数学选修2-2 离散型随机变量的均值与方差 学案

合集下载

高中数学苏教版选修2-3学案:2.5 离散型随机变量的均值与方差1

高中数学苏教版选修2-3学案:2.5 离散型随机变量的均值与方差1

§2。

5。

2离散型随机变量的均值和方差(二)学习目标1.进一步理解均值与方差都是随机变量的数字特征,通过它们可以刻划总体水平;2.会求均值与方差,并能解决有关应用题.学习过程一、自学导航复习回顾:1.离散型随机变量的均值、方差、标准差的概念和意义,以及计算公式.2.设随机变量~(,)X B n p,且() 1.6,() 1.28E X V X==,则n=,p=。

二、例题精讲例1 有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为X.(1)求随机变量X的概率分布;(2)求X的数学期望和方差.例2 有甲、乙两种品牌的手表,它们日走时误差分别为,X Y(单位:),其分布如下:X1-P0.10.80.1比较两种品牌手表的质量.Y2-1-P0.10.20.40.20.1例3 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.⑴求的分布列及数学期望;⑵记“函数2()31f x xx ξ=-+在区间[2,)+∞上单调递增”为事件A ,求事件A 的概率.例4 有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.三、课堂精练P5,6,7 80P1071四、回顾小结五、课后作业《创新活页》对应练习。

人教版高中选修2-3数学2.3离散型随机变量的均值与方差教案(5)

人教版高中选修2-3数学2.3离散型随机变量的均值与方差教案(5)

2.3.1离散型随机变量的均值教学设计一,教材分析1、教材的地位和作用均值是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数值,学习均值将为今后学习概率统计知识做铺垫。

同时,它在实际生活中很多领域有着广泛的应用,为今后进一步学习数学及相关学科产生深远的影响。

2、教学重点与难点重点:离散型随机变量均值的概念及其实际含义。

难点:离散型随机变量均值的性质及其实际应用。

二,教学目标1、知识与技能目标通过实例,让学生理解离散型随机变量均值的概念,了解其实际含义,掌握离散型随机变量均值的性质并会运用公式求解。

会计算简单的离散型随机变量的均值,并解决一些实际问题。

2、过程与方法目标经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳,概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

3、情感与态度目标通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。

在学生分析问题,解决问题的过程中培养其积极探索的精神,培养其创新意识,发挥其创造能力三、教法选择探究合作法四、教学用具多媒体辅助教学五、,教学过程教学环节问题设置或任务设计意图师生活动情境创设某班一组有10个人,他们在某次数学考试中的成绩依次为80,80,80,85,85,90,90,90,95,95。

请同学们计算他们的平均成绩。

从学生最熟悉的平均值入手,让学生更容易体会均值的意义与产生的价值1、学生计算平均成绩;2、教师把计算式写出来1095959090908585808080+++++++++=95102901038510280103⨯+⨯+⨯+⨯探究新知问题1、102,103分别是什么意思?问题2、在样本中它们叫做频率,在总体中它们叫什么呢?引导学生将平均值的概念往均值过渡,让学生体会到均值实际上是变量在概率意义下的平均值。

