos sin αβααβα=+-+()sin αβα=+-⎡⎤⎣⎦ sin β=,所以()()sin 2sin 2cos sin sin αββαβαα+-+=.证明三角恒等式常用以下方法:(1)从复杂的一边入手,逐步化简,证得与另一边相等.在证明的过程中,应时刻“盯”住目标,分析其特征,向着目标“奔”去;(2)从两边入手,证得等式两边都等于同一个式子; (3)作差法,证明左边-右边=0. 考点四 辅助角公式的应用【例4】 将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).4444x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭解:(1)12cos 2x x ⎫=-⎪⎪⎝⎭原式2cos sin sin cos 66x x ππ⎛⎫=- ⎪⎝⎭2sin .6x π⎛⎫=- ⎪⎝⎭(2)1sin cos 22424x x ππ⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦原式sin sin cos cos 26464x x ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos 246212x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭sin 2212x ππ⎛⎫=-+ ⎪⎝⎭5sin .212x π⎛⎫=+ ⎪⎝⎭ 通过引入辅助角ϕ,可以将sin cos a x b x +这种形式的三角函数式化为一个角的一种三角函数的形式.这种变形方法可解决sin cos a x b x +的许多问题,如值域、最值、周期、单调区间等.另外,(2)在解法上充分体现了角的变换和整体思想.。
两角和与差的正弦、余弦、正切公式(一)

§3.1.2 两角和与差的正弦、余弦、正切公式(一) 学习目标:⒈掌握两角和与差的正弦、余弦、正切公式及其推导过程.⒉能灵活应用公式进行简单三角函数式的化简.教学重点:两角和与差的正弦、余弦、正切公式.教学难点:两角和与差的正弦、余弦、正切公式的灵活应用.教学方法:讨论式.教具准备:多媒体投影.教学过程:(Ⅰ)复习引入:师:上节课,我们利用向量方法得到了差角的余弦公式.请默写公式. 生:cos()αβ-cos cos sin sin αβαβ=+.师:有了这个公式以后,我们就可以以此为基础,利用同角三角函数的基本关系和诱导公式得出其它一些公式.这是我们本节课的任务.(Ⅱ)讲授新课:师:请由差角的余弦公式推导出和角的余弦公式,即用任意角α、β的正弦、余弦值表示角αβ+的余弦值.生:cos()cos[()]αβαβ+=--cos cos()sin sin()αβαβ=-+-cos cos sin sin αβαβ=-.师:这样我们就得到了和角的余弦公式,简记作.要注意它与差角的余弦公式之间的差别.师:我们知道,利用诱导公式可以实现正弦、余弦的互化.请用诱导公式与和(差)角的余弦公式推导和(差)角的正弦公式.生:sin (α+β)=cos [2π-(α+β)]=cos [(2π-α)-β] =cos (2π-α)cos β+sin (2π-α)sin β =sin αcos β+cos αsin β.∴ sin (α+β)=sin αcos β+cos αsin β.sin [α+(-β)]=sin αcos (-β)+cos αsin (-β)=sin αcos β-cos αsin β,即: sin (α-β)=sin αcos β-cos αsin β.师:这两个公式称为两角和(差)的正弦公式,分别简记作()S αβ+、()S αβ-师:你能根据正切函数与正弦函数、余弦函数的关系,有上面得到的公式推导出和(差)角的正切公式吗?生:tan()αβ+sin()sin cos cos sin cos()cos cos sin sin αβαβαβαβαβαβ++==+-. ① 师:上面的结论作为公式应用合适吗?为什么?生:这个结论实际上就是将同角三角函数的基本关系代如,然后再用和角的正弦、差角的余弦公式展开,不适合做公式应用.师:与和(差)角的正弦、余弦公式相比较,我们应该将上面结论中的正弦、余弦函数换成正切函数.请同学们继续进行公式的推导.生:①式右端分子、分母同时除以cos cos αβ,得tan()αβ+tan tan 1tan tan αβαβ+=- ()()T αβ+. 同理 tan()αβ-tan tan 1tan tan αβαβ-=+ ()()T αβ-. 师:公式()S αβ+,()C αβ+,()T αβ+给出了任意角α、β的三角函数值与其和角αβ+的三角函数值之间的关系,我们把这三个公式都叫做和角公式.类似地,()S αβ-,()C αβ-,()T αβ-都叫作差角公式.这六个公式之间具有怎样的逻辑关系?你能用框图的形式表示出这种关系吗?生:(用框图表示六个公式间的逻辑关系,形式不唯一).例3已知4sin 5α=-,α是第四象限角,求sin()4πα-,cos()4πα+,tan()4πα-的值.分析:解答此题时,应注意角4πα-和4πα+之间的关系.解:略.例4利用和(差)角公式计算下列各式的值:⑴sin 72cos 42cos72sin 42-;⑵cos 20cos70sin 20sin 70-; ⑶1tan151tan15+-. 分析:和(差)角公式把αβ±的三角函数是转化成了α,β的三角函数式.如果反过来,从右到左使用公式,我们就可以将三角函数式化简.解:略.(Ⅲ)课后练习:课本144P 练习 150P 习题3.1 A 组 ⒍(Ⅳ)课时小结:⑴三角变换的基本要求是:思维有序、表述条理.⑵三角变换中角的拆分的多样性,决定了变换的多样性.⑶三角公式的应用也具有多样性,要注意正勇、逆用、变形用. (Ⅴ)课后作业:⒈课本150P 习题3.1 A 组 ⒎⒏⒐⒑⒒⒉预习课本145P ~148P ,思考下列问题:⑴怎样应用和(差)角的三角函数公式推导二倍角的三角函数公式? ⑵二倍角的余弦公式有哪些形式?⑶你对二倍角公式中的“倍”是怎样理解的?板书设计:教学后记:。
