2015届高考数学第一轮基础知识复习教案47.doc

合集下载

高考数学第一轮复习教案 专题8平面向量

高考数学第一轮复习教案 专题8平面向量

专题八 平面向量一、考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 二、考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式. 三、命题热点高考对解析几何的考查主要包括以下内容:平面向量的概念和线性运算、平面向量的数量积、平面向量的应用。

虽然该部分内容在试卷中试题数量多、占有的分值较多,但是试题以考查基础为主,试题的难度一般是中等偏下。

在高考中重点考查:平面向量的数量积、平面向量的几何意义等。

四、知识回顾(一)本章知识网络结构(二)向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 AB ;字母表示:a ;坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 运算类型几何方法坐标方法运算性质向量的 加法1.平行四边形法则2.三角形法则1212(,)a b x x y y +=++a b b a +=+()()a b c a b c ++=++AC BC AB =+向量的 减法三角形法则1212(,)a b x x y y -=--()a b a b -=+-AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ=2.λ>0时, a a λ与同向;λ<0时, a a λ与异向;λ=0时, 0a λ=.(,)a x y λλλ=()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+//a b a b λ⇔=向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,1212a b x x y y •=+a b b a •=•()()()a b a b a b λλλ•=•=•()a b c a c b c +•=•+•2222||||=a a a x y =+即||||||a b a b •≤4.重要定理、公式(1)平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)两个向量平行的充要条件a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则OP =λ+111OP +λ+112OP (线段的定比分点的向量公式)⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′), 则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为: y -k=f (x -h)(6)正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式] ⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图:图1 图2 图3 图4图1中的I 为S △ABC 的内心, S △=PrAB Oa cI A BC D EF IAB C D EF r ar ar abc a a b c ACN E F图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BC AB AC BC AB B ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=DACB图5空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB+=+= b a OB OA BA-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线. 4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . 10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a ++==(a a =⇒⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB五、典型例题例1在下列各命题中为真命题的是( )①若a =(x 1,y 1)、b =(x 2,y 2),则a ·b =x 1y 1+x 2y 2 ②若A(x 1,y 1)、B(x 2,y 2),则|AB |=221221)()(y y x x -+-③若a =(x 1,y 1)、b =(x 2,y 2),则a ·b =0⇔x 1x 2+y 1y 2=0④若a =(x 1,y 1)、b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0 A 、①② B 、②③ C 、③④ D 、①④解:根据向量数量积的坐标表示;若a =(x 1,y 1), b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,对照命题(1)的结论可知,它是一个假命题、于是对照选择支的结论、可以排除(A)与(D),而在(B)与(C)中均含有(3)、故不必对(3)进行判定,它一定是正确的、对命题(2)而言,它就是两点间距离公式,故它是真命题,这样就以排除了(C),应选择(B)、说明:对于命题(3)而言,由于a ·b =0⇔a =0或b =0或a ⊥b ⇔x 1x 2+y 1y 2=0,故它是一个真命题、而对于命题(4)来讲,a ⊥b ⇒x 1x 2+y 1y 2=0、但反过来,当x 1x 2+y 1y 2=0时,可以是x 1=y 1=0,即a =0,而我们的教科书并没有对零向量是否与其它向量垂直作出规定,因此x 1x 2+y 1y 2=0⇒/a ⊥b ),所以命题(4)是个假命题、 例2已知a =(-3,-1), b =(1,3),那么a ,b 的夹角θ=( )A 、30°B 、60°C 、120°D 、150°解:a ·b =(-3,-1)·(1,3)=-23|a |=22)1()3(-+-=2 |b |=22)3(1+=2 ∴b a 2232⨯-=23- 例3已知a =(2,1), b =(-1,3),若存在向量c 使得:a ·c =4, b ·c =-9,试求向量c 的坐标、 解:设c =(x ,y ),则由a ·c =4可得: 2x +y =4;又由b ·c =-9可得:-x +3y =-9 于是有:⎩⎨⎧=+-=+9342y x y x )2()1(由(1)+2(2)得7y =-14,∴y =-2,将它代入(1)可得:x =3∴c =(3,-2)、说明:已知两向量a ,b 可以求出它们的数量积a ·b ,但是反过来,若已知向量a 及数量积a ·b ,却不能确定b 、 例4求向量a =(1,2)在向量b =(2,-2)方向上的投影、解:设向量a 与b 的夹角θ、 有cosθ=ba b a •• =2222)2(221)2(221-++-⨯+⨯=-1010 ∴a 在b 方向上的投影=|a |cosθ=5×(-1010)=-22 例5已知△ABC 的顶点分别为A(2,1),B(3,2),C(-3,-1),BC 边上的高AD ,求AD 及点D 的坐标、解:设点D 的坐标为(x ,y ) ∵AD 是边BC 上的高, ∴AD ⊥BC ,∴AD ⊥BC 又∵C 、B 、D 三点共线, ∴BC ∥BD又AD =(x -2,y -1), BC =(-6,-3)BD =(x -3,y -2)∴⎩⎨⎧=-+--=----0)3(3)2(60)1(3)2(6x y y x解方程组,得x =59,y =57 ∴点D 的坐标为(59,57),AD 的坐标为(-51,52) 例6设向量a 、b 满足:|a |=|b |=1,且a +b =(1,0),求a ,b 、解:∵|a |=|b |=1,∴可设a =(cosα,sinα), b =(cosβ,sinβ)、 ∵a +b =(cosα+cosβ,sinα+sinβ)=(1,0),⎩⎨⎧=+=+)2(0βsin αsin )1(1βcos αcos 由(1)得:cosα=1-cosβ……(3) 由(2)得:sinα=-sinβ……(4) ∴cosα=1-cosβ=21∴sinα=±23,sinβ= 23 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=23,2123,21b a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=23,2123,21b a例7对于向量的集合A={v =(x ,y )|x 2+y 2≤1}中的任意两个向量1v 、2v 与两个非负实数α、β;求证:向量α1v +β2v 的大小不超过α+β、证明:设1v =(x 1,y 1),2v =(x 2,y 2) 根据已知条件有:x 21+y 21≤1,x 22+y 22≤1又因为|α1v +β2v |=221221)βα()βα(y y x x ++ =)(αβ2)(β)(α21212222221212y y x x y x y x +++++其中x 1x 2+y 1y 2≤2121y x +2222y x +≤1 所以|α1v +β2v |≤αβ2βα22++=|α+β|=α+β例8已知梯形ABCD 中,AB ∥CD ,∠CDA=∠DAB=90°,CD=DA=21AB 、 求证:AC ⊥BC证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系、如图,设AD=1 则A(0,0)、B(2,0)、C(1,1)、D(0,1)∴BC =(-1,1), AC =(1,1)BC ·AC =-1×1+1×1=0∴BC ⊥AC 、例9已知A(0,a ),B(0,b),(0<a <b),在x 轴的正半轴上求点C ,使∠ACB 最大,并求出最大值、解,设C(x ,0)(x >0) 则CA =(-x ,a ), CB =(-x ,b)则CA ·CB =x 2+a b 、 cos ∠ACB=CBCA CB CA ••=22222bx ax ab x +++令t=x 2+a b 故cos ∠ACB=11)(1)(1222+•-+--t b a tb a ab当t 1=ab 21即t=2a b 时,cos ∠ACB 最大值为ba ab +2、 当C 的坐标为(ab ,0)时,∠ACB 最大值为arccosba ab+2、例10如图,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明(1)PA=EF (2)PA ⊥EF证明:建立如图所示坐标系,设正方形边长为1, |OP |=λ,则A(0,1),P(22λ,22λ),E(1,22λ),F(22λ,0) ∴PA =(-22λ,1-22λ), EF =(22λ-1,- 22λ) (1)|PA |2=(-22λ)2+(1-22λ)2=λ2-2λ+1|EF |2=(22λ-1)2+(-22λ)2=λ2-2λ+1 ∴|PA |2=|EF |2,故PA=EF(2) PA ·EF =(-22λ)(22λ-1)+(1-22λ)(-22λ)=0 ∴PA ⊥EF ∴PA ⊥EF 、例11已知).1,2(),0,1(==b a① 求|3|b a+;②当k 为何实数时,k -a b 与b a3+平行, 平行时它们是同向还是反向?解:①b a3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a += 2237+=58.②k -ab= k(1,0)-(2,1)=(k -2,-1).设k -a b=λ(b a 3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λ31λ72k ⎪⎪⎩⎪⎪⎨⎧-=-=⇒31λ31k .故k= 31-时, 它们反向平行. 例12已知,1||,2||==b a a 与b 的夹角为3π,若向量b k a +2与b a +垂直, 求k.解:3πcos ||||b a b a =⋅=2×1×21=1.∵b k a+2与b a +垂直,∴(b k a+2))(b a +⋅= 0 ,∴20222=++⋅+b k b a k b a a ⇒ k = - 5.例13如果△ABC 的三边a 、b 、c 满足b 2 + c 2 = 5a 2,BE 、CF 分别为AC 边与AB 上的中线, 求证:BE ⊥CF.解:22222222211(),()221()41111[()()(4222BE BA BC CF CB CA BE CF BA BC AB AC BC CB CA BA BC AC AB AC BC BC CA C =+=+∴⋅=-⋅+⋅--⋅=-+-++---+22222222)]11(5)(5)0,88B BA AB AC BC b c a -=+-=+-=∴BE ⊥CF , 即 BE ⊥CF .例14是否存在4个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?解:如图所示,在正△ABC 中,O 为其内心,P 为圆周上一点, 满足PA ,PB ,PC ,PO 两两不共线,有 (PA +PB )·(PC +PO )=(PO +OA +PO +OB )·(PO +OC +PO ) =(2PO +OA +OB )·(2PO +OC ) =(2PO -OC )·(2PO +OC ) =4PO 2-OC 2 =4PO 2-OC 2=0有(PA +PB )与(PC +PO )垂直、同理证其他情况、从而PA ,PB ,PC ,PO 满足题意、故存在这样4个平面向量、 利用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题例15已知向量321,,OP OP OP 满足条件0321=++OP OP OP ,1321===OP OP OP ,求证:321P P P ∆是正三角形解:令O 为坐标原点,可设()()()333222111sin ,cos ,sin ,cos ,sin ,cos θθθθθθP P P 由321OP OP OP -=+,即()()()332211θsin θcos θsin ,θcos θsin ,θcos --=+⎩⎨⎧-=+-=+321321θsin θsin θsin θcos θcos θcos 两式平方和为()11θθcos 2121=+-+,()21θθcos 21-=-, 由此可知21θθ-的最小正角为0120,即1OP 与2OP 的夹角为0120, 同理可得1OP 与3OP 的夹角为0120,2OP 与3OP 的夹角为0120, 这说明321,,P P P 三点均匀分部在一个单位圆上, 所以321P P P ∆为等腰三角形.例16求等腰直角三角形中两直角边上的中线所成的钝角的度数①②解:如图,分别以等腰直角三角形的两直角边为x 轴、y 轴建立直角坐标系,设()()a B a A 2,0,0,2,则()()a C a D ,0,0,, 从而可求:()()a a BD a a AC 2,,,2-=-=,()()aa a a a a BDAC BD AC 552,,2θcos ⋅-⋅-=⋅==545422-=-a a . ⎪⎭⎫⎝⎛-=∴54arccos θ.利用向量的坐标运算,解决有关线段的长度问题例17已知ABC ∆,AD 为中线,求证()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图2直角坐标系, 设()()0,,,c C b a A ,⎪⎭⎫⎝⎛0,2c D ,()22222402b a ac c b a c AD ++-=-+⎪⎭⎫ ⎝⎛-=, 221⎪⎭⎝-⎪⎭⎫+BC AC AB . =()442122222222c ac b a c b a c b a +-+=⎥⎦⎤⎢⎣⎡-+-++, =AD 221⎪⎭ ⎝-⎪⎭⎫+BC AC AB ,()2222221⎪⎭⎫⎝⎛-+=BC AC AB AD .利用向量的坐标运算,用已知向量表示未知向量例18已知点O 是,,内的一点,090BOC 150AOB =∠=∠∆ABC,,,OA c OC b OB a ===设,312===c b a 试用.,c b a 表示和解:以O 为原点,OC ,OB 所在的直线为x 轴和y 轴建立如图3所示的坐标系.由OA=2,0120=∠AOx ,所以()(),31-A ,120sin 2,120cos 200,即A ,易求()()3,0C 1-0B ,,,设 ()()()12121212OA ,-130-13,0-3-13.13--3OB OC λλλλλλλλ=+=+⎧==⎧⎪⎪⎨⎨==⎪⎪⎩⎩即,,,,133a b c =--.例19如图,001,OB 120OC OA 30,OC 5OA OB OA ===与的夹角为,与的夹角为, 用OA OB ,表示.OC 解:以O 为坐标原点,以OA 所在的直线为x 轴,建立如图所示的直角坐标系,则()0,1A ,(),,即,所以由⎪⎪⎭⎫⎝⎛=∠25235C ,30sin 5,5cos30C 30COA 000 ⎪⎪⎭⎫⎝⎛-23,21B 同理可求 ()121253513OC ,10-,2222OA OB λλλλ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即,, .335λ3310λλ2325λ21-λ23521221⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==, OB OA OC 3353310+=∴. 利用向量的数量积解决两直线垂直问题例20如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD . (1)求证:C 1C ⊥BD . (2)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.(1)证明:设CD =a , CD =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC CD AA CA D C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得 当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD=1时,A 1C ⊥平面C 1BD . 例21如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .解:(1)如图,以C 为原点建立空间直角坐标系O -xyz . 依题意得:B (0,1,0),N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2)11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅⋅>=<∴CB BC CB BA CB BA(3)证明:依题意得:C 1(0,0,2),M (2,21,21))2,1,1(),0,21,21(11--==B A M C∴,,00)2(21121)1(1111M C B A M C B A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .利用向量的数量积解决有关距离的问题,距离问题包括点到点的距离,点的线的距离,点到面的距离,线到线的距离,线到面的距离,面到面的距离. 例22求平面内两点),(),,(2211y x B y x A 间的距离公式解:设点),(),,(2211y x B y x A ,),(1212y y x x AB --=∴212212)()(||y y x x AB -+-=∴ ,而||||AB AB =∴点A 与点B 之间的距离为:212212)()(||y y x x AB -+-=利用向量的数量积解决线与线的夹角及面与面的夹角问题. 例23证明:βαβαβαsin sin cos cos )cos(+=-证明:在单位圆O 上任取两点B A ,,以Ox 为始边,以OB OA ,为终边的角分别为αβ,,则A 点坐标为),sin ,(cos ββB 点坐标为)sin ,(cos αα;则向量=OA ),sin ,(cos ββ=OB )sin ,(cos αα,它们的夹角为βα-,,1||||==OB OA βαβαsin sin cos cos +=⋅OB OA ,由向量夹角公式得:==-||||)βαcos(OB OA OB OA βαβαsin sin cos cos +,从而得证.注:用同样的方法可证明=+)cos(βαβαβαsin sin cos cos - 利用向量的数量积解决有关不等式、最值问题.例24证明柯西不等式2212122222121)()()(y y x x y x y x +≥+⋅+证明:令),(),,(2211y x b y x a ==(1) 当0 =a 或0 =b 时,02121=+=⋅y y x x b a,结论显然成立; (2) 当0 ≠a 且0 ≠b 时,令θ为b a ,的夹角,则],0[πθ∈θcos ||||2121b a y y x x b a=+=⋅. 又 1|cos |≤θ||||||b a b a≤⋅∴(当且仅当b a //时等号成立)222221212121||y x y x y y x x +⋅+≤+∴∴2212122222121)()()(y y x x y x y x +≥+⋅+.(当且仅当2211y x y x =时等号成立) 平面向量的坐标运算1、已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn=________.解析 m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ), a -2b =(2,3)-(-2,4)=(4,-1).由于m a +n b 与a -2b 共线,则有2m -n 4=3m +2n-1,∴n -2m =12m +8n ,∴m n =-12.答案 -12六、近几年高考试题分析 (2009·湖南文)如图,两块斜边长相等的直角三角板拼在一起, 若,AC y AB x AD +=则x =___________________________, y =__________.解析 ,AC y AB x AD += 又,BD AB AD +=.)1(,AC y AB x BD AC y AB x BD AB +-=∴+=+∴又,AB AC ⊥.)1(2AB x AB BD -=⋅∴设,1||=AB 则由题意知.2||||==BC DE又∵∠BED =60°,,26||=∴BD 显然BD 与AB 的夹角为45°. ∴由2)1(AB x AB BD -=⋅得62×1×cos 45°=(x -1)×12. ∴x =32+1.同理,在AC y AB x BD +-=)1(两边与数量积可得 y =32. 答案 1+32 32(2011湖南文科)14、在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=。

