初中数学九年级专项训练一元二次方程专题根与系数关系
数学九年级下册考点强化专训一元二次方程的根与系数的关系

数学九年级下册解码专训一元二次方程根与系数的关系学习目标一、1.掌握一元二次方程根与系数的关系,运用根与系数的关系解决相关待定系数的值。
2.通过对一元二次方程根与系数关系的探讨,经历和体验数学的发现过程,提高探究性学习的能力。
二、学习重点重点:运用根与系数的关系求相关待定系数的值。
难点:运用根与系数的关系解题必须是在b 2-4ac 不小于0的情况下。
自主预习三、解下列方程,将得到的根填入下面的表格中,观察表格中两个根的和与积,它们和原来的方程的系数有什么?(1)2x -2x =0; (2)2x +3x -4=0; (3)22x -5x-7=0.方程1x 2x 21x x 21x x 2x -2x =02x +3x -4=022x -5x-7=0请根据以上表格中的观察、发现进一步猜想:若方程ax 2+bx +c =0(a ≠0)的根是1x 、2x ,则21x x = ,21x x = ,并加以证明。
因为一元二次方程ax 2+bx +c =0(a ≠0)的求根公式x=a acb b 242 ,所以21x x = =21x x = =合作探究四、 1.已知关于x 的方程(k-1)2x +(2k-3)x+k+1=0有两个不相等的实数根1x 、2x .求k 的取值范围;(1)是否存在实数k ,使方程的两个实数根互为相反数?如果存在求出k 的值;如果不(2)存在,请说明理由。
巩固反馈五、1.已知1x 、2x 是方程2x -x-3=0的两个实数根,则21x x = , 21x x = 。
2.若方程x 2+px+2=0的一个根是2,则另一个根是 ,p= 。
5.下列方程两根的和与两根的积各是多少?①2y -3y+1=0 ② 32x -2x=2③22x +3x=0 ④4p(p-1)=36.已知 ,是方程2x +2x -5=0的实数根,求 22 的值。
初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)1.先阅读,再回答问题:如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-=-=,x1x2===-.若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2(2)求+的值.(3)求(x1-x2)22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.3.已知关于的一元二次方程.若是此方程的一个根,求的值和它的另一个根;若方程有两个不相等的实数根,试判断另一个关于的一元二次方程的根的情况.4.已知关于的一元二次方程.若方程有实数根,求的取值范围;如果是满足条件的最大的整数,且方程一根的相反数是一元二次方程的一个根,求的值及这个方程的另一根.5.根据下列命题完成以下问题。
(命题)若、是关于的一元二次方程的两个实数根,则有,。
〖问题1〗若、是关于的一元二次方程的两个实数根,则有____________,___________。
〖问题2〗若、是一元二次方程的两个实数根,则有____________,___________。
〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为2和7,乙看错了常数项,得两根为1和-10。
初中数学一元二次方程根与系数关系专项复习题3(附答案详解)

初中数学一元二次方程根与系数关系专项复习题3(附答案详解)1.一元二次方程x 2+3x =0的解是( )A .x =3B .x 1=0,x 2=3C .x 1=0,x 2=-3D .x =-32.关于x 的一元二次方程x 2+bx ﹣1=0的判别式为( )A .1﹣b 2B .b 2﹣4C .b 2+4D .b 2+13.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x+3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x+1=0 4.关于x 的一元二次方程x 2-2x +2k =0有实数根,则k 得范围是( )A .k <B .k >C .k≤D .k≥5.方程x 2﹣3x +4=0和2x 2﹣4x ﹣3=0所有实数根的和是( )A .3B .5C .1D .26.方程2270x ax -+=,有一根是12,则另一根为( ) A .7 B .7.5C .-7D .15 7.已知关于x 的方程()2a 1x 2x 10--+=有实数根,则a 的取值范围是()n nA .a 2≤B .a 2>C .a 2≤且a 1≠D .a 2<-8.x=1是关于x 的一元二次方程2x 2+mx−1=0的一个根,则此方程的两根之和为A .−1B .1C .12D .−129.关于x 的方程220x x k +-=有两个相等的实数根,则k 的值为( )A .12 B .12- C .1? D . 1-10.甲、乙两个同学分别解一道二次项系数是1的一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是....( )A .x 2+4x ﹣15=0B .x 2﹣4x ﹣15=0C .x 2+4x+15=0D .x 2﹣4x+15=011.若x=3是一元二次方程x 2﹣2x+c=0的一个根,则这个方程的另一个根为_____. 12.设x 1、x 2是方程2x 2+4x-3=0的两个根,则(x 1+1)(x 2+1)=_______.13.已知关于x 的方程230x x k ++=的一个根是1-,则k =________;另一根为________.14.若关于x 的一元二次方程2430kx x -+=有两个不相等的实数根,则k 的取值范围15.若关于x 的一元二次方程()()21220m x mx m --++=有两个不等的实数根,则m 的取值范围是________.16.方程x 2-2x -3=0,两根分别为3,-1,记为[3,-1],请写出一个根为[-2,3]的一元二次方程________________________.17.方程(2x +1)(x +2)=6化为一般形式是______,b 2—4ac ____,用求根公式求得x 1=______,x 2=______,x 1+x 2=______,12x x =______,18.关于x 的一元二次方程2310kx x --=有实数根,则k 的取值范围是________. 19.如果关于x 的方程2420x x m -+=有实数根,则m 的取值范围是_______________.20.已知实数a 、b 满足a b ¹,且222018a a b b -=-=-,则11a b+的值为_______. 21.(1)不解方程,求方程5x 2﹣1=2x 的两个根x 1、x 2的和与积;(2)求证:无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根.22.如果x 1,x 2是一元二次方程ax 2+bx+c=0的两根,那么有x 1+x 2=-b a ,x 1x 2=c a.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:x 1,x 2是方程x 2+6x-3=0的两根,求x 12+x 22的值.解法可以这样:因为x 1+x 2=-6,x 1x 2=-3,所以x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6)2-2×(-3)=42. 