学生回答问题1,叫做频率学生回答问题2,叫做概率。

高中数学 第二章 概率 5 离散型随机变量的均值与方差

高中数学 第二章 概率 5 离散型随机变量的均值与方差

§5 离散型随机变量的均值与方差自主整理1.设随机变量X的可能取值为a1,a2,…,a r,取a i的概率为p i(i=1,2,…,r),即X的分布为P(X=a i)=p i(i=1,2,…,r).则定义X的均值为_________________,即随机变量X的取值a i乘上取值a i的概率P( X=a i)再求和.X的均值也称作X的数学期望(简称期望),它是一个数,记为_________________,即EX=_________________.均值EX刻画的是X取值的“_________________”,均值能够反映随机变量取值的“_________________”,这是随机变量X的一个重要特征.2.一般地,设X是一个离散型随机变量,我们用_________________来衡量X与EX的平均偏离程度,E(X-EX)2是_________________的期望,并称之为随机变量X的方差,记为_________________.方差越小,则随机变量的取值就越_________________在其均值周围;反之,方差越大,则随机变量的取值就越_________________.高手笔记1.期望是算术平均值概念的推广,是概率意义下的平均.2.EX是一个实数,由X的分布列唯一确定.即作为随机变量X是可变的,可取不同值,而EX是不变的,它描述X取值的平均状态.3.EX=a1p1+a2p2+…+a r p r直接给出了EX的求法,即随机变量取值与相应概率值分别相乘后再相加.4.∵E(aX+b)=aEX+b,∴随机变量X的线性函数Y=aX+b的期望等于随机变量X的期望的线性函数.此式可有如下几种特殊形式:当b=0时,E(aX)=aEX,此式表明常量与随机变量乘积的数学期望,等于这个常量与随机变量的期望的乘积.当a=1时,E(X+b)=EX+b,此式表明随机变量与常量和的期望,等于随机变量的期望与这个常量的和.当a=0时,E(b)=b,此式表明常量的期望等于这个常量.5.DX表示随机变量X对EX的平均偏离程度,DX越大表明平均偏离程度越大,说明X的取值越分散;反之DX越小,X的取值越集中在EX附近.统计中常用DX来描述X的分散程度(DX称为标准差).6.DX与EX一样也是一个实数,由X的分布列唯一确定.7.要注意:D(aX+b)=a2DX,而易错记为D(aX+b)=aDX+b;D(aX+d)=aDX.名师解惑1.期望和方差有哪些性质?剖析:(1)期望的性质:E(c)=c(c为常数),E(aX+b)=aEX+b.(2)方差的性质:D(c)=0(c为常数),D(aX+b)=a 2DX.(3)期望与方差的联系:DX=EX 2-(EX)2.2.几个常用离散型随机变量的期望与方差的求解公式是什么? 剖析:(1)两点分布:设X 服从两点分布X 1 0 P pq则EX=p,DX=pq.(2)超几何分布:设X 服从参数为N ,M,n 的超几何分布,即P(X=k)=nNk n MN k M C C C --(k=0,1,2,…,l=mi n {M,n }). 则EX=NnM,DX=)1())((2---N N n N M N nM (此公式只作为了解,不要求记忆). (3)二项分布:设X 服从二项分布B (n,p ),即 P(X=k)=C kn p k q n-k(k=0,1,2, …,n),则EX=np ,DX=npq.讲练互动【例1】甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区每个季度发现违反保护条例的事件次数的分布列分别为: 甲保护区:X 1 0 1 2 3 P 0.3 0.3 0.2 0.2乙保护区:X 2 0 1 2 P 0.1 0.5 0.4试评价这两个保护区的管理水平. 分析:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周围变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小,或者说取值比较集中、稳定. 一是要比较一下甲、乙两个保护区内每季度发生的违规事件次数的均值,即数学期望;二是要看发生违规事件的波动情况,即方差值的大小(当然,亦可计算其标准差,同样说明道理). 解:甲保护区的违规次数X 1的数学期望和方差为: EX 1=0×0.3+1×0.3+2×0.2+3×0.2=1.3;DX 1=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21. 乙保护区的违规次数X 2的数学期望和方差为: EX 2=0×0.1+1×0.5+2×0.4=1.3;DX 2=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41. 因为EX 1=EX 2,DX 1>DX 2,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散,波动性较大.绿色通道:期望决定了随机变量的取值的平均水平、集中位置,而方差求的是随机变量的稳定与波动情况.