高考数学(文通用)一轮复习课件:第三章第5讲三角函数的图象与性质

高考数学(文通用)一轮复习课件:第三章第5讲三角函数的图象与性质

第三章三角函数、解三角形第5讲三角函数的图象与性质教材回顾▼夯实基础课本温故追根求源知识梳理Aj=sinxJ =COSXj=tanxJT2k盘 ----2JJI2k Jt H—,L 23Ji"2— H——2」仇wz)为减[2 吃7T, 2航+兀]仗WZ)为减;\2kn—n92kn\(k^Z)为(一-于,仇GZ)为增2.学会求三角函数值域(最值)的两种方法(1)将所给函数化为j=Asin(ft>x+ (p)的形式,通过分析亦+卩的范围,结合图象写出函数的值域;(2)换元法:把sin x(cos劝看作一个整体,化为二次函数来解决.双基自测1. (2015•高考四川卷)下列函数中,最小正周期为兀的奇函数是(A.j=sin(2x+—B.j=cos^2r+~C.y= sin 2x+ cos 2xD.y= sin x+ cos xC 项,y=sin 2x+cos 2x=\/2sin^2x+—为非奇非偶函数,不符合题意;ink+于)最小正周期为2兀, 为非奇非偶函数,不符合题意.( JIj=sin|2x+- 为偶函数,不符合题意;解析:A 项,= cos 2x,最小正周期为n ,且y= cos^2r+_j= —sin 2x,最小正周期为 函数,符合题意;B 项, 1=/兀,且为奇,最小正周期为皿,D 项,j=sin x+ cos兀B. x=——33 x=-兀4解析:由题意得 f(x)= 2cos 2^x+~J= 2sin 2x= 1— cos 2x,函 数图象的对称轴方程为尸竺kEZ,故选D.2A • x~—4 C. 71故函数/(对=$中一了丿在区间[o,于]±的最小值为一申.3・函数/(x) = sin上的最小值为A. -1B. -申C 誓 D. 0解析:由已知xG 0, 兀 8二討得加-2兀 -eJI2在区间o,兀4所以14.(必修4 P40 练习1X2)改编)函数/(x) = 4-2cos -x, xE32,取得最小值时,X的取值集合为R的最小值是—{x\x=6kn9 kEL}(JT JI \5.(必修4 P44例6改编)函数j=tan|^-x—yJ的最小正周期是—,单调增区间是G+"扌+2”(疋牛典例剖析▼考点突破*名师导悟以例说法考点一三角函数的定义域和值域^§例1 (1)函数y= lg(2sin x—1)+*\/1 —2cosx的定义域是" 兀5兀、2k Ji +—, 2k 乳—]9 ZL 3 6 丿______ .3(2)函数j=cos 2x+ 2sin x的最大值为—132'[解析]⑴要使函数丿=lg(2sinx —1)+^/1—2cos 兀有意义,sin ,■ “Ji 5 n解得 2k Ji +_^x<2^ Ji +飞-,kEL.即函数的定义域为卜—+专,2—+寻)kE 乙3i 3所以当/=扌时,函数取得最大值字2sinx —1>0, 即1—2cosx^0, cosxWq.+WWl),(2)y=cos 2x+2sin x= —2sin 2x+2sin x+1,设 f=sin x(—12Q互动探光本例(2)变为函数y = cos 2x+ 4sin5的最大值为 _________解析:j=cos 2x+4sin x= — 2sin2x+ 4sin 兀+1,设t=sin中冬怎*),则原函数可以化为y=~li +4(+1= —2(1—1『+3,所以当1=扌时,函数取得最大值丰.⑴三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sinx和cosx的值域直接求.②把所给的三角函数式变换成y=Asin(cox+^的形式求值域.③把sin兀或cos兀看作一个整体,转换成二次函数求值域・④利用sin兀土cos兀和sin xcos x的关系转换成二次函数求值域.壘踪i噬1・(1)函数y= /2+logjx + \/tanx的定义域为r i V 2jxIOVxV亍或Ji WxW4 »____________________________ ■7(2)函数y= (4— 3sin x)(4— 3cos兀)的最小值为xIOVxV 亍或 n4j.解析:⑴要使函数有意义, 厂2+10即亠0,2JIx^kn T —, I 2—o -------- o ——0 ?利用数轴可得函数的定义域是x>0, tan x^O, k 兀 WxVkii T 扌WZ)・-<—e---------(2)j = 16— 12(sin x+ cos x)+ 9sin xcos x,令Z=sinx+cosx,贝!1[—\[29 ^2],且sinxcosx=-------------------2『一1 ]所以y=16- 12Z+9X --------- =一(9,一24/+23)・2 2• 4 7故当时,Jmin = --考点二三角函数的奇偶性、周期性及对称性典例2 (1)(2014-高考课标全国卷I )在函数®j= cos 12x1,®y = Icos xl, (3)j=cos^x, (4)j= tan(2x—^中,最小正周期为n的所有函数为(C )A.②④C.①②③B.①③④D.①③(2)(2016-河北省五校联盟质量监测)下列函数中最小正周期为兀且图象关于直线兀=£■对称的函数是(B)[解析]⑴①yKOsMFOslx, 1- •②由图象知,函数的周期r= 31・③*兀・兀④丁=亍综上可知,最小正周期为询所有函数为①②③.⑵由函数的最小正周期为兀,可排除C •由函数图象关于直JT线*=〒对称知,该直线过函数图象的最高点或最低点,对选B.(i )三角函数的奇偶性的判断技巧于 A,因为 sin^2Xy+确・对于D, sinl2X ---------33 f) ( Tl JI 、 对于 B, sin|2X-——J=_:. =sin Ji =0,所以选项A 不正 =si 可羊所以D 不正确, 兀=sinT =h所以选项B 正确,故首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象进行判断.(2)求三角函数周期的方法①利用周期函数的定义.②利用公式:y=Asin(cox+(p)和y =Acos(cyx+°)的最小正周2兀JT期为面,y=tan(cox+(/)).③利用图象.(3)三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.[注意]判断函数的奇偶性时,必须先分析函数定义域是否关于原点对称.MISS] 2.(1)(2016-西安地区八校联考)若函数j = cos(ex+〒j(cyEN*)图象的一个对称中心是匕,0J,则co 的最小值为(A. 1B. 2C. 4D.(2)(2016•揭阳模拟)当心了时,函数/(gin(十)取得最小值,则函数)A.是奇函数且图象关于点仔,0)对称B.是偶函数且图象关于点(兀,0)对称C.是奇函数且图象关于直线兀=于对称D.是偶函数且图象关于直线兀=兀对称,■一JI 6; JI JI解析:(1 --------- 1=kJi ---------- (k £ Z)=>(o = 6k+ 2(kE:Z)=>(o6 6 2min =2Jl⑵因为当x=丁时,函数几兀)取得最小值,4所以sin&+J = —1,所以0=2反兀一普"(kEZ).所以/(x)=sin(+2“ 一冷9=sin|x J(k W Z).所以y=^~~x.=sin(—x)= —sin x.e 兀、JI 所以尸x)是奇函数,且图象关于直线兀=亍对称•考点三三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度适中,多为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间;⑵已知三角函数的单调区间求参数;(3)利用三角函数的单调性求值域(或最值);(4)利用三角函数的单调性比较大小.⑴求心)的最小正周期和最大值;⑵讨论心)在[十,牛] 上的单调性.• sin (2015•高考重庆卷)已知函数几兀)=os 2x.[解](l)Ax)=sin 仔一Jsin x —A /§C =cos xsinx — 2 (H~cos 2x)1・,© o 並=-sm 2x — cos 2x —因此冷)的最小正周期为兀,最大值为2苫.os 2x(2)当兀丘[于,牛]时'0W2x —于W 兀,从而当弓^加一7~Wn,即弓时,/(兀)单调递减. Z Q 丄/ J调递减•J fl _ 7 y \ TL1 lz\ A A J KX& M n I y-Z z 产〒 r^Q^i 0« h P <Jlu tz 二\ J nf r/7 J? ryj n r^z^C 77 f r三角函数单调性问题解题策略.兀 兀 当0»亍亏, JI 5 JT . 即訐Tr 时' 的单调递增, 综上可知,几r )在单调递增; 刊上单(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律"同增异减”:②求形如j=Asin(ft)x+^)或y=Acos(ov +卩)(其中少>0)的单调区间时,要视“ov+卩”为一个整体, 通过解不等式求解.但如果evO,那么一定先借助诱导公式将少化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.⑶利用三角函数的单调性求值域(或最值).形如j=Asin(ft>x +°)+〃或可化为y=4sin@v+°)+〃的三角函数的值域(或最值)问题常利用三角函数的单调性解决.通关练习3.(1)已知函数/(x)=2sinC+亍) ,则a9 b9 c的大小关系是(BB. c<a<bD. b<c<aA. a<c<bC. b<a<c减,则 少的取值范围是(A54-(2)已知 ft»O,函数 f(x)=sirA. 12-D. (0, 2]10 —n 21兀因为j=sinx 在0,—上递增,——= 2sin 解:⑴选Ra兀= 2sin所以c<a<b.6>>0,JlJTJIH < 3X ---- < 3 兀 H - ,44 4G JI 3131〒+亡'313 JI3 JI H —W —4 2又 j=sinx所以6) JI3 31"T解得詳。