请你根据以上解法解答下题:设x 1,x 2是方程2x 2-x-15=0的两根,求: (1)11x +21x 的值; (2)(x 1-x 2)2的值.23.关于x 的方程3x 2﹣2x+m=0的一个根为﹣1,求方程的另一个根及m 的值.24.关于x 的一元二次方程()21210k x x +++=的实数解是1x 和2x . ()1求k 的取值范围;()2如果12121x x x x k +-=-,求k 的值.25.已知2x 2﹣4x+c=0的一个根,求方程的另一个根和c 的值.26.已知:关于x 的方程x 2+2ax+a 2﹣1=0(1)不解方程,判列方程根的情况; (2)若方程有一个根为2,求a 的值.27.已知关于x 的一元二次方程2220x x k -+-=有两个不相等的实数根1x ,2x . (1)求k 的取值范围;(2)若1x ,2x 满足211212325x x x x x ---<,且k 为整数,求k 的值.28.阅读材料:①韦达定理:设一元二次方程ax 2+bx+c=0(且a≠0)中,两根12x x 、有如下关系: 12b x x a +=-,12c x x a⋅=. ②已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq≠1,求1pq q+ 的值. 解:由p 2﹣p ﹣1=0及1﹣q ﹣q 2=0,可知p≠0,q≠0.又∵pq≠1,∴1p q≠ ; ∴1﹣q ﹣q 2=0可变形为21110q q⎛⎫--= ⎪⎝⎭的特征.所以p 与1q是方程x 2﹣x ﹣1=0的两个不相等的实数根. 则p+1q=1, ∴1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知:2m 2﹣5m ﹣1=0,21520n n +-=,且m≠n .求:11m n+ 的值.29.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .30.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为x 1,x 2,就能快速求出11x +21x ,x 12+x 22,…的值了.比如设x 1,x 2是方程x 2+2x -3=0的两个根,则x 1+x 2=-2,x 1x 2=-3,得11x +21x =1212x x x x +=23.” (1)小亮的说法对吗?简要说明理由;参考答案1.C【解析】分析:分解因式得到x (x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.详解:x 2+3x=0,x(x+3)=0,x=0,x+3=0,x 1=0,x 2=−3,故选:C.点睛:此题考查了解一元二次方程-因式分解法,用因式分解法解方程的一般步骤是:移项、化积、转化、求解.2.C【解析】【分析】将一元二次方程的各项系数代入根的判别式24b ac ∆=-中,即可得出答案.【详解】在一元二次方程x 2+bx ﹣1=0中,∵a =1,b =b ,c =-1,∴222441(1)4b ac b b ∆=-=-⨯⨯-=+.故选C.【点睛】本题考查了一元二次方程根的判别式.找出一元二次方程中各项的系数并准确进行计算是解题的关键.3.D【解析】【分析】先根据根的判别式,判断有无实数根的情况,再根据根与系数的关系,逐一判断即可.【详解】A. x 2+2x ﹣3=0,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;B. ∵x 2﹣2x+3=0 ,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;C. ∵2x 2﹣2x ﹣3=0,∴△=b²-4ac=32>0,∴此方程有实数根, 根据根与系数的关系可求12212b x x a -+=-=-= , 故此选项错误;D. ∵3x 2﹣6x+1=0,∴△=b²-4ac=24>0,∴此方程有实数根, 根据根与系数的关系可求12623b x x a -+=-=-=, 故此选项正确.故选D.【点睛】本题考查了根的判别式及根与系数的关系,若1x ,2x 是一元二次方程ax²+bx+c=0(a≠0)的两根时12b x x a +=-,12c x x a=. 4.C【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac≥0.【详解】因为关于x 的一元二次方程有实根,所以解得故选:C.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.5.D【解析】解:在方程x2﹣3x+4=0中,△=(﹣3)2﹣4×1×4=﹣7<0,∴方程x2﹣3x+4=0无实数根;在方程2x2﹣4x﹣3=0中,△=(﹣4)2﹣4×2×(﹣3)=40>0,∴方程2x2﹣4x﹣3=0有两个不等的实数根.设x1、x2是方程2x2﹣4x﹣3=0的实数根,∴x1+x2=2.故选D.6.A【解析】【分析】由韦达定理即可求解.【详解】解:令另一根为x,由韦达定理可知1722x ,解得x=7,故选择A.【点睛】本题考查了一元二次方程的韦达定理.7.A【解析】【分析】分两种情况进行讨论,即一元一次方程和一元二次方程,从而得出答案.【详解】当方程为一元一次方程时,a=1,方程有实数根;当方程为一元二次方程时,a≠1且4-4(a-1)≥0,解得:a≤2且a≠1;综上所述,a≤2.故选A.【点睛】考查的是方程的解得情况以及分类讨论的思想,属于中等题型.解决这个问题的关键就是分类讨论,很多同学会把这个方程当做一元二次方程来解.8.C【解析】设方程的另一根为x1,∵x=1是关于x的一元二次方程2x2+mx−1=0的一个根,根据根与系数的关系可得:x1·1=−12,∴x1=−12,∴x1+1=12.故选C.9.D【解析】【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,代入公式求出即可.【详解】∵关于x的方程x2+2x-k=0有两个相等的实数根,∴△=b2+4ac=4+4k=0,解得;k=-1,故选:D.【点睛】考查了一元二次方程根的判别式,一元二次方程ax²+bx+c=0(a≠0)的根与根的判别式24b ac∆=-有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.10.B【解析】甲的常数项是对的,所以常数项为:-3×5 = -15,乙的一次项系数是对的,所以是一次项系数为:-(2+2)= -4,原方程是x2 - 4 x -15 = 0,故选D.【点睛】本题主要考查了根与系数的关系,牢记根与系数的关系是解决此类问题的关键.【解析】【分析】由根与系数的关系,设另一个根为x ,再根据两根之和为b a -,代入计算即可. 【详解】由根与系数的关系,设另一个根为x ,则3+x =2,解得:x =−1.故答案为:x =−1.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a +=-= 是解决本题的关键.12.52-; 【解析】【分析】根据(x 1+1)(x 2+1)=1212()1x x x x +++,依据一元二次方程的根与系数的关系,可得两根之积或两根之和,代入数值计算即可.【详解】∵x 1、x 2是方程2x 2+4x-3=0的两个根, ∴121232,2x x x x +=-=-, 又∵(x 1+1)(x 2+1)=121235()12122x x x x +++=--+=-, 故填空答案:52-. 【点睛】 本题考查了根与系数的关系,解题的关键是将根与系数的关系与代数式变形.13.2 -2【解析】把x=-1代入已知方程列出关于k 的新方程,通过解新方程来求k 的值;然后利用根与系数的关系来求方程的另一根.