两角和与差的正弦、余弦和正切公式Word版含答案
两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
正弦余弦的诱导公式两角和与差的正弦余弦正切
正弦、余弦的诱导公式、两角和与差的正弦、余弦、正切(1)一.教学内容:目标:(1)要使学生掌握正弦、余弦的诱导公式,能正确运用这些公式求任意角的正弦、余弦值,以及进行简单三角函数式的化简及恒等式的证明;能通过公式的运用,了解未知到已知、复杂到简单的转化过程,提高分析和解决问题的能力;(2)要使学生掌握两角和与两角差的正弦、余弦公式,能正确运用这些公式进行简单三角式的化简、求值和恒等式的证明;了解上述和(差)角公式的推导体系以及余弦的和角公式的证明;了解并记忆平面内两点间的距离公式,培养运算能力、逻辑推理能力以及辨证唯物主义观点。
二. 重点、难点:重点:(1)四组诱导公式,以及这四组诱导公式和第4.3节的第一组诱导公式的综合运用。
(2)正弦、余弦的和(差)角公式。
难点:(1)把五组诱导公式用一句话归纳出来,并切实理解这句话中每一词语的含义;(2)余弦的和角公式的推导,以及正弦、余弦的和(差)角公式的综合运用。
学法指导:应用诱导公式求任意角的三角函数时,应注意公式的选择。
利用诱导公式求任意角的三角函数值的一般步骤:(1)用公式三将任意负角的三角函数化为任意正角的三角函数;(2)用公式一将大于360o角的三角函数化为0o到360o间角的三角函数;(3)用公式二、四、五将大于90o角的三角函数化为0o到90o间角的三角函数;(4)得到0 o到90 o间角的三角函数后,对于是特殊角的可直接求值,对于非特殊角的三角函数值查数学用表即可求得。
两角和(差)的正弦、余弦公式应熟记公式特点。
对于公式的特点,应进行对比记忆:两角和(差)的余弦——余余、正正符号异,两角和(差)的正弦——正余、余正符号同,整体把握好角、名、形。
交点的坐标,然后利用同圆中相等的圆心角所【典型例题】例分析:利用诱导公式、同角三角函数的基本关系式先化简,再代值求解。
说明:(1)本题主要考查利用诱导公式化简三角函数并求值。
熟记诱导公式是破解此类问题的关键。
两角和差的正弦余弦和正切公式
两角和差的正弦余弦和正切公式在三角函数中,两角的和差的正弦、余弦和正切公式是很重要的定理,用于计算角度的和与差的三角函数值。
这些公式不仅在数学中有广泛的应用,而且在物理、工程、计算机图形学等领域也经常被使用。
下面将详细介绍这些公式。
1.两角和差的正弦公式:设角A和角B是两个任意角,则有以下公式成立:sin(A + B) = sin A cos B + cos A sin Bsin(A - B) = sin A cos B - cos A sin B这些公式表明,两个角度的和或差的正弦值可以表示为这两个角度的正弦、余弦函数值的线性组合。
这个公式在计算三角函数值时非常有用,可以通过已知角度的正弦、余弦函数值计算出两个角度之和或差的正弦函数值。
2.两角和差的余弦公式:设角A和角B是两个任意角,则有以下公式成立:cos(A + B) = cos A cos B - sin A sin Bcos(A - B) = cos A cos B + sin A sin B这些公式表明,两个角度的和或差的余弦值可以表示为这两个角度的余弦、正弦函数值的线性组合。
这个公式在计算三角函数值时也非常有用,可以通过已知角度的余弦、正弦函数值计算出两个角度之和或差的余弦函数值。
3.两角和差的正切公式:设角A和角B是两个任意角,且cos A != 0,cos B != 0,则有以下公式成立:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)tan(A - B) = (tan A - tan B) / (1 + tan A tan B)这些公式表明,两个角度的和或差的正切值可以表示为这两个角度的正切值的函数。
这个公式在计算三角函数值时也非常有用,可以通过已知角度的正切函数值计算出两个角度之和或差的正切函数值。
这些两角和差的公式可以通过三角函数的定义以及三角函数的诱导公式推导得出。
这些公式在三角学中是非常重要的,广泛应用于计算角度的和与差的三角函数值。
两角和与差的正弦余弦和正切公式
第六页,共43页。
3.(2013·课标全国卷Ⅱ)已知 sin 2α=23,是 cos2α+π4=
()
1
1
1
2
A.6
B.3
C.2
D.3
【解析】
∵sin
2α=23,∴cos2α+π4=1+cos22α+π2
=
1-sin 2
2α=1-2 23=16.