【走向高考】2015届高考数学一轮总复习 6-2等差数列课后强化作业 新人教B版

【走向高考】2015届高考数学一轮总复习 6-2等差数列课后强化作业 新人教B版

【走向高考】2015届高考数学一轮总复习 6-2等差数列课后强化作业 新人教B 版基础巩固强化一、选择题1.(文)(2013·某某一中期末)等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2 D .3[答案]C[解析]由条件知⎩⎪⎨⎪⎧3a 2=6,a 1=4,∴d =-2.(理)(2013·某某二模)已知等差数列1,a ,b ,且3,a +2,b +5成等比数列,则该等差数列的公差为( )A .3或-3B .3或-1C .3D .-3 [答案]C[解析]2a =1+b ,(a +2)2=3(b +5),a =4或a =-2. ∵等比数列中的项不能为0, ∴a =4,b =7,∴等差数列的公差为3.2.(2013·某某新华中学月考)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 [答案]C[解析]因为a 4是a 3与a 7的等比中项,所以a 3a 7=a 24,又S 8=8(a 1+a 8)2=32,所以a 1+a 8=8,解得a 1=-3,d =2,所以S 10=10a 1+10×92d =-3×10+90=60,选C.3.(文)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .9 [答案]C[解析]设等差数列{a n }的公差为d ,依题意得a 3+a 7=2a 5=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a n =-11+(n -1)×2=2n -13.令a n >0得n >6.5,即在数列{a n }中,前6项均为负数,自第7项起以后各项均为正数,因此当n =6时,S n 取最小值,选C.(理)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时n 的值是( )A .5B .6C .7D .8 [答案]B[解析]⎩⎪⎨⎪⎧ a 5+a 7=4a 6+a 8=-2⇒⎩⎪⎨⎪⎧ 2a 1+10d =42a 1+12d =-2⇒⎩⎪⎨⎪⎧a 1=17d =-3,∴a n =-3n +20.法一:由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.解得173≤n ≤203,又n ∈N *,∴n =6.故选B.法二:S n =17n +n (n -1)2×(-3)=-32(n -376)2+37224,∵n ∈N *,∴当n =6时,S n 取得最大值.故选B.4.(2013·某某一中月考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( )A .7B .8 C.152 D.172[答案]D[解析]由题意知⎩⎪⎨⎪⎧a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n . ∴S n +64a n =n 2+n +642n =n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n,∴n =8,故选D.5.(文)设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S 20等于( )A.19B.310C.18D.13 [答案]B[解析]设其公差为d ,∵S 5S 10=5a 1+12×5×4d 10a 1+12×10×9d=a 1+2d 2a 1+9d =13, ∴a 1=3d .∴S 10S 20=10a 1+12×10×9d20a 1+12×20×19d=310. (理)(2013·某某省名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81=( )A .641B .640C .639D .638 [答案]B [解析]由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 81=S 81-S 80=1612-1592=640,故选B.6.(文)在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭⎫34x [答案]D[解析]对于函数f (x )=⎝⎛⎭⎫34x上的点列(x n ,y n ),有y n =⎝⎛⎭⎫34x n ,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n=⎝⎛⎭⎫34x n +1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34x n +1-x n =⎝⎛⎭⎫34d ,这是一个与n 无关的常数,故{y n }是等比数列.故选D.[点评] 根据指数与对数运算的性质知真数成等比(各项为正),其对数成等差,指数成等差时,幂成等比.(理)已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 2014=( )A.20134029B.20144029 C.40174029D.40184029 [答案]B[解析]依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧ x +y -4=03x -y =0,解得⎩⎪⎨⎪⎧x =1y =3, ∴直线(3m +1)x +(1-m )y -4=0过定点(1,3), ∴a 1=1,a 2=3,公差d =2,a n =2n -1, ∴b n =1a n ·a n +1=12(12n -1-12n +1),∴T 2014=12×[(11-13)+(13-15)+…+(14027-14029)]=12×(1-14029)=20144029.故选B.二、填空题7.已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b2的值为________.[答案]20[解析]依题意得①⎩⎪⎨⎪⎧ a +c =2b ,b 2=ac .或②⎩⎪⎨⎪⎧ a +c =2b ,a 2=bc .或③⎩⎪⎨⎪⎧a +c =2b ,c 2=ab .由①得a =b =c ,这与“a ,b ,c 是递减的等差数列”矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,因此a =-2b ,c =4b ,a 2+c 2b 2=20;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,因此有c=-2b ,a =4b ,a 2+c 2b2=20.8.(文)已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________.[答案]110[解析]由题意,设公差为d ,则⎩⎨⎧a 1+2d =16,20a 1+20×(20-1)2d =20,解得⎩⎪⎨⎪⎧a 1=20,d =-2.∴S 10=10a 1+10(10-1)2d =110.(理)设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=105,则a 11+a 12+a 13=________.[答案]75[解析]∵⎩⎪⎨⎪⎧a 1+a 2+a 3=15,a 1a 2a 3=105,∴⎩⎪⎨⎪⎧ a 2=5,a 1a 3=21,∴⎩⎪⎨⎪⎧a 1+d =5,a 1(a 1+2d )=21, ∵d >0,∴⎩⎪⎨⎪⎧d =2,a 1=3,∴a 11+a 12+a 13=3a 1+33d =75.9.(文)(2013·冀州中学检测)已知S n 是数列{a n }的前n 项和,向量a =(a n -1,-2),b =(4,S n )满足a ⊥b ,则S 5S 3=________.[答案]317[解析]∵a =(a n -1,-2),b =(4,S n )满足a ⊥b , ∴a ·b =0,∴4a n -4-2S n =0,即S n =2a n -2, ∴S n -1=2a n -1-2(n ≥2). 两式相减得a n =2a n -1,∴a n a n -1=2.由S n =2a n -2(n ∈N *),得a 1=2.∴{a n }是以2为首项,2为公比的等比数列,∴a n =2n .∴S 5S 3=2(1-25)1-22(1-23)1-2=317. (理)(2013·某某某某中学模拟)设m >3,对于项数为m 的有穷数列{a n },令b k 为a 1,a 2,…,a k (k ≤m )中最大值,称数列{b n }为{a n }的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数1,2,…,m (m >3)的所有排列,将每种排列都视为一个有穷数列{}.若m =4,则创新数列为3,4,4,4的所有数列{a n }为________.[答案]3,4,2,1或3,4,1,2[解析]由数列{a n }的创新数列定义知,a 1=3,a 2=4,由于c 3=4,∴a 3≤4,又{a n }是1,2,3,4的一个排列,∴a 3≠3,4,∴a 3=1或2,由于c 4=4, ∴当a 3=1时,a 4=2;当a 3=2时,a 4=1, ∴数列{a n }为3,4,1,2或3,4,2,1. 三、解答题10.(文)已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n ·a n +1,求数列{b n }的前n 项和T n .[解析](1)由已知点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上,可得S n =3n 2-2n . 当n ≥2时,a n =S n -S n -1=3n 2-2n -3(n -1)2+2(n -1)=6n -5, 当n =1时,a 1=S 1=1也适合上式,∴a n =6n -5. (2)b n =3a n a n +1=3(6n -5)(6n +1)=12(16n -5-16n +1), ∴T n =12(11-17+17-113+…+16n -5-16n +1)=12(1-16n +1)=12-112n +2. (理)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.[解析](1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8,解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.[点评] 在等差数列和等比数列中,已知具体项或某几项的和等条件时,常选用“基本量法”来求解,即把已知条件均用数列的首项、公差或首项、公比来表示;概率中的古典概型关键是能正确列举出所有的基本事件和满足条件的基本事件.能力拓展提升一、选择题11.(文)已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( )A .-2或-3B .2或3C .-2D .3 [答案]A[解析]由2a 5=a 2+a 8=12,得a 5=6, 由S 15=m 得a 8=m15.又因为a 8是方程x 2-12x +m =0的根, 解之得m =0,或m =-45, 则a 8=0,或a 8=-3.由3d =a 8-a 5得d =-2,或d =-3.(理)(2013·某某六中月考)已知a >0,b >0,若2是4a 与2b 的等比中项,则2a +1b的最小值为( )A .2 2B .8C .9D .10 [答案]C[解析]由条件知:4a ·2b =(2)2, ∴22a +b =21,∴2a +b =1, ∴2a +1b =(2a +1b )(2a +b )=5+2b a +2a b ≥5+22b a ·2ab=9, 等号在⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时成立.12.(2013·某某市调研)已知等比数列{a n }公比为q ,其前n 项和为S n ,若S 3,S 9,S 6成等差数列,则q 3等于( )A .-12B .1C .-12或1D .-1或12[答案]A[解析]由条件知2S 9=S 3+S 6,∴2a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,∴2q 6=1+q 3,∴q 3=1或-12,∵q ≠1,∴q 3=-12.13.(文)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3L ,下面3节的容积共4L ,则第5节的容积为( )A .1L B.6766L C.4744L D.3733L[答案]B[解析]设该数列为{a n }公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解之得⎩⎨⎧a 1=1322,d =766,所以第5节的容积为a 5=a 1+4d =1322+766×4=6766.(理)已知{a n }是等差数列,S n 为其前n 项和,若S 29=S 4000,O 为坐标原点,点P (1,a n ),点Q (2015,a 2015),则OP →·OQ →等于( )A .2015B .-2015C .0D .1 [答案]A[解析]S 29=S 4000⇒a 30+a 31+…+a 4000=0⇒a 2015=0,又P (1,a n ),Q (2015,a 2015),则OP →=(1,a n ),OQ →=(2015,a 2015), ∴OP →·OQ →=(1,a n )·(2015,a 2015)=2015+a n a 2015=2015,故选A. 二、填空题14.数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.[答案]4[解析]由条件知,S k +S k ′=k (k -1)2d +k (k -1)2d ′-4k =k (k -1)(d +d ′)2-4k =0,∵k 是正整数,∴(k -1)(d +d ′)=8, ∴a k +b k =(k -1)d -4+(k -1)d ′ =(k -1)(d +d ′)-4=4. 三、解答题15.(文)已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .[解析](1)由2S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2①①式中n 用n -1代替得4S n -1=(a n -1+1)2 (n ≥2)②①-②,得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2, [(a n -1)+(a n -1+1)]·[(a n -1)-(a n -1+1)]=0, ∵{a n }是正数数列,∴a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1.(2)b n =1a n ·a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 裂项相消得B n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=n 2n +1.(理)(2013·某某质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)在数列{b n }中,b 1=5,b n +1=b n +a n ,求数列{b n }的通项公式. [解析](1)当n =1时,S 1=a 1=32a 1-1,所以a 1=2.∵S n =32a n -1,①∴当n ≥2时,S n -1=32a n -1-1,②①-②,得a n =(32a n -1)-(32a n -1-1),所以a n =3a n -1,又a 1≠0,故a n -1≠0, 所以a na n -1=3,故数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1.(2)由(1)知b n +1=b n +2·3n -1. 当n ≥2时,b n =b n -1+2·3n -2, …b 3=b 2+2·31, b 2=b 1+2·30,将以上n -1个式子相加并整理,得b n =b 1+2×(3n -2+…+31+30)=5+2×1-3n -11-3=3n -1+4.当n =1时,31-1+4=5=b 1,所以b n =3n -1+4(n ∈N *).16.(文)(2013·某某适应性测试)已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1(n ∈N *). (1)设b n =1a n,求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设=b n ·2n ,求数列{}的前n 项和S n .[解析](1)b 1=1a 1=1,a n +1=a n 4a n +1,1a n +1=4+1a n ,1a n +1-1a n =4, ∴b n +1-b n =4.数列{b n }是以1为首项,4为公差的等差数列.1a n=b n =1+4(n -1)=4n -3, ∴数列{a n }的通项公式为a n =14n -3(n ∈N *). (2)S n =21+5×22+9×23+…+(4n -3)·2n ,①2S n =22+5×23+9×24+…+(4n -3)·2n +1,②②-①并化简得S n =(4n -7)·2n +1+14.(理)(2013·某某调研)各项都为正数的数列{a n },满足a 1=1,a 2n +1-a 2n=2. (1)求数列{a n }的通项公式;(2)求数列{a 2n 2n }的前n 项和S n . [解析](1)因为a 2n +1-a 2n =2,a 21=1,所以数列{a 2n }是首项为1,公差为2的等差数列.所以a 2n =1+(n -1)×2=2n -1,因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n 2n =2n -12n , 于是S n =12+322+523+…+2n -32n -1+2n -12n ,① 12S n =122+323+524+…+2n -32n +2n -12n +1,②①-②得,12S n =12+222+223+224+…+22n -2n -12n +1 =12+2(122+123+124+…+12n )-2n -12n +1 =12+2×14×(1-12n -1)1-12-2n -12n +1 =32-2n +32n +1, 所以S n =3-2n +32n .考纲要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.补充材料1.函数思想等差数列的通项是n 的一次函数,前n 项和是n 的二次函数,故有关等差数列的前n 项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.2.等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x -d ,x ,x +d ,…,此时公差为d ;(2)对于连续偶数项的等差数列,通常可设为…,a -3d ,a -d ,a +d ,a +3d ,…,此时公差为2d .3.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则(1)若p +q 为偶数,则当n =p +q 2时,S n 最大; (2)若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大. 备选习题1.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,S n 是数列{a n }的前n 项和,则( )A .S 5>S 6B .S 5<S 6C .S 6=0D .S 5=S 6[答案]D[解析]∵d <0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=0,∴a 6=a 3+a 92=0,∴S 5=S 6. 2.(2013·某某模拟)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11[答案]B[解析]因为{b n }是等差数列,且b 3=-2,b 10=12,故公差d =12-(-2)10-3=2.于是b 1=-6, 且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.[解法探究] 求得b n =2n -8后可用逐差相加法求a 8.3.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i <4?B .i <5?C .i ≥5?D .i <6?[答案]D[解析]由题意知S =11×2+12×3+…+1i (i +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1i -1i +1=i i +1,故要输出S =56,i =5时再循环一次,故条件为i ≤5或i <6,故选D. 4.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且b n -1+b n +1=2b n (n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若=b n a n,求数列{}的前n 项和T n . [解析](1)由题意S n =2-a n ,①当n ≥2时,S n -1=2-a n -1,②①-②得a n =S n -S n -1=a n -1-a n ,即a n =12a n -1,又a 1=S 1=2-a 1, ∴a 1=1,故数列{a n }是以1为首项,12为公比的等比数列,所以a n =12n -1; 由b n -1+b n +1=2b n (n ≥2)知,数列{b n }是等差数列,设其公差为d ,则b 5=12(b 3+b 7)=9, 所以d =b 5-b 14=2,b n =b 1+(n -1)d =2n -1. 综上,数列{a n }和{b n }的通项公式为a n =12n -1,b n =2n -1. (2)=b n a n=(2n -1)·2n -1, T n =c 1+c 2+c 3+…+=1×20+3×21+5×22+…+(2n -1)×2n -1,③2T n =1×21+3×22+…+(2n -3)×2n -1+(2n -1)×2n ,④ ③-④得:-T n =1+2(21+22+23+…+2n -1)-(2n -1)·2n=1+2×2-2n1-2-(2n -1)·2n =-(2n -3)·2n -3.∴T n =(2n -3)·2n +3.5.已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S n n +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.[分析] 第(1)问是求等差数列的通项公式,需要知道首项a 1和公差d 的值,由条件a 2·a 3=45,a 1+a 5=18建立方程组不难求得;第(2)问是构造一个等差数列{b n },可考虑利用等差数列的定义,研究使b n +1-b n (n ∈N *)为一个常数时需要满足的条件.[解析](1)由题设知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧ a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧ (a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4. 所以a n =4n -3(n ∈N *).(2)由b n =S n n +c =n (1+4n -3)2n +c =2n (n -12)n +c, 因为c ≠0,所以可令c =-12,得到b n =2n . 因为b n +1-b n =2(n +1)-2n =2(n ∈N *),所以数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.。