【详解】依题意,得(−1)2+3×(−1)+k =0,解得,k =2.设方程的另一根为t ,则−1×t =2, 解得t =−2.故答案是:2;−2.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键. 14.43k <且0k ≠ 【解析】由题意可得:016430k k ≠⎧⎨∆=-⋅⋅>⎩, ∴43k <且0k ≠. 点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的定义和根的判别式∆=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15.2m <且1m ≠【解析】【详解】根据题意得:△=b 2﹣4ac=4m 2﹣4()()1?2m m -+>0, 解得m <2,∵方程为一元二次方程,∴m ﹣1≠0,即m≠1,则m 的取值范围是2m <且1m ≠. 故答案为2m <且1m ≠. 16.x 2-x -6=0(答案不唯一) 【解析】 【分析】根据一元二次方程的一般形式ax 2+bx+c=0,利用一元二次方程根与系数的关系可以求出该方程. 【详解】设该方程为ax 2+bx+c=0, x 1+x 2=-b a ,x 1•x 2=c a, 方程的两根为-2和3, 则-ba=-(-2+3)=-1, ca=(-2)×3=-6, 如果a=1,则b=-1,c=-6, 则该方程为x 2-x-6=0. 答案不唯一. 故可以填x 2-x-6=0.故答案为:x 2-x -6=0(答案不唯一) 【点睛】此题主要考查了根与系数的关系,先设出一元二次方程的一般形式,利用根与系数的关系可求出方程.17.2x 2+5x —4=0, 57, 154x -±=, 254x -=, 52-, —2【解析】 【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0),据此可得出方程(2x+1)(x+2)=6的一般形式;把一般形式中a ,b ,c 的值代入计算,即可求出b 2-4ac 的值;将a ,b ,c 的值代入求根公式x =中进行计算,即可得出x 1,x 2的值;根据一元二次方程根与系数的关系即可得出x 1+x 2,x 1•x 2的值. 【详解】方程(2x +1)(x +2)=6化为一般形式是22540x x +-=; 在方程22540x x +-=中,∵a =2,b =5,c =−4,∴()2245424253257b ac -=-⨯⨯-=+=,∴x ==∴1x =,2x =,∵12x x 、是方程22540x x +-=的两根,∴121252.2x x x x +=-⋅=-,故答案为:25254057 2.2x x +-=--;, 【点睛】考查了一元二次方程的一般形式,求根公式以及根与系数的关系,属于基础题,比较简单. 18.94k ≥-且0k ≠ 【解析】 【分析】先求出∆的值,然后根据∆的值与一元二次方程根的关系列式求解即可. 【详解】 由题意得,∆=(-3)2-4×k×(-1)≥0,且k≠0,∴94k ≥-且0k ≠ 故答案为:94k ≥-且0k ≠.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 19.2m ≤ 【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m 的取值范围. 详解:∵关于x 的方程2420x x m -+=有实数根, ∴△=(-4)²-4×2m=16-8m≥0, 解得:m≤2 故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根. 20.12018-【解析】 【分析】由于实数a≠b ,且a ,b 满足a-a 2=b-b 2=-2018,则a ,b 可看着方程x 2-x-2018=0的两根,根据根与系数的关系得a+b=1,ab=-2018,然后把11a b+通分后变形,再利用整体代入的方法计算. 【详解】∵a ,b 满足222018a a b b -=-=-, ∴a ,b 可看着方程x 2−x −2018=0的两根, ∴a +b =1,ab =−2018,∴111.2018a b a b ab ++==- 故答案为:1.2018-【点睛】考查一元二次方程根与系数的关系,熟记根与系数的关系式是解题的关键.21.(1)x 1+x 2=25,x 1x 2=﹣15;(2)见解析. 【解析】 【分析】(1)先把右边的项移到左边,然后根据一元二次方程根与系数的关系求解即可; (2)先整理成一元二次方程的一般形式,然后求出∆的值即可判断. 【详解】(1)方程可化为5x 2﹣2x ﹣1=0, ∴x 1+x 2=25,x 1x 2=﹣15; (2)方程可化为x 2﹣3x+2﹣p 2=0, ∴△=(﹣3)2﹣4(2﹣p 2)=4p 2+1>0,∴无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 22.(1)115;(2)1214【解析】分析:(1)根据根与系数的关系得出12x x + 和12x x ⋅的值,再把要求的式子进行通分,然后代值计算即可;(2)把要求从的式子变形为21212()4x x x x +-,再把12x x +=12,12152x x =-代入进行计算即可.详解:x 1+x 2=12,x 1x 2=-152. (1)1211x x +=2112x x x x +=12152-=- 115;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(12)2-4×(-152)=1214. 点睛:此题主要考查了根与系数的关系,根据题意得出12=bx x a +-和12c x x a=的值是解决问题的关键.23.-5,53【解析】试题分析:把x =−1代入方程2320x x m -+=得关于m 的方程,可求出m =−5,然后利用根与系数的关系求方程的另一根.试题解析:把x =−1代入方程2320x x m -+=得3+2+m =0,解得m =−5, 设方程的另一个根为t ,则13m t -⋅=-, 所以5.3t =即方程的另一个根为5.324.:()1k 的取值范围是0k ≤,且1k ≠-;()2 k 的值为2-. 【解析】 【分析】(1)根据题意可知,一元二次方程有两个实数根,故△≥0,且方程为一元二次方程,可知二次项系数不为0,据此解答即可;(2)根据一元二次方程根与系数的关系,得x 1+x 2=﹣21k -+,x 1x 2=11k +,根据x 1+x 2﹣x 1x 2=1﹣k 列出等式,解答即可. 【详解】(1)△=22﹣4×(k ﹣1)×1=﹣4k . ∵方程有实数根,∴△≥0且k +1≠0,解得:k ≤0且k ≠﹣1,k 的取值范围是k ≤0且k ≠﹣1; (2)根据一元二次方程根与系数的关系,得:x 1+x 2=﹣21k -+,x 1x 2=11k +. 由x 1+x 2﹣x 1x 2=1﹣k ,得:21k -+﹣11k +=1﹣k ,解得:k 1=2,k 2=﹣2. 经检验,k 1、k 2是原方程的解.又由(1)k ≤0且k ≠﹣1,故k 的值为﹣2. 【点睛】本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 25.,c=-1 【解析】试题分析:设出方程另一根,利用根与系数的关系建立方程求解即可得出结论. 试题解析:解:设方程的另一根为m ,由题意得:24(2m m c ⎧-=⎪⎨-=⎪⎩①②,解得:21m c ⎧=⎪⎨=-⎪⎩ 答:方程的另一根为:xc 的值为﹣1.