要防止只由期望来评价两者稳定性,而应该进一步考查其方差. 变式训练1.有10张卡片,其中8张标有数字2,两张标有数字5,从中随机地抽取3张卡片,设3张卡片数字和为X,求EX 和DX.解:这3张卡片上的数字之和X 这一随机变量的可能取值为6,9,12.X=6表示取出的3张卡片上标有2,则P(X=6)=15731038=C C .X=9表示取出的3张卡片上两张标有2,一张为5,则P(X=9)=1513101228=C C C . X=12表示取出的3张卡片中的两张为5,一张为2,则P(X=12)=1513102218=C C C . ∴X 的分布列为:X6 9 12P157 157 151 ∴EX=6×157+9×157+12×151=7.8. DX=157×(6-7.8)2+157×(9-7.8)2+151×(12-7.8)2=3.36.2.甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量X 与Y ,且X 、Y 的分布 列为:X 10 9 8 7 6 5 0 P 0.5 0.2 0.1 0.1 0.05 0.05 0Y 10 9 8 7 6 5 0 P 0.1 0.1 0.1 0.1 0.2 0.2 0.2 计算X 、Y 的期望与方差,并以此分析甲、乙的技术优劣.解:依题意,有EX=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). EY=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).DX=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1+…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5.DY=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24.所以EX >EY ,说明甲的平均水平比乙高.又因为DX <DY ,说明甲射中的环数比较集中、稳定;而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 【例2】交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中,有8个标1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是抽2球的钱数之和,求抽将人获利的数学期望.分析:抽到的2个球的钱数之和X 是个随机变量,其中每一个X 取值时所代表的随机事件的概率是容易获得的,但此题所求为另一个随机变量,即参加摸奖者获利Y 的数学期望,X 与Y 关系为Y=X-5,利用公式Y=aX+b,则EY=aEX+b 可获解答.解:设X 为抽到的2球钱数之和.则X 的可能取值如下: X=2抽到2个1元;X=6抽到1个1元,1个5元; X=10抽到2个5元. 所以,由题:P(X=2)=452821028=C C ,P(X=6)=45162101218=CC C ,P(X=10)=45121022=C C , EX=2×4528+6×4516+10×451=45162.又设Y 为抽奖者获利可能值,则Y=X-5,所以获利的期望为EY=EX-5=45162-5=-57=-1.4.绿色通道:本题若直接求摸奖者获利Y 的数学期望较为困难,利用Y=aX+b,及EY=aEX+b 转化为求X 的数学期望使问题得到了简化. 变式训练3.NBA 总决赛采用7场4胜制,即若某队先胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2 000万美元(相当于篮球巨星乔丹的年薪).求: (1)所需比赛场数的分布列; (2)组织者收益的数学期望.解:所需比赛场数X 是随机变量,其取值为4,5,6,7,{X=k },k=4,5,6,7,表示比赛最终获胜队在第k 场获胜后结束比赛,显然在前面k-1场中获胜3场,从而 P(X=k)=C 31-k (21)k-1,k=4,5,6,7. (1)分布列为:X4567P81 41 165 165 (2)所需比赛场数的数学期望为 EX=4×81+5×41+6×165+7×165=1693≈6,组织者收益的数学期望为1693×2 000=11 625万美元.【例3】如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使每条网线通过最大信息量.(1)设选取的三条网线由A 到B 可通过的信息总量为X,当X≥6时,则保证信息畅通,求线路信息畅通的概率.(2)求选取的三条网线可通过信息总量的期望是多少.分析:先分析X 的所有可能取值,然后求出X 取每一个值的概率,进而列出分布列.解:X 的所有可能取值为4,5,6,7,8,9. 当X=4时,有1+1+2=4,∴P(X=4)=.101361222=C C C 当X=5时,有1+1+3=1+2+2=5,∴P(X=5)=2033622121122=+C C C C C . 当X=6时,有1+1+4=1+2+3=6,∴P(X=6)=41361112121122=+C C C C C C . 