高考数学一轮复习第八章解析几何第47讲两条直线的位置关系实战演练理

高考数学一轮复习第八章解析几何第47讲两条直线的位置关系实战演练理

2018年高考数学一轮复习 第八章 解析几何 第47讲 两条直线的位置关系实战演练 理1.(2016·四川卷)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( A )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)解析:设l 1是y =-ln x (0<x <1)的切线,切点P 1(x 1,y 1),l 2是y =ln x (x >1)的切线,切点P 2(x 2,y 2),l 1:y -y 1=-1x 1(x -x 2), ①l 2:y -y 2=1x 2(x -x 2), ②①-②,得x P =y 1-y 2+21x 1+1x 2,易知A (0,y 1+1),B (0,y 2-1), ∵l 1⊥l 2,∴1x 1·1x 2=-1,∴x 1x 2=1,∴S△PAB=12|AB |·|x P |=12|y 1-y 2+2|·|y 1-y 2+2|⎪⎪⎪⎪⎪⎪1x 1+1x 2=12·y 1-y 2+2x 1+x 2x 1x 2=12·-ln x 1-ln x 2+2x 1+x 2=12·[-x 1x 2+2]2x 1+x 2=12·4x 1+x 2=2x 1+x 2,又∵0<x 1<1,x 2>1,x 1x 2=1. ∴x 1+x 2>2x 1x 2=2,∴0<S △PAB <1.故选A .2.(2012·浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 ( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:当l 1∥l 2时,得-a 2=-1a +1,解得a =1或a =-2,代入检验符合,当a =1时,易知l 1∥l 2, ∴“a =1”是“l 1∥l 2”的充分不必要条件,故选A .3.(2014·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是-3.解析:∵y =ax 2+b x ,∴y ′=2ax -b x2,由题意可得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2(经检验满足题意).∴a +b =-3.4.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则||PA ·|| PB 的最大值是5.解析:易知A (0,0),B (1,3),且PA ⊥PB ,∴|PA |2+|PB |2=|AB |2=10,∴|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |时取“=”).。

2019版高考数学一轮复习第八章解析几何第47讲两条直线的位置关系学案

2019版高考数学一轮复习第八章解析几何第47讲两条直线的位置关系学案

第47讲 两条直线的位置关系1.两条直线平行与垂直的判定(1)两条直线平行;__2k =1k __⇔2l ∥1l 则有,2k ,1k 其斜率分别为,2l ,1l 对于两条不重合的直线①__.平行__为的关系2l 与1l ,的斜率都不存在时2l ,1l 当不重合的两条直线②(2)两条直线垂直;__1-=2k 1k __⇔2l ⊥1l 则,2k ,1k 设为,的斜率存在2l ,1l 如果两条直线①__.垂直__为的关系2l 与1l 则,0为一条直线的斜率另,中有一条直线的斜率不存在2l ,1l 如果② 2.两条直线的交点3.三种距离4(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: ①垂直:Bx -Ay +m =0; ②平行:Ax +By +n =0. (2)与对称问题相关的两个结论:①点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0). ②设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′). 则有错误!可求出x ′,y ′.1.思维辨析(在括号内打“√”或“×”).(1)若两直线的方程组成的方程组有解,则两直线相交.(×)(2)点P (x 0,y 0)到直线y =kx +b 的距离为||kx0+b 1+k2.(×)(3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(4)两平行线间的距离是一条直线上任一点到另一条直线的距离,也可以看作是两条直线上各取一点的最短距离.( √ )(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.( √ )解析 (1)错误.当方程组有唯一解时两条直线相交,若方程组有无穷多个解,则两条直线重合.(2)错误.应用点到直线的距离公式时必须将直线方程化为一般式,即点P 到直线的距离为|kx0-y0+b|1+k2.(3)正确.因为最小值就是由该点向直线所作的垂线段的长,即点到直线的距离.(4)正确.两平行线间的距离是夹在两平行线间的公垂线段的长,即两条直线上各取一点的最短距离. (5)正确.根据对称性可知直线AB 与直线l 垂直且直线l 平分线段AB ,所以直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.2.已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ),若l 1⊥l 2,则实数m =(B )A .6B .-6C .5D .-5解析 由已知得k 1=1,k 2=m +15.∵l 1⊥l 2,∴k 1k 2=-1,∴1×m +15=-1,即m =-6.3.点(0,-1)到直线x +2y =3的距离为(B )A .55B .5C .5D .15解析 d =错误!=错误!.4.点(a ,b )关于直线x +y +1=0的对称点是(B )A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则错误!解得x ′=-b -1,y ′=-a -1.5.直线l 1:x -y =0与直线l 2:2x -3y +1=0的交点在直线mx +3y +5=0上,则m 的值为(D )A .3B .5C .-5D .-8解析 由错误!得l 1与l 2的交点坐标为(1,1),所以m +3+5=0,m =-8.一 两条直线的平行与垂直问题两条直线平行与垂直问题中的注意点(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【例1】 已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解析 (1)由已知可得l 2的斜率存在,且k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=ab,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即a b=1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,②联立①②,解得错误!或错误! ∴a =2,b =-2或a =23,b =2.二 两条直线的交点问题常用的直线系方程(1)与直线Ax +By +C =0平行的直线系是Ax +By +m =0(m ≠C ).(2)与直线Ax +By +C =0垂直的直线系是Bx -Ay +m =0.(3)过直线l 1:A 1x +B 1y +C 1 =0与l 2:A 2x +B 2y +C 2=0的交点的直线系是A 1x +B 1y +C 1+m (A 2x +B 2y +C 2)=0,但不包括l 2.【例2】 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解析 先解方程组错误!得l 1,l 2的交点坐标为(-1,2),由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.三 距离公式的应用利用距离公式应注意的问题(1)点P (x 0,y 0)到直线x =a 的距离d =||x0-a ,到直线y =b 的距离d =||y0-b .(2)应用两平行线间的距离公式的前提是把两直线方程中x ,y 的系数化为相等.【例3】 已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?解析 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0.由已知得|-2k -1|k2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,所以k l =-1kOP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.四 对称问题及其应用两种对称问题的处理方法(1)直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.(2)关于轴对称问题的处理方法:①点关于直线的对称,若两点P 1 (x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,而且连接P 1P 2的直线垂直于l ,列出方程组,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).。

2015届高考数学第一轮基础知识复习教案77

2015届高考数学第一轮基础知识复习教案77

【学习目标】1.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.2.会解一元二次不等式,以及简单的分式、高次不等式.预 习 案回顾三个一元二次的关系【预习自测】1.不等式x (1-2x )>0的解集是( ) A .(-∞,12) B .(0,12) C .(-∞,0)∪(12,+∞) D .(12,+∞) 2.已知不等式x 2-x ≤0的解集为M ,且集合N ={x |-1<x <1},则M ∩N 为( )A . D .(-1,0]3.不等式x 2-9x -2>0的解集是_______ _.4.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A .{x |-1<x <12}B .{x |x <-1或x >12} C .{x |-2<x <1} D .{x |x <-2或x >1}5.已知(ax -1)(x -1)≥0的解集为R ,则实数a 的值为________.探 究 案题型一:一元二次不等式的解法例1. 解关于x 的不等式.(1)-2x 2+4x -3>0; (2)12x 2-ax >a 2(a ∈R ); (3)a (x -1)x -2>1(a >0).拓展 1. (1)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 ( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)(2)已知a =(1,x ),b =(x 2+x ,-x ), m 为实数,求使m (a ·b )2-(m +1)a ·b +1<0成立的x的取值范围.题型二:不等式恒成立问题例2. 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的范围;(2)当x ∈时,f (x )≥a 恒成立,求a 的范围;(3)当a ∈时,f (x )≥0恒成立,求x 的范围.拓展2. 已知关于x 的不等式2x -1>m (x 2-1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立?并说明理由;(2)若对于m ∈不等式恒成立,求实数x 的取值范围题型三:三个二次的关系例3.已知x 2+px +q <0的解集为{x |-12<x <13},求不等式qx 2+px +1>0的解集.拓展3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.当堂检测:1.若关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +b x -2>0的解集是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(-∞,1)∪(2,+∞)2.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52B.72C.154D.1523.不等式x +1x≤3的解集为________ .4.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为 ________ .5.若不等式x 2+ax +1≥0对x ∈(0,12]恒成立,求a 的最小值.我的学习总结:(1)我对知识的总结 .(2)我对数学思想及方法的总结。