点睛:本题主要考查了一元二次方程的根与系数的关系,解答本题的关键是求出方程的另一根.26.(1)证明见解析;(2)-1或-3.【解析】分析: (1)根据根的判别式可得△=4a 2-4(a 2-1)=4即可判断根的情况; (2)由题意可知把x=2代入原方程求得a 的值,然后再把a 的值代入原方程求得方程的另外一个根即可.详解: :(1)∵关于x 的方程x 2-2ax+a 2-1=0, ∴△=4a 2-4(a 2-1)=4>0,即△>0, ∴方程有两不相等的实数根; (2)∵x=2是方程的一个根,∴把x=2代入原方程中得:4-4a+a 2-1=0, ∴a=-1或a=-3,点睛: 本题主要考查了根的判别式的知识和一元二次方程的解的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根 27.(1)k <3(2)0,1,2 【解析】试题分析:(1)根据判别式的意义得到△=(-2)2-4(k-2)>0,然后解不等式即可;(2)由根的定义知: 211220x x k -+-= ,由一元二次方程根与系数的关系,得x 1+x 2=2,x 1x 2=k-2,再代入不等式211212325x x x x x ---<,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.试题解析:(1)依题意可知:()()22420k --->,解得3k <;(2)由根的定义知: 211220x x k -+-= ,∴ 21122x x k -=-,由根与系数的关系知:122x x +=, 122x x k =- ,若1x ,2x 满足211212325x x x x x ---<, 则 2111212225x x x x x x ----<,∴ ()2111212225x x x x x x --+-<, ∴ ()22225k k ----<,∴ 13k >- ,又由(1)知3k <,∴ 133k -<< ,Q k 为整数,∴ k 的值为 0,1, 2.28.-5. 【解析】 【分析】类比材料中所给的方法解答即可. 【详解】 由21520n n+-=得2n 2﹣5n ﹣1=0, 根据2m 2﹣5m ﹣1=0与2n 2﹣5n ﹣1=0的特征,且m≠n , ∴m 与n 是方程2x 2﹣5x ﹣1=0的两个不相等的实数根 ∴m+n=52,mn=12- ,∴11m n +=5212m nmn +=-=-5. .【点睛】本题是阅读理解题,根据题目中所给的解题方法解决问题是解决本题的关键.29.(1)证明见解析(2)①112x -=,212x --=②1x =,2x =【解析】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x .试题解析:(1)()2216316m m ∆=-+23296144m m =-+2332722m ⎛⎫=-+ ⎪⎝⎭72≥.∴无论m 取何值,方程有两个异根. (2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-. ∴123x x m +=-,21204m x x ⋅=-≤,∴1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∴2m =.24440x x +-=.115x -+=,215x --=.②10x ≤,2>0x .211x x +=,4m =. 244160x x --=. 240x x --=.11172x +=,21172x -=. 30.(1) 小亮的说法不对,理由见解析;(2)答案不唯一,详见解析 【解析】 【分析】根据:如果方程ax 2+bx +c =0(a ≠0)有两个实数根x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca. 注意分式的分母不能等于0. 【详解】(1)小亮的说法不对.若有一根为零时,就无法计算+的值了,因为零作除数无意义 (2)答案不唯一,如:一元二次方程x 2-5x -6=0.设方程的两个根分别为x 1,x 2,则x 1+x 2=5,x 1·x 2=-6. 又∵x 12+x 22+2x 1x 2-2x 1x 2=(x 1+x 2)2-2x 1x 2,将x 1+x 2=5,x 1·x 2=-6代入, 得x 12+x 22=52-2×(-6)=37 【点睛】本题考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,那么x 1+x 2=-b a ,x 1x 2=ca.。
人教版九年级数学上册《一元二次方程的根与系数的关系》基础练习

《一元二次方程的根与系数的关系》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)一元二次方程x2+mx+n=0的两根为﹣1和3,则m的值是()A.﹣3B.3C.﹣2D.22.(5分)一元二次方程x2+3x=0的两根分别为x1和x2,则x1•x2是()A.﹣3B.﹣2C.3D.03.(5分)已知方程x2﹣3x﹣k=0的一个根为﹣2,那么它的另一个根为()A.5B.1C.3D.﹣24.(5分)方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2B.两实根的积为3C.有两个不相等的正实数根D.没有实数根5.(5分)以2和4为根的一元二次方程是()A.x2+6x+8=0B.x2﹣6x+8=0C.x2+6x﹣8=0D.x2﹣6x﹣8=0二、填空题(本大题共5小题,共25.0分)6.(5分)设a、b是方程x2+x﹣2018=0的两实数根,则a2+3a+ab+2b=.7.(5分)设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=.8.(5分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.9.(5分)如果关于x的一元二次方程x2+bx+c=0的两根分别为1和﹣2,则b•c=.10.(5分)若x1,x2是一元二次方程3x2﹣x﹣3=0的两根,则x1+x2的值是.三、解答题(本大题共5小题,共50.0分)11.(10分)方程x2﹣2x+m﹣5=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若(x1+x2)2+x1•x2+10=0,求m的值.12.(10分)已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.13.(10分)已知x1、x2是关于x的一元二次方程x2+3x+k﹣3=0的两个实数根.(1)求k的取值范围;(2)若x12+2x1+x2+k=3,试求k的值.14.(10分)关于x的一元二次方程ax2﹣5x+a2+a=0的一个根是0,求a的值及另一根.15.(10分)已知关于x的方程mx2﹣(m+2)x+2=0.(1)求证:方程总有实数根;(2)已知方程有两个实数根α,β满足+=2,求m的值.《一元二次方程的根与系数的关系》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一元二次方程x2+mx+n=0的两根为﹣1和3,则m的值是()A.﹣3B.3C.﹣2D.2【分析】根据根与系数的关系得到﹣1+3=﹣m,然后解关于m的方程即可,【解答】解:根据题意得﹣1+3=﹣m,所以m=﹣2.故选:C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.2.