当X=7时,有1+2+4=2+2+3=7,∴P(X=7)=41361122111212=+C C C C C C . 当X=8时,有1+3+4=2+2+4=8,∴P(X=8)=203361122111112=+C C C C C C . 当X=9时,有2+3+4=9,∴P(X=9)=10136111112=C C C C . X 4 5 6 7 8 9P101 203 41 41 203 101(1)P(X≥6)=P(X=6)+P(X=7)+P(X=8)+P(X=9)=41+41+203+101=43.(2)线路通过信息量的数学期望EX=4×101+5×203+6×41+7×41+8×203+9×101=6.5.绿色通道:本题求X 的分布列是关键,而求X 取每一个值时的概率综合了排列组合的有关知识.变式训练4.一次考试共有12道选择题,每道选择题有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分.”某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求该考生: (1)得60分的概率;(2)得多少分的可能性最大? (3)所得分数X 的数学期望.解:(1)设“有两道题可判断两个选项是错误的”选对的为事件A ,“有一道题可判断一个选项是错误”选对的为事件B ,“有一道题不理解题意”选对的为事件C ,∴P(A)=21,P(B)=31,P(C)= 41. 所以得60分的概率为p=21×21×31×41=481.(2)得40分的概率为p=21×21×32×43=486;得45分的概率为p=C 12·21×21×32×43+21×21×31×43+21×21×32×41=4817;得50分的概率为 p=21×21×32×43+C 12·21×21×31×43+C 12·21×21×32×41+21×21×31×41=4817;得55分的概率为p=C 12·21×21×31×41+21×21×32×41+21×21×31×43=487. 得45分或50分的可能性最大. (3)EX=486×40+4817×(45+50)+487×55+481×60=12575. 【例4】某广场上空有一排成直线型的4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是32,出现绿灯的概率都是31.现将这4盏灯依次记为A 1,A 2,A 3,A 4,并令a i =⎩⎨⎧==).4,3,2,1,(0),4,3,2,1,(1i A i A i i 出现绿灯灯出现红灯灯(1)求X=2时的概率;(2)求X 的概率分布列及X 的数学期望EX.分析:因为对于每一个a i (i=1,2,3,4)的值只有两个结果0或1,且每一个a i (i=1,2,3,4)出现1的概率都是32.故随机变量X —B (4,32). 解:(1)由题意得P(X=2)=C 24(32)2(31)2=278.(2)X 的可能取值为0,1,2,3,4,而P(X=k)=C k4(32)k (31)4-k (k=0,1,2,3,4),∴X 的概率分布列为:X 01234P 811818278 8132 8116 显然X —B(4,32),∴EX=4×32=38. 绿色通道:当随机变量X 服从二项分布时,其期望可直接利用公式EX=np 求解. 变式训练5.某公园有甲、乙两个相邻景点,原拟定甲景点内有2个A 班的同学和2个B 班的同学;乙景点内有2个A 班同学和3个B 班同学,后由于某种原因甲、乙两景点各有一个同学交换景点观光.(1)求甲景点恰有2个A 班同学的概率;(2)求甲景点A 班同学数X 的分布列及期望.解:(1)甲、乙两景点各有一个同学交换后,甲景点恰有2个A 班同学有下面几种情况:①互换的A 班同学,则此时甲景点恰好有2个A 班同学的事件记为A 1,则P(A 1)=5115141212=•C C C C . ②互换的是B 班同学,则此时甲景点恰有2个A 班同学的事件记为A 2,则P(A 2)=10315141312=•C C C C .故P=P(A 1)+P(A 2)=51+103=21. (2)设甲景点内A 班同学数为X ,则X 的分布列为:X 123P10321 51 EX=103×1+21×2+51×3=1019. 教材链接[P 59思考交流]投掷一枚均匀的骰子,只可能出现1点,2点,…,6点,怎样解释这个均值3.5呢?答:当大量重复做投掷骰子试验时,出现点数的算术平均数(均值)应该是3.5.[P 60思考交流]如果采取方案2,或者损失60 000元,或者损失2 000元,怎样解释平均损失2 600元呢?如果采取方案3,有可能一分钱不花,而方案2至少需要花2 000元,如何理解选择方案2平均损失最小呢?答:对于一次试验而言,方案2或者损失60 000元或者损失2 000元,但如果重复这类试验,从平均意义上说,方案2的平均损失为2 600元.对于一次试验而言,方案3有可能一分钱不花,而方案2至少要花费2 000元,但如果此类事件多次重复发生,则方案2的平均损失为2 600元,方案3的平均损失为3 100元,故从这个角度上说,选择方案2的平均损失最小.。