年高考第一轮复习数学函数的奇偶性

2.4 函数的奇偶性●知识梳理1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.3.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.. y 轴对称 ≠β,则.由α、β答案:B4.已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________.解析:定义域应关于原点对称,故有a -1=-2a ,得a =31. 又对于所给解析式,要使f (-x )=f (x )恒成立,应b =0.答案:315.给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ). 在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________. 答案:①⑤ ② ③④ ●典例剖析【例1】 已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则 A.f (0)<f (-1)<f (2) B.f (-1)<f (0)<f (2) C.f (-1)<f (2)<f (0) D.f (2)<f (-1)<f (0) 剖析:由f (x -2)在[0,2]上单调递减, ∴f (x )在[-2,0]上单调递减. ∵y =f (x )是偶函数,x )既不⎩≠-+,02|2|x ⎩-≠≠.40x x 且故f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )= 2212-+-x x =xx 21-,这时有f (-x )=xx ---2)(1=-xx 21-=-f (x ),故f (x )为奇函数.(4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0, ∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0). 当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数. 评述:(1)分段函数的奇偶性应分段证明.(2)判断函数的奇偶性应先求定义域再化简函数解析式.【例3】 (2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.(1)解:令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)证明:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1).解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数. (3)解:f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3. ∴f (3x +1)+f (2x -6)≤3即f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )在(0,+∞)上是增函数, ∴(*)等价于不等式组或⎩⎨⎧≤-+-<-+,64)62)(13(,0)62)(13(x x x x 或⎪⎪⎩⎪⎪⎨⎧≤≤--<>537,313x x x 或或⎪⎩⎪⎨⎧∈<<-.,331R x x∴3<x ≤5或-37≤x <-31或-31<x <3. ∴x 的取值范围为{x |-37≤x <-31或-31<x <3或3<x ≤5}.评述:解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f ”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b>a 2,那么f (x )·g (x )>0的解集是A.(22a ,2b)B.(-b ,-a 2)C.(a 2,2b )∪(-2b,-a 2)D.(22a ,b )∪(-b 2,-a 2)提示:f (x )·g (x )>0⇔⎩⎨⎧>>0)(,0)(x g x f 或⎩⎨⎧<<.0)(,0)(x g x f∴x ∈(a 2,2b )∪(-2b,-a 2). 答案:C【例4】 (2004年天津模拟题)已知函数f (x )=x +xp+m (p ≠0)是奇函数. (1)求m 的值. (2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值. 解:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ). ∴-x -x p +m =-x -xp-m . ∴2m =0.∴m =0.(2)(理)(ⅰ)当p <0时,据定义可证明f (x )在[1,2]上为增函数.∴f (x )max =f (2. x )min =f(2深化拓展f (x )=x +xp的单调性也可根据导函数的符号来判断,本题如何用导数来解? ●闯关训练 夯实基础1.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a <b <0,给出下列不等式,其中成立的是①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①④ B.②③ C.①③ D.②④解析:不妨取符合题意的函数f (x )=x 及g (x )=|x |进行比较,或一般地g (x )=⎩⎨⎧≤-≥,0)(,0)(x x f x x f f(0)=0,f (a )<f (b )<0.答案:D2.(2003年北京海淀区二模题)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:∵偶函数f (x )在[-1,0]上是减函数,∴f (x )在[0,1]上是增函数.由周期为2知该函数在[2,3]上为增函数.答案:A3.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lg x+11,那么当x ∈(-1,0)时,f (x )的表达式是__________.解析:当x ∈(-1,0)时,-x ∈(0,1),∴f (x )=-f (-x )=-lg x-11=lg (1-x ). 答案:lg (1-x )4.(2003年北京)函数f (x )=lg (1+x 2),g (x )=⎪⎩⎪⎨⎧>+-≤-<+.12,1||0,12x x x x x h (x )=tan2x 中,______________是偶函数.解析:∵f (-x )=lg [1+(-x )2]=lg (1+x 2)=f (x ), ∴f (x )为偶函数.又∵1°当-1≤x ≤1时,-1≤-x ≤1, ∴g (-x )=0.又g (x )=0,∴g (-x )=g (x ). 2°当x <-1时,-x >1, ∴g (-x )=-(-x )+2=x +2.又∵g (x )=x +2,∴g (-x )=g (x ). 3°当x >1时, -x <-1, ∴g (-x )=(-x )+2=-x +2.又∵g (x )=-x +2,∴g (-x )=g (x ). 综上,对任意x ∈R 都有g (-x )=g (x ). ∴g (x )为偶函数.h (-x )=tan (-2x )=-tan2x =-h (x ), ∴h (x )为奇函数. 答案:f (x )、g (x )5.若f (x )=1222+-+⋅xx a a 为奇函数,求实数a 的值. 解:∵x ∈R ,∴要使f (x )为奇函数,必须且只需f (x )+f (-x )=0,即a -122+x + a g (m ),求0,+∞)f (-3·)21(221x x-+=x )12(2-x ∴f (x )为偶函数.(2)证明:由解析式易见,当x >0时,有f (x )>0. 又f (x )是偶函数,且当x <0时-x >0, ∴当x <0时f (x )=f (-x )>0,即对于x ≠0的任何实数x ,均有f (x )>0.探究创新8.设f (x )=log 21(11--x ax)为奇函数,a 为常数, (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(21)x+m 恒成立,求实数m 的取值范围.(1)解:f (x )是奇函数,∴f (-x )=-f (x ).,∴a =1111-+x x >g( 3.在教学过程中应强调函数的奇偶性是函数的整体性质,而单调性是其局部性质. 拓展题例 【例1】 已知函数f (x )=cbx ax ++12(a 、b 、c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a 、b 、c 的值.解:由f (-x )=-f (x ),得-bx +c =-(bx +c ). ∴c =0.由f (1)=2,得a +1=2b .由f (2)<3,得114++a a <3,解得-1<a <2.又a ∈Z ,∴a =0或a =1.若a =0,则b =21,与b ∈Z 矛盾.∴a =1,b =1,c =0. 【例2】 已知函数y =f (x )的定义域为R ,对任意x 、x ′∈R 均有f (x +x ′)=f (x )+f (x ′),且对任意x >0,都有f (x )<0,f (3)=-3.(1)试证明:函数y =f (x )是R 上的单调减函数; (2)试证明:函数y =f (x )是奇函数; (3)试求函数y =f (x )在[m ,n ](m 、n ∈Z ,且mn <0)上的值域. 分析:(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件.(2)可根据函数奇偶性的定义进行证明,应由条件先得到f (0)=0后,再利用条件f (x 1+x 2)=f (x 1)+f (x 2)中x 1、x 2的任意性,可使结论得证.上的单调(3)若题设条件中的m 、n ∈Z 去掉,则我们就无法求出f (m )与f (n )的值,故m 、n ∈Z 不可少.。

百强校高考数学一轮复习专题47:排列数公式与组合数公式

试卷第1页,总3页 百强校高考数学一轮复习专题47:排列数公式与组合数公式 学校:___________姓名:___________班级:___________考号:___________

一、填空题 1.化简nnnAAAA33221132. 2.解答:2222345100AAAA 3.化简:)!1(1)!1(1!1nnn=___________________.

4.)求证:(1)11AAAmmmnnnm (2)123112!3!4!(1)!(1)!nnn…

5.计算(1)49596105104AAAA (2)nnnnAA24112 6.计算:__________. 7.设函数

1121211112123123nxxxxxxxxxnxfxn

,则方

程0nfx的根为____.

8.利用等式可以化简

等式有几种变式,如:又如将赋给,可得到,类比上述方法化简等式:

__________. 9.已知_______________ 试卷第2页,总3页

10.已知,则_________. 11.化简: ________________________. 12.计算1432nnnAA的值.

13.计算:(1)_____________; (2)已知,则_____________. 14.解不等式2996xxAA.

15.已知,那么__________. 16.已知“”为“”的一个全排列,设是实数,若“”可推出“或”则满足条件的排列“”共有_______个. 17.若S=11A+22A+33A+…+100100A,则S的个位数字是_______________.