(5分)一元二次方程x2+3x=0的两根分别为x1和x2,则x1•x2是()A.﹣3B.﹣2C.3D.0【分析】直接利用根与系数的关系求解.【解答】解:根据题意得x1•x2==0.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.3.(5分)已知方程x2﹣3x﹣k=0的一个根为﹣2,那么它的另一个根为()A.5B.1C.3D.﹣2【分析】首先根据根与系数的关系可以得到两根之和,然后利用两根之和,可以求出另一个根.【解答】解:设x1,x2是方程x2﹣3x﹣k=0的两根,由题意知x1+x2=﹣2+x2=3,解得x2=5.故选:A.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.4.(5分)方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2B.两实根的积为3C.有两个不相等的正实数根D.没有实数根【分析】利用判别式的意义进行判断.【解答】解:∵△=(﹣2)2﹣4×3<0.∴方程没有实数解.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了判别式的意义.5.(5分)以2和4为根的一元二次方程是()A.x2+6x+8=0B.x2﹣6x+8=0C.x2+6x﹣8=0D.x2﹣6x﹣8=0【分析】根据已知两根确定出所求方程即可.【解答】解:以2和4为根的一元二次方程是x2﹣6x+8=0,故选:B.【点评】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)设a、b是方程x2+x﹣2018=0的两实数根,则a2+3a+ab+2b=﹣2.【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2018,a+b=﹣1,ab=﹣2018,将其代入a2+3a+ab+2b=(a2+a)+2(a+b)+ab中即可求出结论.【解答】解:∵a、b是方程x2+x﹣2018=0的两实数根,∴a2+a=2018,a+b=﹣1,ab=﹣2018,∴a2+3a+ab+2b=(a2+a)+2(a+b)+ab=2018﹣2﹣2018=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.7.(5分)设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=4.【分析】根据一元二次方程的解的定义得出α2+2018α=2,β2+2018β=2,再代入(α2+2018α﹣1)(β2+2018β+2),计算即可得出结论.【解答】解:∵α、β是方程x2+2018x﹣2=0的两根,∴α2+2018α=2,β2+2018β=2,∴(α2+2018α﹣1)(β2+2018β+2)=(2﹣1)(2+2)=4.故答案为:4.【点评】本题考查了一元二次方程的解,代数式求值,根据一元二次方程的解得出α2+2018α=2,β2+2018β=2是解题的关键.8.(5分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣1.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.9.(5分)如果关于x的一元二次方程x2+bx+c=0的两根分别为1和﹣2,则b•c=﹣2.【分析】根据根与系数的关系得到1+(﹣2)=﹣b,1×(﹣2)=c,然后分别求出b、c的值,再计算bc的值.【解答】解:根据题意得1+(﹣2)=﹣b,1×(﹣2)=c,所以b=1,c=﹣2,所以bc=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根,x1+x2=﹣,x1x2=.也考查了根的判别式.10.(5分)若x1,x2是一元二次方程3x2﹣x﹣3=0的两根,则x1+x2的值是.【分析】直接利用根与系数的关系求解.【解答】解:∵x1,x2是一元二次方程3x2﹣x﹣3=0的两根,∴x1+x2=.故答案为.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.三、解答题(本大题共5小题,共50.0分)11.(10分)方程x2﹣2x+m﹣5=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若(x1+x2)2+x1•x2+10=0,求m的值.【分析】(1)根据判别式的意义得到△=(﹣2)2﹣4(m﹣5)≥0,然后解关于m的不等式即可;(2)根据根与系数的关系得到x1+x2=2,x1x2=m﹣5,利用整体代入的方法得到∴22+m ﹣5+10=0,然后解关于m的方程即可.【解答】解:(1)根据题意得△=(﹣2)2﹣4(m﹣5)≥0,解得m≤6;(2)根据题意得x1+x2=2,x1x2=m﹣5,∵(x1+x2)2+x1•x2+10=0,∴22+m﹣5+10=0,∴m=﹣9.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=12.(10分)已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.【分析】(1)直接利用根与系数的关系求解;(2)先利用完全平方公式得到x12+x22=(x1+x2)2﹣﹣2x1x2,然后利用整体代入的方法计算.【解答】解:(1)x1+x2=﹣2,x1x2=﹣3;(2)x12+x22=(x1+x2)2﹣﹣2x1x2=(﹣2)2﹣2×(﹣3)=10.【点评】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根,x1+x2=﹣,x1x2=.13.(10分)已知x1、x2是关于x的一元二次方程x2+3x+k﹣3=0的两个实数根.(1)求k的取值范围;(2)若x12+2x1+x2+k=3,试求k的值.【分析】(1)因为方程有两个实数根,得到△≥0,由此可求k的取值范围;(2)由一元二次方程的解的定义得出,x12=﹣3x1﹣k+3,将它代入x12+2x1+x2+k=3,得出x1=x2;那么△=32﹣4(k﹣3)=0,即可求出k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣3=0有两个实数根,∴△=32﹣4(k﹣3)≥0,解得k≤,∴当k≤时,关于x的一元二次方程x2+3x+k﹣3=0有两个实数根;(2)∵x1是关于x的一元二次方程x2+3x+k﹣3=0的根,∴x12+3x1+k﹣3=0,即x12=﹣3x1﹣k+3.∵x12+2x1+x2+k=3,∴x1=x2;∴△=32﹣4(k﹣3)=0,解得k=.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的解的定义.14.(10分)关于x的一元二次方程ax2﹣5x+a2+a=0的一个根是0,求a的值及另一根.【分析】代入x=0可求出a值,由一元二次方程的定义可确定a值,将其代入原方程利用根与系数的关系结合方程的一根,可求出方程的另一根,此题得解.【解答】解:当x=0时,a2+a=0,解得:a1=﹣1,a2=0.又∵原方程为一元二次方程,∴a=﹣1,∴原方程为﹣x2﹣5x=0,∴方程的另一根为﹣﹣0=﹣5.故a的值为﹣1,方程的另一根为x=﹣5.【点评】本题考查了根与系数的关系、一元二次方程的定义以及一元二次方程的解,代入x=0求出a值是解题的关键.15.(10分)已知关于x的方程mx2﹣(m+2)x+2=0.(1)求证:方程总有实数根;(2)已知方程有两个实数根α,β满足+=2,求m的值.【分析】(1)当二次项系数为零时,通过解一元一次方程可得出该方程有解;当二次项系数非零时,由根的判别式△=(m﹣2)2≥0可得出当m=0时方程有解.综上,此题得证;(2)根据根与系数的关系可得出α+β=,αβ=,结合+=2即可得出关于m 的方程,解之即可得出m的值.【解答】(1)证明:当m=0时,原方程为﹣2x+2=0,解得:x=1,∴当m=0时,方程有解;当m≠0时,△=[﹣(m+2)]2﹣4×2m=m2﹣4m+4=(m﹣2)2≥0,∴当m≠0时,方程mx2﹣(m+2)x+2=0有解.综上:无论m为何值,方程总有实数根;(2)解:∵方程有两个不相等的实数根α,β,∴α+β=,αβ=.∵+==2,即=2,解得:m=2.【点评】本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)分二次项系数非零及二次项系数为零两种情况找出方程有解;(2)利用根与系数的关系结合+=2找出关于m的方程.。