高中数学_离散型随机变量的均值教学设计学情分析教材分析课后反思

高中数学_离散型随机变量的均值教学设计学情分析教材分析课后反思

【课题】 2.3.1离散型随机变量的均值【教材】普通高中课程标准实验教科书数学选修2-3人民教育出版社 A版【教学目标】知识与技能通过实例,让学生理解离散型随机变量均值的概念及线性运算性质,了解其实际含义.会计算简单的离散型随机变量的均值,并解决一些实际问题;过程与方法通过离散型随机变量均值概念的归纳和应用,使学生体会从特殊到一般,再从一般到特殊的思维规律,培养观察、归纳、反思的能力,初步形成认识问题,解决问题的一般思路和方法;通过比较使学生认识随机变量的均值与样本的平均值的区别与联系,明确随着样本容量的增加,样本的平均值越来越接近随机变量的均值;情感态度价值观通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发热爱数学的情感,体会数学的文化价值,提高学生的数学素养.【教学重点和难点】重点:理解离散型随机变量的均值的含义.难点: 利用离散型随机变量的均值来解决实际问题.【教学情景设计】2.3.1离散型随机变量的均值学情分析本节是在《必修3》中学习了样本的平均数和方差的基础上,学习离散型随机变量的均值.离散型随机变量可以看成是刻画某一总体的量,它的均值也就是总体的均值,一般它们是未知的,但都是确定的的常数;样本的平均值是随机变量.对于简单随机抽样,随着样本容量的增加,样本平均数越来越接近于总体的平均值.本节重点是用均值解决实际问题,在解决实际问题的过程中使学生理解均值的含义.问题1从平均的角度引入随机变量均值的概念,直观上通过分析1kg混合糖果的组成,学生容易得到合理的价格,即价格是三种糖果价格的加权平均,至此问题已解决.问题2考虑1kg的糖果如何从混合糖果中取出,通过对问题的探讨,就把混合糖的合理价格理解为随机变量X的值的加权平均,这个权就是相应的概率,把这个想法抽象出来,就可以得到随机变量均值的概念.问题3有助于理解随机变量均值的含义,它可以看成是这个随机变量的均值,即随着观察这个随机变量次数的增加,所得观测数据的平均值越来越接近于这个随机变量的均值.2.3.1离散型随机变量的均值效果分析通过创设情境激发学生学习数学的兴趣,引导学生分析问题、解决问题.通过概念的构建,培养学生归纳、概括等合情推理能力.再通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识.“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题.【课题】 2.3.1离散型随机变量的均值【教材】普通高中课程标准实验教科书数学选修2-3人民教育出版社 A版教材分析1.这节内容是在前面学习完离散型随机变量的分布列的基础上进行研究的,同时这节内容又为下一节要研究的方差奠定基础.因此在知识上起到了承上启下的作用。

人教版数学高二A版选修2-32.3离散型随机变量的均值与方差(第2课时)

人教版数学高二A版选修2-32.3离散型随机变量的均值与方差(第2课时)

预习导航
1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为
则(x l -E (X ))2
描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1
n
(x i -
E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度,我们称D (X )为随机变量X X 的标准差.
(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
(3)离散型随机变量的方差的性质: 设a ,b 为常数,则D (aX +b )=a 2D (X ).
思考1 随机变量的方差与样本的方差有何联系与区别?
提示:随机变量的方差即为总体方差,它是一个常数,不随抽样样本的变化而客观变化;样本方差则是随机变量,它是随样本的不同而变化的,对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.
2.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).
思考2 两名射手每次射击中靶的概率分别为0.8和0.7,则每射击3次中,两名射手的方差分别为( )
A .0.8,0.7
B .2.4,2.1
C .0.48,0.63
D .0.16,0.21
提示:射手独立射击3次中靶次数X都服从二项分布,即X~B(3,0.8),Y~B(3,0.7),所以D(X)=np(1-p)=3×0.8×0.2=0.48,D(Y)=nq(1-q)=3×0.7×0.3=0.63.。