二、解答题 18.某班级共派出个男生和个女生参加学校运动会的入场仪式,其中男生倪某为领队.入场时,领队男生倪某必须排第一个,然后女生整体在男生的前面,排成一路纵

高三数学总复习教案

高三数学总复习教案教案标题:高三数学总复习教案教案目标:1. 确保学生对高中数学知识的全面复习和掌握。

2. 帮助学生提高解题能力和应试技巧。

3. 强化学生对数学概念和原理的理解和应用能力。

教案内容:一、复习内容概述:1. 高中数学基础知识回顾:包括代数、函数、几何、概率与统计等方面的知识点。

2. 解题技巧和策略的复习:包括分析问题、建立数学模型、选择解题方法等。

3. 历年高考真题解析:通过分析历年高考数学试题,帮助学生熟悉考试题型和命题风格。

二、教学步骤:步骤一:复习基础知识1. 教师通过讲解和示范,复习高中数学的基础知识点,包括代数、函数、几何、概率与统计等方面的知识。

2. 学生进行课堂练习,巩固基础知识,并解答疑惑。

步骤二:解题技巧和策略的复习1. 教师介绍常用的解题技巧和策略,如分析问题、建立数学模型、选择解题方法等。

2. 学生通过解析典型题目,练习运用解题技巧和策略。

步骤三:历年高考真题解析1. 教师选取历年高考数学试题,进行解析和讲解。

2. 学生参与讨论,分析解题思路和方法,总结解题经验。

三、教学手段和资源:1. 教师板书和讲解。

2. 学生课堂练习和小组讨论。

3. 历年高考数学试题和解析资料。

四、教学评估:1. 学生课堂表现:参与度、合作能力、问题解答等。

2. 学生作业完成情况:完成课后练习和习题册的作业。

3. 学生考试成绩:通过模拟考试和阶段性测试,评估学生的学习情况和进步程度。

五、教学反思和调整:1. 教师根据学生的学习情况和反馈,及时调整教学内容和方法,以满足学生的学习需求。

2. 教师与学生和家长进行有效的沟通,了解学生的困难和问题,并提供针对性的辅导和指导。

通过以上教案的设计和实施,可以帮助高三学生全面复习数学知识,提高解题能力和应试技巧,为他们的高考备考提供有力的支持和指导。

高考数学第一轮复习教案导数精选

高考数学第一轮复习教案导数复习目标1. 了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的根底上抽象出变化率的概念.2熟记根本导数公式,掌握两个函数四那么运算的求导法那么和复合函数的求导法那么,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大〔小〕值的问题,掌握导数的根本应用.3. 了解函数的和、差、积的求导法那么的推导,掌握两个函数的商的求导法那么.能正确运用函数的和、差、积的求导法那么及已有的导数公式求某些简单函数的导数^4. 了解复合函数的概念.会将一个函数的复合过程进行分解或将几个函数进行复合.掌握复合函数的求导法那么,并会用法那么解决一些简单问题 .三、根底知识梳理:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具.在高中阶段对于导数的学习,主要是以下几个方面:1 .导数的常规问题:〔1〕刻画函数〔比初等方法精确细微〕;〔2〕同几何中切线联系〔导数方法可用于研究平面曲线的切线〕;〔3〕应用问题〔初等方法往往技巧性要求较高,而导数方法显得简便〕等关于n次多项式的导数问题属于较难类型.2 .关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便^3 .导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合水平的一个方向,应引起注意.4 .瞬时速度物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻〔或某一位置〕的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度.5 .导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法那么与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点:(1) Ax是自变量x在X o处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△ x-O 时,—y有极限,那么函数y=f(x)在点x0处x可导或可微,才能得到f(x)在点x0处的导数.(3)如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.由导数定义求导数,是求导数的根本方法,必须严格按以下三个步骤进行:(1)求函数的增量y f(x0x) f(x0);(2)求平均变化率一y ——x)—f-(x^);(3)取极限,得导数f'(x0) lim —y .x x x 0 x6 .导数的几何意义函数y=f(x)在点x o处的导数,就是曲线y=(x)在点P(x o, f (x o))处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:⑴求出函数y=f(x)在点x o处的导数,即曲线y=f(x)在点P(x o, f (x o))处的切线的斜率;(2)在切点坐标和切线斜率的条件下,求得切线方程为y y o f'(x o)(x x o)特别地,如果曲线y=f(x)在点P(x o, f (x o))处的切线平行于y轴,这时导数不存,根据切线定义,可得切线方程为x x o7 .导数与函数的单调性的关系㈠f (x) o与f(x)为增函数的关系.3f (x) 0能推出f(x)为增函数,但反之不一定.如函数f(x) x在(,)上单调递增,但f (x) 0, f (x) 0是f(x)为增函数的充分不必要条件.㈡f (x) 0 时, f (x) 0 与f (x) 为增函数的关系.假设将f (x) 0的根作为分界点,由于规定 f (x) 0 ,即抠去了分界点,此时 f (x) 为增函数,就一定有f (x) 0.,当f (x) 0时,f (x) 0是f(x)为增函数的充分必要条件.㈢f (x) 0 与f (x) 为增函数的关系.f(x) 为增函数,一定可以推出 f (x) 0,但反之不一定,由于 f (x) 0,即为f (x) 0或f (x) 0 .当函数在某个区间内恒有 f (x) 0,那么f(x)为常数,函数不具有单调性..•. f (x) 0是f (x)为增函数的必要不充分条件.㈣单调区间的求解过程y f (x)( 1)分析y f (x) 的定义域;( 2)求导数y f (x)( 3)解不等式 f (x) 0,解集在定义域内的局部为增区间( 4)解不等式 f (x) 0 ,解集在定义域内的局部为减区间我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性. 以下以增函数为例作简单的分析,前提条件都是函数y f (x) 在某个区间内可导.㈤函数单调区间的合并函数单调区间的合并主要依据是函数f(x)在(a,b)单调递增,在(b,c)单调递增,又知函数在f(x) b处连续,因此f(x)在(a,c)单调递增.同理减区间的合并也是如此,即相邻区间的单调性相同, 且在公共点处函数连续,那么二区间就可以合并为以个区间.8 . y f (x) x [a , b](1)f (x) 0恒成立.. y 〞*)为(2,3上•••对任意x (a,b)不等式f(a) f(x) f(b) 恒成立(2) f (x) 0恒成立y f (x)在(a,b)上四、经典例题解析:2 - c(i)求a 和b 的值;(n)讨论 f(x)的单倜性;(出)设 g(x) - x 3 x 2,试比拟 3小.解:(I)由于 f (x) e x 1(2x x 2) 3ax 2 2bx xe x 1 (x 2) x(3ax 2b), 又x 2和x 1为f (x)的极值点,所以f ( 2) f(1) 0,因此6a 2b 0'解方程组得a Lb 1.3 3a 2b 0,3一. 1E)由于 a 3 b 1,所以 f(x)x(x 2)(e1),令 f (x) 0,解得 x 12 , x 2 0 , x 31 .由于当 x (, 2) U(01)时,f (x)当x ( 2,0)U(1,)时,f (x) 0.所以f(x)在(2,0)和(1,)上是单调递增的; 在(,2)和(0,1)上是单调递减的.2 x 113 2 2 x 1 3 2 . x 1(出)由(I)可知 f (x) x e - x x ,故 f (x) g(x) x e x x (e 3 ....................................... - ...........人 x 1 x 1金_h(x) ex,…那么 h (x) e 1 .令 h (x) 0 ,得 x 1 ,由于x ,1时,h (x) 0 0,所以h(x)在x ,1上单调递减.故 x,1 时,h(x)> h(1) 0;由于 x 1,时,h(x)>0,所以h(x)在x 1,上单调递增.故x 1, 时,h(x) > h(1) 0.所以对任意x (,),恒有h(x) > 0 ,又x 2 2 0 ,对任意x (a ,b)不等式f(a)f (x) f(b)恒成立例1设函数f(x)2 x 1 3.2x e ax bx , x2和x 1为f(x)的极值点.f (x)与g(x)的大0;x)说明:此题主要考查函数的极值及利用导数解决函数单调性问题,另外利用导数证实不等式也是高考不科 无视的考查方向.所以,当b 2时,函数f(x)在(,b 1)上单调递减,在(b 1,1)上单调递增, 在(1,)上单调递减.当b 2时,函数f(x)在(,1)上单调递减,在(1, b 1)上单调递增,在(b 1,)上单调递减., r , 2 ~ 一., .................. ...............................当b 1 1,即b 2时,f(x)所以函数f (x)在(,1)上单调递减,在(1,)上单调递减.x 1a例3.函数f x x — b x 0 ,其中a,b R .x(i)假设曲线 y f x 在点P 2, f 2处的切线方程为y 3x 1,求函数f x 的解析式; (n)讨论函数 f x 的单调性;因此f(x) g(x) > 0 ,故对任意x (),恒有 f (x) > g(x).例2.函数f(x )2( x 1)2 解:f (x)- ---- -令 f (x) 0,得 x b 当b 1 1,即b 2时,当b 1 1 ,即b 2时------ ,求导函数 f (x),并确£ (x1)2(2x b) 2(x 1) 2x 2b (x 1)4(x 1)31 .,f (x)的变化情况如下表:x (, b 1) b 1f (x),f (x)的变化情况如下表:x (,1) (1, b 1)f (x)三f(x)的单调区间.22[x (b 1)] 3(b 11)(1,)b 1 (b 1,)从而得b 7,所以满足条件的b 的取值范围是(,7]. 44说明:本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等根底知识,考查运算能 力、综合分析和解决问题的水平.t 表示时间,以月为单位,年初为起点,根据历年数据,某水库1(出)右对于任息的 a — ,2 ,不等式f x2.110在一1上恒成乂, 4求b 的取值范围a解:(I) f (x) 1 一,由导数的几何意义得 f (2) 3,于是a 8. x 由切点P(2, f(2))在直线y 3x 1上可得 2 b 7,解得b 9.所以函数f(x)的解析式为f(x) x - 9. xa(n) f (x) 1 —. x当a 0时,显然f (x) 0(x 0) .这时f(x)在(,0), (0,)内是增函数. 当a 0时,令f (x) 0,解得x B当x 变化时,f (x), f (x)的变化情况如下表:x (, a) 、,a (、.a,0) (0, ■ a)、.a (、. a,)f (x) + 0f (x)/ 极大值 \\ 极小值所以f (x)在(Va) , (ja,)内是增函数,在(ja,0) , (0, Va)内是减函数.