2020年冀教版数学九年级上册 24.3 一元二次方程根与系数的关系(含答案)

拓展训练 2020年冀教版数学九年级上册 24.3 一元二次方程根与系数的关系 基础闯关全练1.关于x 的方程2x ²+mx+n=0的两个根是-2和1,则n ᵐ的值为 ( )A .-8B .8C .16D .-162.一元二次方程2x ²-mx +2=0有一根是x=1,则另一根是 ( )A.x=1B.x= -1C.x=2D.x=4能力提升全练1.若α,β是一元二次方程3x ²+2x -9=0的两根,则的值是 ( )A .B .C .D .2.已知x ₁,x ₂是方程2x ²-3x-1=0的两根,则____.3.已知关于x 的一元二次方程x ²-3x+m=0有两个不相等的实数根x ₁、x ₂.(1)求m 的取值范围;(2)当x ₁=1时,求另一个根x ₂的值.三年模拟全练一、选择题1.(2019河北石家庄新世纪外国语学校月考,4,★☆☆)若关于x 的方程x ²+3x+a=0有一个根为1,则另一个根为( )A .-3B .2C .4D .-42.(2019河北唐山乐亭期中,6,★☆☆)若矩形的长和宽是方程x ²-7x+12=0的两根,则矩形对角线的长度为 ( )A .5B .7C .8D .10二、填空题3.(2019河北衡水武邑中学月考,13,★☆☆)已知x ₁、x ₂是关于x 的方程x ²+ax -2b=0的两个实数根,且x ₁+x ₂=-2,x ₁·x ₂=1,则的值是_________.4.(2018河北保定定州期中,22,★☆☆)已知关于x 的方程 x ²+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.五年中考全练一、选择题1.(2018广西贵港中考,6,★☆☆)已知α,β是一元二次方程x ²+x -2=0的两个实数根,则α+β-αβ的值是 ( )A .3B .1 C.-1 D .-3二、填空题2.(2018江苏南京中考,12,★☆☆)设x ₁,x ₂是一元二次方程x ²-mx-6=0的两个根,且x ₁+x ₂=1,则x ₁=____,x ₂=____.三、解答题3.(2017湖北黄冈中考,17,★★☆)已知关于x 的一元二次方程x ²+( 2k+1)x+k ² =0①有两个不相等的实数根.(1)求k 的取值范围;(2)设方程①的两个实数根分别为x ₁,x ₂,当k=1时,求2221x x 的值4.(2014四川南充中考,20,★★☆)已知关于x 的一元二次方程x ²-x+m=0有两个不相等的实数根.(1)求实数m 的最大整数值;(2)在(1)的条件下,方程的实数根是x₁,x₂,求代数式的值.核心素养全练1.已知a为正整数,a=b-2 005,若关于x的方程x²-ax+b=0有正整数解,则a的最小值是多少?(温馨提示:先设方程的两根为x₁,x₂,然后……)2.(2017湖北孝感模拟)已知x₁,x₂是一元二次方程(a-6)x²+2ax+a=0的两个实数根.(1)求a的取值范围;(2)是否存在实数a,使-x₁+x₁x₂=4+x₂成立?若存在,求出a的值;若不存在,请说明理由.24.3 一元二次方程根与系数的关系基础闯关全练1.C由一元二次方程根与系数的关系得解得m=2,n=-4,故nᵐ=(-4)²=16,故选C.2.A设一元二次方程2x²-mx+2=0的一个根x₁=1,另一个根为x₂,则x₁x₂==1,解得x₂=1.故选A.能力提升全练1.C由一元二次方程根与系数的关系,得,∴.故选C.2.答案解析∵x₁,x₂是方程2x²-3x-1=0的两根,∴x₁+x₂=,x₁x₂=,∴,故答案为.3.解析(1) ∵原方程有两个不相等的实数根,∴(-3)²-4m>0,解得m<(2)由一元二次方程根与系数的关系,得x₁+x₂=3,∵x₁=1,∴x₂=2.三年模拟全练一、选择题1.D设x²+3x+a=0的另一个根为x’,由一元二次方程根与系数的关系得1+x'= -3,解得x’=-4,故选D.2.A设矩形的长和宽分别为a、b,根据一元二次方程根与系数的关系可得a+b=7,ab =12,所以矩形对角线的长度为.故选A.二、填空题3.答案解析∵x₁,x₂是关于x的方程x²+ax-2b=0的两个实数根,∴x₁+x₂= -a= -2,x₁·x₂=-2b=1,解得a=2,b=,∴.故答案为.三、解答题4.解析(1)依题意得原方程的根的判别式△=2²-4(a-2)>0,解得a<3.(2)依题意得1+2+a-2=0,解得a=-1.故原方程为x²+2x-3=0.设方程的另一个根为m,则m+1=-2.∴m=-3.∴a=-1,方程的另一根为-3.五年中考全练一、选择题1.B ∵α,β是方程x²+x-2=0的两个实数根,∴α+β= -1,αβ=-2,∴α+β-αβ= - 1+2=1,故选B.二、填空题2.答案-2;3解析∵x₁、x₂是一元二次方程x²-mx-6=0的两个根,且x₁+x₂=1,∴m=1.∴原方程为x²-x-6=0,即(x+2)(x-3)=0,解得x₁= -2,x₂=3.故答案为-2;3.三、解答题3.解析(1)∵方程①有两个不相等的实数根,∴△=(2k+1)²-4k²=4k+1>0,解得k>.∴k的取值范围是k>.(2)当k=1时,方程①为x²+3x+1=0.由根与系数的关系可得,∴.4.解析(1)由题意,得b²-4ac>0,即,解得m<2,∴m的最大整数值为1.(2)把m=1代入关于x的一元二次方程x²-x+m=0得x²-x+1=0.根据根与系数的关系得,∴.核心素养全练1.解析设方程的两根分别为x₁,x₂,则,∵x₁,x₂中有一个为正整数,则另一个也必为正整数,不妨设x₁≤x₂,则由上式,得x₁·x₂-(x₁+x₂)= b-a=2 005,∴(x₁-1)(x₂-1)=2 006= 2×17×59,∴x₁-1=2,x₂-1=17×59;x₁-1=2×17,x₂-1= 59;x₁-1= 17,x₂-1= 2×59,∴x₁+x₂的最小值是2×17+59+1+1= 95,即a的最小值是95.2.解析(1)∵一元二次方程(a-6)x²+2ax +a=0有两个实数根,∴( 2a) ²-4(a-6)a≥0且a-6≠0,解得a≥0且a≠6.故a的取值范围为a≥0且a≠6.(2)存在,∵x₁、x₂是一元二次方程(a-6)x²+2ax+a=0的两个实数根.∴由根与系数的关系得,由-x₁+x₁x₂= 4+x₂,得x₁x₂ =4+x₁+x₂,∴,解得a=24.经检验,a= 24是原方程的解,且当a= 24时,原方程中△>0.∴存在实数a,使-x₁+x₁x₂= 4+x₂成立,此时a= 24.。
河南省数学九年级上学期期中复习专题3 一元二次方程的根与系数的关系