离散型随机变量的均值、方差和正态分布

离散型随机变量的均值、方差和正态分布

10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。

2022年 高中数学新北师大版精品教案《北师大版高中数学选修2-3 离散型随机变量的均值与方差》

2022年 高中数学新北师大版精品教案《北师大版高中数学选修2-3 离散型随机变量的均值与方差》

§5 离散型随机变量的均值与方差第2课时离散型随机变量的方差涡阳一中王晓东一、三维目标:1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2、过程与方法:了解方差公式“〞,以及“假设,那么〞,并会应用上述公式计算有关随机变量的方差。

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,表达数学的文化功能与人文价值。

二、教学重点:离散型随机变量的方差、标准差三、教学难点:比拟两个随机变量的期望与方差的大小,从而解决实际问题四、教学过程:〔一〕、复习引入:1、数学期望: 一般地,假设离散型随机变量ξ的概率分布为:那么称……为ξ的数学期望,简称期望.2、数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3、期望的一个性质:4、如果随机变量X服从两点分布为:那么5、如果随机变量X服从二项分布,即,那么〔二〕、讲解新课:实例分析:有A,B两种不同品牌的手表,它们的“日走时误差〞分别为X,Y〔单位:s〕,X,Y的分布列如下:(1)分别计算X,Y的均值,并进行比拟;(2)这两个随机变量的分布有什么不同,如何刻画这种不同?如何刻画一个随机变量的取值与其平均值的偏离程度呢?引入方差并回忆样本方差的知识点:样本方差可以刻画样本数据的稳定性.样本方差反映了所有样本数据与样本平均值的偏离程度.在一组数:,,…, 中,各数据的平均数为,那么这组数据的方差为:能否用一个与样本方差类似的量来刻画随机变量的稳定性呢?1.离散型随机变量的方差假设离散型随机变量X的分布列为:Array用来衡量与的平均偏离程度,是的期望,并称之为随机变量的方差.记为.方差越小,那么随机变量的取值就越集中在其均值周围;反之,方差越大,那么随机变量的取值就越分散.根据以上公式请再次判断A、B两种品牌的手表哪个好。

2.典例例1:掷一颗均匀的骰子,用X表示所得的点数. 求方差DX.总结提升:求离散型随机变量X的方差的步骤:(1)写出X的所有取值;(2)计算P〔X=xi〕;(3)写出分布列,并求出期望EX;(4)由方差的定义求出DX.变式训练1:甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列如下:用击中环数的期望与方差分析比拟两名射手的射击水平.例2:在篮球比赛中,罚球命中一次得1分,不中得0分,如果某篮球运发动罚球命中率为,那么他罚球1次得分的均值和方差各是多少? 变式训练2:假设条件不变,那么他罚球2次得分的均值和方差各是多少? 根据变式训练可总结:服从二项分布的随机变量的方差,假设,那么.练习:批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,那么DX= 课后练习:有两个离散型随机变量X,Y ,其中Y=aX+b ,假设离散型随机变量X 的方差为DX,思考:DY=? 五、小结:1、离散型随机变量取值的方差、标准差及意义2、记住几个常见公式:〔1〕假设,那么〔3〕.六、作业:P691、4七、板书设计:§5 离散型随机变量的均值与方差例2:第2课时离散型随机变量的方差1.离散型随机变量的方差:变式2:2.典例:练习:例1:总结:变式1:八、教学反思:。

数学:2.3离散型随机变量的均值与方差 教案一(新人教A版选修2-3)