(m)由(n)知,,1 ,,…,,… f (x)在[一 1]上的最大值为1 -f(一)与f (1)中的较大者,对于任意的 41 … a [-,2],不等2 1 一 , ,一」式f (x) 10在[1,1]上恒成立,当且仅当,1f(1) 10 即 b 4 5即 f(1) 10 b39 , 4a 一一,, 4 ,对任息的a 9 a1~ [-,2]成立. 2例4.水库的蓄水量随时间而变化,现用的蓄水量(单位:亿立方米)关于t的近似函数关系式为V(t)= ( t2 14t 40)e450,0 t 10,4(t 10)(3t 41) 50,10 t 12(I)该水库的蓄水量小于50的时期称为枯水期.以i—1vtvi表示第i月份(i=1,2, (12),问一年内哪几个月份是枯水期?(n )求一年内该水库的最大蓄水量(取e=2.7计算).…,、…,?…,2 ,1t解:(I)①当0V t 10 时,V(t)=( — t+14t —40) e450 50,化简得t2—14t+40>0,解得t V 4,或t > 10,又0V t 10,故0V tv 4.②当10V t 12 时,V (t) =4 (t—10) (3t —41) +50V 50,41化简彳#(t—10) (3t —41) v 0,解得10vt v —,又10V t 12,故10V t 12.3综合得0v t <4,或10<t 12,故知枯水期为1月,2月,3月,4月,11月,12月共6个月.(n )由(I )知:V(t)的最大值只能在(4, 10)内到达.1t一 3 11t8),由V (t) =e4( -t23t 4) -e4 (t2)(t4 2 4令V (t)=0,解得t=8(t= -2 舍去).当t变化时,V' (t)与V( t)的变化情况如下表:(4,8) (8,10)V' (t)Mt) 极大值由上表,V(t)在t = 8时取得最大值V8) =8e2+50- 108.32(亿立方米).故知一年内该水库白最大蓄水量是108.32亿立方米说明:本小题主要考查函数、导数和不等式等根本知识,考查用导数求最值和综合运用数学知识解决实际 问题水平........ kx 1例5.函数f(x) f (c 0且c 1, k R )恰有一个极大值点和一个极小值点,其中一个是 x c x c.(I)求函数f(x)的另一个极值点;(n)求函数f(x)的极大值M 和极小值m ,并求M m>1时k 的取值范围.-22k(x c) 2x(kx 1) kx 2x ck解:(I) f (x) — ----------------- 2 ----- 2 ------ -------- 2 -----2一,由题意知 f ( c) 0 ,(x c) (x c)2.即得 c k 2c ck 0, (*)Qc 0, k 0., … 2 rr2 (n)由(*)式得 k ---------------- ,即 c 1 -.c 1k当 c 1时,k 0;当 0 c 1时,k 2.M m- k2 1 -"恒成立.综上可知,所求 k 的取值范围为(,2)U[J2,).由 f (x) 0得 kx 22x ck 0,由韦达定理知另一个极值点为(i)当 k 0时,f(x)在(,c)和(1,)内是减函数,在(c,1)内是增函数. k 1 k f ⑴.2 °, m f( c)kc 1 k 22~~cc 2(k 2)k 22(k 2)0,解得(ii )当 k 2 时,f(x)在(,c)和(1,)内是增函数,在(c,1)内是减函数.f( c)k 2 2(k 2)kf (1) — 02求证以下不等式(1)2xx ——ln( 1 x) x2 2(1 x)x (0,(2)2x ,一、sin x ——x (0 ,—) 2(3) x sin x tanx x (0, 一)2证实: f (x) ln(1 x) (x2-)2f(0) 0x2 1------- 0x 1f(x)为(0, )上x (0, f(x) 0 恒成立••• ln(12 x x) x —2g(x) --------- ln( 12(1 x)x) g(0)g (x)4x24x 2x21 -------------- 2-4(1 x)22x24(1g(x)在(0 , )上x (0,2(1 x)ln(1 x) 0恒成立(2)原式sin x令f (x) sin x/xx (0,2) cosx x tanx•• f (x)cosx(x tanx)(0;f(x) 0 (0,-)• sin x2x(3)令f(x) tanx 2x sin x f(0)f (x) sec2 x 八(1 cosx)(cos x2 cosx ----------------- --- 2-cos xsin2 x)x (0,-) f (x) 0 (0,-)2 2tanx x x sin x说明:利用导数证实不等式这一局部内容不可无视,它本质是还是考查利用导数研究函数的单调性及最值问题.五、强化跟踪:x 0x1 .设函数f(x)在*0处可导,那么lim f(x0 x)f(x0)等于A f'(x.)B . f'( x0)C , f'( x0)D . f( x0)f(x0 2 x) f(x.)2.右lim ------------------------------ 1 ,那么f (x0)等于( )x 0 3 xA. 2 B .3 C . 3 D . 23 23 .曲线y x3 3x上切线平行于x轴的点的坐标是( )A (-1,2)B , (1,-2)C . (1,2)D . ( -1 , 2)或(1 , -2 )4 .假设函数f(x)的导数为f ' (x)=-sinx ,那么函数图像在点(4, f (4))处的切线的倾斜角为()A 90°B .0°C .锐角D .钝角5 .函数y 2x33x2 12x 5在[0 , 3]上的最大值、最小值分别是( )A. 5, —15B. 5,-4C. —4, —15D. 5, —16s6 . 一直线运动的物体,从时间t到t+ At时,物体的位移为△ s,那么lim ——为( )0 ttA从时间t至ij t+ At时,物体的平均速度 B.时间t时该物体的瞬时速度C.当时间为^ t时该物体的速度 D .从时间t到t+ At时位移的平均变化率7 .关于函数f(x)2x3 6x2 7 ,以下说法不正确的选项是A.在区间( ,0)内,f(x)为增函数B .在区间(0, 2)内,f(x)为减函数D.在区间( ,0)(2,)内,f(x)为增函数 8 .对任意x,有f'(x)4x 3, f(1)=-1 ,那么此函数为()4_4___4_4 一A f (x) xB . f(x) x 2C . f(x) x 1D . f(x) x 29 .函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是()A.5 , -15B.5,4C.-4 , -15D.5 ,-1610 .设f(x)在X O 处可导,以下式子中与f'(x .)相等的是⑴ l …:(xo2x);..f(X o X) f (X O X) lim -----------x 0 V11 . f ( x )是定义在区间[—c,c ]上的奇函数,其图象如下图:令 g (x)的表达正确的选项是()A.假设a <0,那么函数g ( x)的图象关于原点对称.B.假设a=-1, — 2<b<0,那么方程g (x) =0有大于2的实根.C.假设awo,b=2,那么方程g ( x) =0有两个实根D.假设a>1,b<2,那么方程g ( x) =0有三个实根12 .假设函数f(x)在点X O 处的导数存在,那么它所对应的曲线在点 13 .设f(x) x 1,那么它与x 轴交点处的切线的方程为 . x14 .设 f'(x 0)3,那么 limf(Xo h)-f(Xo 3h).h 0h15 .垂直于直线2x-6y+1=0 ,且与曲线y x 3 3x 2 5相切的直线的方程是⑶lx mf (X O 2 x) f (X Ox)(4)lx mf (X O x) f (X O 2 x)A (1) (2)B . (1) (3) C(2) (3) D (1) (2) (3) (4)C.在区间(2,)内,f(x)为增函数+b,那么以下关于函数(X O , f(X o ))处的切线方程是16 .曲线y17 . y=x 2e x 的单调递增区间是18 .曲线y 3]3x2—1在点(1,3/4)处的切线方程为1 ...............................19 . P 是抛物线y X 2上的点,假设过点 P 的切线方程与直线 y -x 1垂直,那么过P 点处的切线方程是220 .在抛物线y x 2上依次取两点,它们的横坐标分别为X 1 1, X 2 3,假设抛物线上过点 P 的切线与过这两点的割线平行,那么 P 点的坐标为 .21 .曲线f(x) x 3在点A 处的切线的斜率为 3,求该曲线在 A 点处的切线方程.22 .在抛物线y x 2上求一点P,使过点P 的切线和直线3x-y+1=0的夹角为一.4__ x(x 0)23 .判断函数f(x) ')在x=0处是否可导.x(x 0)24 .求经过点(2, 0)且与曲线y 1相切的直线方程. x25 .曲线C 1 : y x 2与C 2: y (x 2)2 .直线l 与C 1、C 2«W,求直线l 的方程. 六.参考答案:1 — 5 CBDCA 6 —10 BDBAB 11 B 12 . y f (X O ) f'(X O )(X X O )1317. (-8,-2)与(0,+ oo) 18. x V2y 1 019 . 2x-y-1=020. ( 2, 4) 21 .由导数定义求得f'(x) 3x 2,y=2(x-1)或 y=2(x+1)14 . -6 153x+y+6=0 16令 3x 2 3 ,那么 x= ± 1.当x=1时,切点为(1,1),所以该曲线在(1, 1)处的切线方程为 y-1=3(x-1)即3x-y-2=0 ; 当x=-1时,那么切点坐标为(-1,-1),所以该曲线在(-1,-1)处的切线方程为 y+1=3(x+1)即3x- y+2=0.22.由导数定义得f' (x)=2x,设曲线上 P 点的坐标为(x 0,y 0),那么该点处切线的斜率为 k p 2x 0,根据2x .3limx 0y二•lim ——不存在.x 0x,函数f(x)在x=0处不可导.1lim --------------- x 0x 0(x 0x)夹角公式有2x o 3 解得x 01或x o由x 0得y 016, 一 八 1 1、 那么P (-1, 1)或 P(-,—).4 1623- limx 0limx 0f(0f(0)limx 0limx 0limx 0f(0 x) f(0)xlimx 024.可以验证点 (2, 0)不在曲线上,故设切点为P (x 0, y 0).由 y'|x x 0lim xxx .x 0xlim ------------- x ------ x 0x (x 0 x) x 01~~2, x 01 得所求直线方程为y y0 」2(x x o).X.由点(2, 0)在直线上,得x:y. 2 X o,再由P(X o,y.)在曲线上,得x.y. 1,联立可解得x0 1 , y01.所求直线方程为x+y-2=0.25.解:设l与G相切于点P(x1,x;),与C2相切于Q(x2,① 2)2).对C1 : y' 2x ,那么与C1相切于2 2点P的切线方程为y x1 2x1( x x1),即y 2x1x x1 . ①2对C2:y' 2(x 2),那么与C2相切于点Q的切线方程为y (x2 2) 2(x2 2)(x x2),即2y 2( x22)x x2 4. ②2x1 2M 2) x 0, x 2•••两切线重合,・•.12 2 2,解得1 ,或1 ,x;x2 4 x22; x20「•直线方程为y=0或y=4x-4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1在数列{an}中,a1=2,an+1=an+ln(1+1n),求a
n