河南省数学九年级上学期期中复习专题3 一元二次方程的根与系数的关系姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若m,n是方程2x2﹣4x﹣7=0的两个根,则2m2﹣3m+n的值为()A . 9B . 8C . 7D . 52. (2分)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,m≠n,则(m﹣1)2+(n﹣1)2的最小值是()A . 6B . 3C . ﹣3D . 03. (2分) (2020八下·高新期中) 将方程x²+3x=5化为一元二次方程的一般形式,其中一次项系数、常数项分别为()A . 3,5B . 3,-5C . -5,3D . -5,-34. (2分)若α、β是一元二次方程x2+3x-1=0的两个根,那么α2+2α-β的值是()A . -2B . 4C . 0.25D . -0.55. (2分)如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A . 40°B . 50°C . 60°D . 不能确定6. (2分) (2019九上·进贤期中) 若,是方程两根,则的值为()A . 5B . 10C . -5D . -107. (2分) (2018九上·渠县期中) 是关于的一元二次方程的一个根,则此方程的另一个根是()A . 5B . -5C . 4D . -48. (2分)(2016·金华) 一元二次方程x2﹣3x﹣2=0的两根为x1 , x2 ,则下列结论正确的是()A . x1=﹣1,x2=2B . x1=1,x2=﹣2C . x1+x2=3D . x1x2=29. (2分)(2021·东台模拟) 已知α,β是方程x2+2017x+1=0的两个根,则(1+2019α+α2)(1+2019β+β2)的值为()A . 1B . 2C . 3D . 410. (2分) (2019九上·靖远月考) 已知、是方程的两个根,则的值为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是________ .12. (1分)设方程x2+x﹣2=0的两个根为α,β,那么(α﹣1)(β﹣1)的值等于________.13. (1分)(2019·宿迁模拟) 设α,β是方程x2﹣x﹣2019=0的两个实数根,则α2+β的值为________.14. (1分)(2019·九江模拟) 已知a , b是一元二次方程x2+x﹣4=0的两个不相等的实数根,则a2﹣b =________.15. (1分)已知:一元二次方程x2-6x+c=0有一个根为2,则另一根为________。
一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练

专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。
九年级数学一元二次方程的根与系数的关系

一元二次方程的根与系数的关系1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2=,x 1·x 2=。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2=;x 1·x 2=;2111x x +;x 21+x 22=;(x 1+1)(x 2+1)=;|x 1-x 2|=。
3、若方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m=。
4、已知方程5x 2+mx -10=0的一根是-5,求方程的另一根及m 的值。
5、已知2+3是x 2-4x+k=0的一根,求另一根和k 的值。
6、已知方程x 2-mx+2=0的两根互为相反数,则m=。
7、关于x 的方程2x 2-3x+m=0,当时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,方程有一个根为0。
8、若关于y 的一元二次方程y 2+my+n=0的两个实数根互为相反数,则A.m=0且n ≥0B.n=0且m ≥0C.m=0且n ≤0D.n=0且m ≤9、不解方程,判断下列方程根的符号,如果两根异号,试确定是正根还是负根的绝对值大?0362)2(,053)1(22=+-=--x x x10、以2和3为根的一元二次方程(二次项系数为1)是。
11、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为。
12、(1)方程x 2-3x+m=0的一个根是2,则另一个根是。
(2)若关于y 的方程y 2-my+n=0的两个根中只有一个根为0,那么m ,n 应满足。
13、关于x 的方程x 2-ax -3=0有一个根是1,则a=,另一个根是。
14、以2,-3为根的一元二次方程是22+x -6=0 C.x 2-2-x -6=015、以3,-1为根,且二次项系数为3的一元二次方程是2-2+2x -3=0C.3x 2-6x -2+6x -9=016、两个实数根的和为2的一元二次方程可能是2+2x-2-2x+3=0 C.x22-2x-3=017、以-3,-2为根的一元二次方程为,18、在解方程x2+px+q=0时,小X看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程专题复习(二)根与系数的关系及其应用如果一元二次方程ax 2+bx +c=0(a ≠0)的两根为x 1,x 2,那么反过来,如果x 1,x 2满足x 1+x 2=p ,x 1x 2=q ,则x 1,x 2是一元二次方程x 2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.【典型例题】应用一:已知一个根,求另一个根;例1 : 方程(1998x)2-1997·1999x-1=0的大根为a ,方程x 2+1998x-1999=0的小根为b ,求a-b 的值.解 : 先求出a ,b .由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达定理知,另一根为219981-,于是可得a=1.又从观察知,1也是方程x 2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.应用二:求根的代数式的值不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含,的形式,然后把,的值代入,即可求出所求代数式的值.常见的代数式变形有:① ②③ ④⑤例2: 已知二次方程x 2-3x +1=0的两根为α,β,求:(1)βα11+ (2)22βα+ (3)α3+β3解: 由韦达定理知 : α+β=3, α·β=1.(1)31311==+=+αββαβα(2)()72912322222=-=⨯-=-+=+αββαβα (3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;例3: 设方程4x 2-2x -3=0的两个根是α和β,求4α2+2β的值.解: 因为α是方程4x 2-2x -3=0的根,所以4α2-2α-3=0,即 4α2=2α+3.由韦达定理可知,21=+βα.所以4α2+2β=2α+3+2β=2(α+β)+3=4.例4: 已知α,β分别是方程x 2+x -1=0的两个根,求2α5+5β3的值.解: 由于α,β分别是方程x 2+x -1=0的根,所以α2+α-1=0,β2+β-1=0,即 α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α= -3α2+2α = -3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β2=β-(1-β)=2β-1.所以 2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明: 此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.应用三:与两根之比有关的问题;例5: 已知x 1,x 2是一元二次方程 4x 2-(3m -5)x -6m 2=0的两实数根,且23x x 21=,求m 的值.解: 首先,△=(3m -5)2+96m 2>0,方程有两个实数根.由韦达定理知从上面两式中消去k ,便得即 m 2-6m+5=0, 所以m 1=1,m 2=5.应用四:求作新的二次方程例6: 求一个一元二次方程,使它的两根分别是212313, 。