数学:2.3离散型随机变量的均值与方差 教案一(新人教A版选修2-3)

2.3.2离散型随机变量的方差教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

过程与方法:了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。

情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 教具准备:多媒体、实物投影仪 。

教学设想:了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。

授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差 教学过程: 一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5. 分布列:ξx 1 x 2 … x i …P P 1P 2 … P i …6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)7.二项分布:ξ~B (n ,p ),并记kn k k n q p C -=b (k ;n ,p ).ξ 0 1 … k … nPn n q p C 00 111-n n q p C … kn k k n q p C - 0q p C n n n8.几何分布: g (k ,p )= 1k qp -,其中k =0,1,2,…, p q -=1.ξ123…k … Pp pq2q p … 1k q p -…9.数学期望: 一般地,若离散型随机变量ξ的概率分布为ξx 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望.10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质: b aE b a E +=+ξξ)( 13.若ξB (n,p ),则E ξ=np二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.2. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.3.方差的性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=; (3)若ξ~B (n ,p ),则=ξD np (1-p )4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 解:抛掷散子所得点数X 的分布列为ξ 1 2 3 4 5 6P16 16 16 16 16 16从而111111123456 3.5666666EX =⨯+⨯+⨯+⨯+⨯+⨯=;2222221111(1 3.5)(2 3.5)(3 3.5)(4 3.5)666611(5 3.5)(6 3.5) 2.9266DX =-⨯+-⨯+-⨯+-⨯+-⨯+-⨯≈1.71X DX σ=≈.例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息: 甲单位不同职位月工资X 1/元1200 1400 1600 1800 获得相应职位的概率P 1 0.40.30.20.1乙单位不同职位月工资X 2/元1000 1400 1800 2000 获得相应职位的概率P 20.40.3 0.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX 1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 ,DX 1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3+ (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ;EX 2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,DX 2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 .因为EX 1 =EX 2, DX 1<DX 2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.例3.设随机变量ξ的分布列为ξ 1 2 … nPn 1 n 1 …n1 求D ξ解:(略)12n E ξ+=, 2n -1D 12ξ=例4.已知离散型随机变量1ξ的概率分布为1ξ1 2 3 4 5 6 7P71 71 71 71 71 71 71 离散型随机变量2ξ的概率分布为2ξ3.7 3.8 3.9 4 4.1 4.2 4.3P71 71 71 71 71 71 71 求这两个随机变量期望、均方差与标准差解:47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;211==ξσξD4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ;2ξD =0.04, 2.022==ξσξD .点评:本题中的1ξ和2ξ都以相等的概率取各个不同的值,但1ξ的取值较为分散,2ξ的取值较为集中.421==ξξE E ,41=ξD ,04.02=ξD ,方差比较清楚地指出了2ξ比1ξ取值更集中.1σξ=2,2σξ=0.02,可以看出这两个随机变量取值与其期望值的偏差例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯;同理有8.0,922==ξξD E由上可知,21ξξE E =,12D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,1ξ和2ξ所有可能取的值是一致的,只是概率的分布情况不同.21ξξE E ==9,这时就通过1ξD =0.4和2ξD =0.8来比较1ξ和2ξ的离散程度,即两名射手成绩的稳定情况例6.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床 次品数ξ1 0123次品数ξ1123概率P0.7 0.2 0.06 0.04概率P0.8 0.06 0.04 0.10问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好. 四、课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)=43129= 当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则 P (ξ=1)=449119123=⨯ 当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则 P (ξ=2)=2209109112123=⨯⨯ 当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯ 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB (200,1%)因为E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,D ξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫⎝⎛-+≤5. 有A 、B 两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下: ξA 110 120 125 130 135 ξB 100 115 125 130 145 P0.10.20.40.10.2P0.1 0.2 0.4 0.1 0.2其中ξA 、ξB 分别表示A 、B 两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题 意,可得ξ的分布列为ξ 0 5 25 100P400391 501 5001200012.02000110050012550154003910E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元.五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业: P69练习1,2,3 P69 A 组4 B 组1,21.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31) 解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和 η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况解:由0.1+0.6+a+1⇒a=0.3 0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6七、板书设计(略)八、教学反思:⑴求离散型随机变量ξ的方差、标准差的步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要ξ1 2 3 pA0.10.6η1 2 3 p0.3b0.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 离散型随机变量的均值与方差
编写:李莹
学习目标:
1、理解离散型随机变量的均值的意义,会根据离散型随机变量的分布列求出均值
2、掌握离散型随机变量的均值的性质,掌握两点分布、二项式分布的均值
3、会利用离散型随机变量的均值反映离散型随机变量的取值水平,解决一些相关的实际问题
学习重点:
1、理解离散型随机变量的均值的意义,会根据离散型随机变量的分布列求出均值
2、掌握离散型随机变量的均值的性质,掌握两点分布、二项式分布的均值
学习难点:
会利用离散型随机变量的均值反映离散型随机变量的取值水平,解决一些相关的实际问题
学习过程
一、情境引入
某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按3:2:1的比例混合销售,如何对混
合谈过定价才合理??如果混合唐国忠每一颗糖果的质量都相等,你能解释权数的实际含义么??