思考题1 (1)设数列{an}中,a1=2,an+1=an+n+1,则通项公式an=
________.

(2)设数列{an}满足a1=2,an+1-an=3·22n-1,求数列{an}的通项公式.

题型二累乘法
例2 设数列{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=
1,2,3,…),则它的通项公式是an=________.

思考题2 若a1=1,an+1an=n+1,则通项an=________.
题型三换元法
例3 已知数列{an},其中a1=43,a2=139,且当n≥3时,an-an-1=13(an-1-
an-2),求通项公式an.
思考题3 (1)已知数列{an}中,其中a1=1,且当n≥2时,an=an-12an-1+1,求通
项公式an.

(2)若数列{an}中,a1=3且an+1=a2n(n是正整数),则它的通项公式an=
________.
题型四待定系数法(构造新数列法)

例4 (1)已知数列{an}中,a1=1,an+1=2an+3,求an.
(2)在数列{an}中,a1=-1,an+1=2an+4·3n-1,求通项公式an.
(3)在数列{an}中,a1=-1,a2=2,当n∈N,an+2=5an+1-6an,求通项公
式an.
思考题4 已知数列{an}满足a1=12,31+an+11-an=21+an1-an+1,anan+1<0,求数列
{an}的通项公式.

题型五公式法
例5 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3n,n∈N*.
(1)记bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.

思考题5 (1)若an>0,an+22=2Sn,求数列{an}的通项公式.
(2)设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-
n2,n∈N*.
①求a1的值;
②求数列{an}的通项公式.

相关文档
最新文档