解:例7: 已知方程的两根为,求一个一元二次方程,使它两根为和。
分析:所求方程,只要求出的值即可。
解:设所求一元二次方程为1x 2x 为方程的两根∴由韦达定理又∴所求一元二次方程为即:点拨:应用根系关系构造方程,如果方程有两实根,那么方程为,当为分数时,往往化成整系数方程。
应用五:求方程中某些待定字母系数的值例8: 已知是关于x 的一元二次方程的两个实数根。
(1)用含m 的代数式表示;(2)当时,求m 的值。
解:(1)由题意:212212221x x 2x x x x -+=+)((2)由(1)得:解得: 检验:当时,原方程无实根。
∴舍去 当时,原方程有实根。
∴点拨:易忽略检验,要学会灵活应用一元二次方程有关概念,及判别式,根系关系。
应用六:判断一元二次方程根的符号例9: 已知方程07m x 1m x 2=-+--)(.m 为何值时,方程有两个正根. 解:[]203m 29m 6m 7m 141m 222+-=+-=-⨯⨯---=∆)()()(. 03m 2≥-)( ,0203m 2>+-∴)( ∴m 为任何实数时,方程都有两个不相等的实数根.当方程的两个根都为正数时,有01m x x 21>-=+,且07m x x 21>-=∙.解不等式组{107>->-m m ,解得 m>7. ∴ m>7时,方程有两个正实数根【模拟试题】一. 选择题。
1. 已知是关于x的一元二次方程的一个根,则k与另一根分别为()A. 2,-1B. -1,2C. -2,1D. 1,-22. 已知方程的两根互为相反数,则m的值是()A. 4B. -4C. 1D. -13. 若方程有两负根,则k的取值范围是()A. B. C. D.4. 若方程的两根中,只有一个是0,那么()A. B.C. D. 不能确定5. 方程的大根与小根之差等于()A. B. C. 1 D.6. 以为根的,且二次项系数为1的一元二次方程是()A. B.C. D.7. 若方程组有两组相同的实根,则m=_______________。
A. 1B. 2C. 3D. 4二. 填空题。
7. 关于x的一元二次方程的两根互为倒数,则m=________。
8. 已知一元二次方程两根比2:3,则a,b,c之间的关系是______。
9. 已知方程的两根,且,则________。
10. 已知是方程的两根,不解方程可得:________,________。
11. 已知,则以为根的一元二次方程是______________________________。
12.如果一个矩形的长和宽是一元二次方程的两个根,那么这个矩形的周长是_________三. 解答题。
13. 已知方程的两个实根中,其中一个是另一个的2倍,求m 的值。
14. 已知方程的两根不解方程,求的值。
15. 已知方程的两根,求作以为两根的方程。
16. 设是方程的两个实根,且两实根的倒数和等于3,试求m 的值。
17.已知关于x 的方程04)48(22=+-+m x m x(1)当方程有两个相等的实数根,求m 的取值,并求出此时方程的根。
(2)是否存在正数m ,使方程的两个实数根的平方和等于136?若存在,请求出m 的值,不存在,说明理由。
2007-2008年北京中考数学一元二次方程试题汇编1.已知关于x 的一元二次方程222(1)230x m x m m -++--=的两个不相等的实根中,有一个根是0,则m 的值为_________________________.2.已知:关于x 的二次方程()k x kx k --++=121022的一个根为x=1,且有()a k b a k +-+-+=22302,则()a b --13的值为_____________________.3.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是 ( )A.甲B.乙C.丙D. 乙或丙4.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+ B .12012045x x -=+ C .12012045x x-=-D .12012045x x -=-6.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤. (1)证明:(2)解:(3)解:7.已知:关于x 的两个方程05m x 1m x 2=-+++)()( ① 与 04m x 1n mx 2=-+-+)( ② 方程①有两个不相等的负实数根,方程②有两个实数根⑴求证方程②的有两根符号相同;⑵设方程②的两根分别为βα、,若α:β=1:3,且n 为整数,求m 的最小整数值.8.已知关于x 的一元二次方程0k x 4x 2=+-有两个不相等的实数根. ⑴ 求k 的取值范围;⑵ 如果k 是符合条件的最大整数,且一元二次方程0k x 4x 2=+-与01mx x 2=-+有一个相同的根,求此时m 的值.9.北京申奥成功,促进了一批产业的迅速发展,某通信公司开发了一种新型通信产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少31,第三年比第二年减少21,该产品第一年收入资金约为400万元,公司计划三年内不仅要将投入的总资金全部收回,还要赢利31,要实现这一目标,该产品收入的年平均增长率约是多少?(百分号前保留整数,参考数据:61.313 )10.某商店经销一种销售成本为每千克40元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况请解答以下问题:⑴ 当销售单价为每千克55元时,计算月销售量和月销售利润;⑵ 商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?11. 某商店有一批衬衫将出售,如果每件盈利40元,每天可售出20件,为了尽快减少库存,增加盈利,商场决定降价出售,经过调查得知,若每件衬衫降价1元,则平均每天多售出2件,问:(1)每件衬衫应降价多少元时,平均每天可盈利1200元;(2)商场每天盈利能不能达到1250元,若能达到,每件衬衫应降价多少元?若不能达到,请说明理由。
12. 一块矩形耕地大小尺寸如图1,如果修筑同样宽的两条“之”字形的道路,如图1所示,余下的部分作为耕地.要使耕地的面积为540m2,道路的宽应是多少?13. 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m?14.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为cm,那么满足的方程为 .15.在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。