二、新知探究
1、离散型随机变量的均值
(1)一般地,若离散型随机变量X的分布列为
X x1 x2 … xi … xn
P p1 p2 … pi … pn
则称__________________________________________为随机变量X的均值或数学期望;
则称__________________________________________为随机变量X的方差,其算术平方根为随机变量X
的__________;
(2)离散型随机变量X的均值或数学期望反映了离散型随机变量取值的_____________,随机变量的方差
和标准差反映了随机变量取值偏离均值的________,方差或标准差越小,则随机变量偏离于均值的
_______________越小;
(3)若Y=aX+b,其中a,b为常数,则E(Y)=E(aX+b)=_________________, D(Y)=D(aX+b)=____________;
2、两点分布、二项分布的均值
(1)若随机变量X服从两点分布,则E(X)=________ ,D(X)=____________;
(2)若X~B(n,p),则E(X)=__________,D(X)=_________________;
三、典例分析
例1、在篮球比赛中,罚球命中1次得1分,不中得0分。如果某运动员罚球命中的概率为0.7,那么他罚
球1次的得分X的均值是多少?

例2、一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确,每题选对得5
分,不选或选错不得分,满分100分,学生甲选对任意一项的概率为0.9,学生乙则在测验中对每题都从
各选项中随机选择一个,分别求学生甲和学生乙在这次测验中成绩的均值。

例3、根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一
台大型设备,遇到洪水时要损失60000元,遇到小洪水时要损失10000元,为保护设备,有以下3种方案:
方案1:运走设备,搬运费为3800元
方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水
方案3:不采取保护措施
试比较哪一种方案好??
例4、随机抛掷一枚质地均匀的骰子,求向上一面的点数X的均值、方差
四、巩固练习
1、已知随机变量X的分布列为
Xi 0 1 2 3 4 5
P 0.1 0.2 0.3 0.2 0.1 0.1
求E(X)

2、抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,求得分X的均值。
3、产量相同的2台机床生产同一种零件,他们在一小时内生产出的次品数X1,X2的分布列分别如下:
Xi 0 1 2 3
P 0.4 0.3 0.2 0.1

试问哪台机床更好?请解释你得出结论的实际含义.

4、同时抛掷5枚质地均匀的硬币,求出现正面向上的硬笔数X的均值

Xi 0 1 2
P 0.3 0.5 0.2
5、已知随机变量X的分布列为
Xi 0 1 2 3 4
P 0.1 0.2 0.4 0.2 0.1
求D(X)

6、若随机变量X满足P(X=c)=1,其中c为常数,求D(X)
五、你学到了什么?
1、均值
2、方差
3、求均值与方差的一般步骤

相关文档
最新文档