【答案】 A
第七页,共43页。
4.(2014·南昌质检)若ssiinn
θ 2cos
θ2+2cos2θ2)(sin
θ2-cos
θ 2)
=2cos θ2(sin2θ2-cos2θ2)=-2cos θ2cos θ.
-2cos 故原式=
θ
2cos θ
θ =-cos
θ.
2cos 2
第十二页,共43页。
规律方法 1 1.注意到第(2)题中有开方运算,联想二倍角 公式的特征进行升幂,化为完全平方式.
第十四页,共43页。
考向 2 三角函数的求值问题 【例 2】 (2013·广东高考)已知函数 f(x)= 2cosx-1π2, x∈R. (1)求 f-π6的值; (2)若 cos θ=35,θ∈32π,2π,求 f2θ+π3.
第十五页,共43页。
【思路点拨】 (1)把 x=-π6代入函数解析式,借助特殊 角的三角函数值和诱导公式求 f-π6.(2)由 cos θ 求出 sin θ, 利用两角和的余弦公式和二倍角公式求 f2θ+π3.
定,(4)错. 【答案】 (1)√ (2)× (3)× (4)×
第五页,共43页。
2.(人教 A 版教材习题改编)sin 34°sin 26°-cos 34°cos 26°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦、余弦的诱导公式 两角和与差的正弦、余弦、正切(1) 一. 教学内容: 1. 内容:正弦、余弦的诱导公式 两角和与差的正弦、余弦、正切(1) 2. 目标: (1)要使学生掌握正弦、余弦的诱导公式,能正确运用这些公式求任意角的正弦、余弦值,以及进行简单三角函数式的化简及恒等式的证明;能通过公式的运用,了解未知到已知、复杂到简单的转化过程,提高分析和解决问题的能力; (2)要使学生掌握两角和与两角差的正弦、余弦公式,能正确运用这些公式进行简单三角式的化简、求值和恒等式的证明;了解上述和(差)角公式的推导体系以及余弦的和角公式的证明;了解并记忆平面内两点间的距离公式,培养运算能力、逻辑推理能力以及辨证唯物主义观点。
二. 重点、难点: 重点: (1)四组诱导公式,以及这四组诱导公式和第4.3节的第一组诱导公式的综合运用。 (2)正弦、余弦的和(差)角公式。 难点: (1)把五组诱导公式用一句话归纳出来,并切实理解这句话中每一词语的含义; (2)余弦的和角公式的推导,以及正弦、余弦的和(差)角公式的综合运用。
学法指导:
五组诱导公式可概括为:kkz360180360(),,,的三角函数值 等于的同名三角函数值,前面加上一个把看作锐角时原函数值的符号,可用口诀“ 函数名不变,符号看象限”来帮助记忆。但必须注意,这里是任意大小的角,不一定是
锐角。在应用诱导公式求任意角的三角函数时,应注意公式的选择。 利用诱导公式求任意角的三角函数值的一般步骤: (1)用公式三将任意负角的三角函数化为任意正角的三角函数; (2)用公式一将大于360o角的三角函数化为0o到360o间角的三角函数; (3)用公式二、四、五将大于90o角的三角函数化为0o到90o间角的三角函数; (4)得到0 o到90 o间角的三角函数后,对于是特殊角的可直接求值,对于非特殊角的三角函数值查数学用表即可求得。
第节公式较多它们之间是紧密联系的其中以4.6,,cos()coscossinsin 为基础,其它公式是根据角与的任意性,通过赋值、代换等手段导出。 两角和(差)的正弦、余弦公式应熟记公式特点。对于公式的特点,应进行对比记忆:两角和(差)的余弦——余余、正正符号异,两角和(差)的正弦——正余、余正符号同,它们都是以单角、的三角函数来表示的。运用公式时,应注意公式的顺用、逆用、变
用和活用,整体把握好角、名、形。
课本上利用单位圆和解析法导出了两角和的余弦公式,公式的本质是用单角与
的三角函数表示和角的余弦,所以角、与、的始边均放在轴非负半轴x上,这样便于正确地写出这些角的终边与单位圆交点的坐标,然后利用同圆中相等的圆心角所对的弦相等及两点间的距离公式进行推导。
由于、的任意性及两点的距离公式的一般性,说明公式cos()coscossinsin具有一般性,它也为导出其它公式铺平了道路。如,在公式中,用代替即可导出公式。CC
【典型例题】
例1. 已知,求的值。sin()sin()cot()cos122 分析:利用诱导公式、同角三角函数的基本关系式先化简,再代值求解。
解:由,得sin()sin1212 sin()cot()cos2 sincotcos
sincossin
2
sincossin22
1sin 2 说明:
(1)本题主要考查利用诱导公式化简三角函数并求值。熟记诱导公式是破解此类问题的关键。 (2)利用诱导公式主要是进行角的转化,可达到统一角的目的。
例2. 求值: ()1947656coscot()sin()cot() ()27656756903001110cottancot()tan()sin() 分析:利用诱导公式,按照求任意角的三角函数的一般步骤,即可很快求解。
解:()原式12476056cos()cotcot coscot()cot()466
2266cotcot
22
()原式22360453603153001110cot()tan()tansin cottantansin()45315300336030 1360453606030tan()tan()sin
1456012tantan
11312
323 说明: (1)本题主要考查利用诱导公式变换三角函数式并求值,特殊角三角函数值,以及正确、灵活、有条理地变换和解决问题的能力、基本的运算能力。 (2)求任意角的三角函数值时,一般步骤是“负化正、大化小、化成锐角再查表”。 变换中的得力工具是诱导公式,因此对公式的掌握要做到准确、熟练,得心应手。 (3)在同一问题中,角的单位要统一。一般是采取与题设相同的度量制度。
例3. 设,求的值。ff()cossin()sin()cos()cos()()2223223322 分析:先化简,再求值。
解:f()cossincoscoscos2322322 21322322coscoscoscoscos
2112232(cos)cos(cos)coscos
21112222(cos)(coscos)cos(cos)coscos
(cos)(coscos)coscos122222
2
cos1 f()cos33112112 说明: (1)本题主要考查利用诱导公式化简三角函数式并求值,考查等价转化的能力。
()除了五组诱导公式外,还可以记住,的角的诱导公式。其中2232
sin()sin[]sin[()]sin()cos2222,类似地,可得 sin()coscos()sincos()sincos()sin322232,,,, cos()sin32。 一般地,,的三角函数值,等于的余名函数值,前面加上一个把90270o 看成锐角时原函数值的符号。与前五组诱导公式一起可概括为:的各三kkz90()角函数值,当为偶数时,得的同名函数值;当为奇数时,得的余名函数值;然后kk 在前面加上一个把看成锐角时原函数值的符号。为了便于记忆,还可编成一句口诀:“奇
变偶不变,符号看象限”。 例4. 求值:
()、11275sincos ()271829929sincossinsin 分析:利用两角和(差)的正弦、余弦公式求解。 解:()11246464622322212624sinsin()sincoscossin 或sinsin()sincoscossin1234343432221222624
coscos()coscossinsin7530453045304532221222624 或coscos()sinsin7590151512624
()原式2718292929sincoscos()sin
sincoscossin7182971829
sin()71829
sin6
12
或原式cos()cossinsin271829929
coscossinsin929929
cos()929
cos3
12 说明: 两角和与差的三角函数公式主要起到转化角的作用。在求值的过程中,特别要注意所要求值的角与特殊角(如:30o,45 o,60 o)之间的关系,还要注意互余、互补等关系。把非特殊角转化成特殊角的和差就可以正用公式求值,如(1)。用诱导公式转化,构造和差角正弦、余弦公式形式,就可以逆用公式,如(2)。
例5. 化简:
()13sincos ()2602603120sin()sin()cos()xxx 分析:逆用两角和(差)的正弦、余弦公式进行求解。