高一数学函数知识点总结
高一数学课本函数知识点总结

高一数学课本函数知识点总结高一数学课本函数知识点有哪些?下面就是给大家带来的高一数学课本函数知识点,希望能帮助到大家!高一数学课本知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);6.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一数学函数重点知识点归纳总结三篇

高一数学函数重点学问点归纳总结三篇高一新生对数学的函数学问是相当头疼的,函数学问面广,思维灵敏,题型更是千姿百态,要想学好函数,就需要一份精确的函数学问点归纳,下面就是我给大家带来的高一函数学问点归纳总结,期望能关怀到大家!高一函数学问点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:留意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:留意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法,图像法,复合函数法应用:把函数值进展转化求解。
周期性:定义:假设函数f(x)对定义域内的任意x满足:f(x+T)=f(x),那么T为函数f(x)的周期。
其他:假设函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),那么2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
高一函数归纳总结2一:函数及其表示学问点详解文档包含函数的概念、映射、函数关系的推断原那么、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区分:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤假设f(x)是由几个局部的数学式子构成的,那么函数定义域是使各局部式子都有意义的实数集合,即求各局部有意义的实数集合的交集。
高一函数知识点总结凸凹性

高一函数知识点总结凸凹性函数是数学中一个非常重要的概念,也是高中数学的一大重点内容。
在高一数学学习中,学生需要学习函数的基本概念和运算,其中凸凹性是函数研究中的一个重要内容。
下面,我将对高一函数中的凸凹性进行一些总结。
一、函数的凸凹性概念在函数研究中,凸凹性是用来描述函数曲线的形状的一个重要性质。
凹函数是指对于函数的定义域上的任意两个点,函数曲线上连接这两个点的弓形线段位于函数曲线的下方或与曲线重合。
而凸函数则相反,表示连接这两个点的弓形线段位于函数曲线的上方或与曲线重合。
二、凹函数的判定方法在高一数学中,可以使用一阶导数的性质来判定函数的凹凸性。
具体而言,如果函数的二阶导数在定义域上恒大于零,则表示该函数为凹函数;如果函数的二阶导数在定义域上恒小于零,则表示该函数为凸函数。
三、凹函数的性质和应用1. 凹函数的性质:a. 凹函数在定义域上任意两点间的连线位于函数曲线的下方或与曲线重合。
b. 凹函数的切线位于曲线上方。
c. 凹函数的二阶导数恒大于零。
d. 凹函数在凸区间内恒递增。
2. 凹函数的应用:a. 在经济学中,凹函数可以描述边际效应递减的现象,比如边际产出递减。
b. 在凸优化问题中,凹函数是一类重要的可行函数,具有较好的性质。
四、凸函数的判定方法凸函数的判定方法与凹函数类似,也可以使用二阶导数的性质来进行判定。
如果函数的二阶导数在定义域上恒小于零,则表示该函数为凸函数;如果函数的二阶导数在定义域上恒大于零,则表示该函数为凹函数。
凸函数的性质和应用与凹函数的性质和应用相反。
具体而言,凸函数在定义域上任意两点间的连线位于函数曲线的上方或与曲线重合,切线位于曲线下方,二阶导数恒小于零,在凸区间上恒递增。
凸函数在数学和工程学中都有广泛的应用,如优化问题、凸包算法等。
综上所述,函数的凸凹性是高一数学中一个重要的知识点。
凹函数在定义域上连线位于函数曲线的下方,凸函数则相反。
可以通过二阶导数的正负性来判断函数的凹凸性,并且凹凸函数有着一系列的性质和应用。
函数知识点总结高一下册

函数知识点总结高一下册函数是数学中的重要概念,高一下册学习的函数内容较为复杂,本文将对高一下册的函数知识点进行总结。
主要包括函数的定义、图像与性质、函数的运算以及应用等内容。
一、函数的定义函数是一种特殊的关系,它将自变量与因变量一一对应。
函数的定义可以用文字或符号表示。
设X、Y为非空数集,如果对于每一个属于X的元素x,有唯一的属于Y的元素y与之对应,那么我们称这种对应为函数。
用符号表示可以写作:y=f(x),其中f代表函数的名称,x为自变量,y为因变量。
二、图像与性质1. 基本函数的图像与性质高一下册学习的函数主要包括线性函数、二次函数、指数函数和对数函数等。
这些函数都有不同的图像和性质。
- 线性函数:图像为一条直线,具有斜率和截距。
- 二次函数:图像为开口向上或向下的抛物线,顶点坐标为(h,k),开口方向由a的正负决定。
- 指数函数:图像为右移或左移的指数曲线,满足f(0)=1和a 的正负决定增减性。
- 对数函数:图像为右移或左移的对数曲线,满足f(1)=0和函数值只存在于x>0的区间内。
2. 函数的增减性与极值函数的增减性与极值是函数图像的重要性质。
- 函数增减性:若在定义域上任取两个实数a和b,若a<b时有f(a)<f(b),则称函数在该区间上是增函数;若a<b时有f(a)>f(b),则称函数在该区间上是减函数。
- 极值:函数在定义域内具有最大值或最小值的点被称为极值点。
极值点分为局部极值和全局极值。
三、函数的运算高一下册学习的函数可以进行加减乘除和复合运算。
1. 函数的加减运算两个函数f(x)和g(x)的和函数为h(x)=f(x)+g(x),差函数为h(x)=f(x)-g(x)。
加减运算可以通过对应的自变量进行运算得到新的函数。
2. 函数的乘法运算两个函数f(x)和g(x)的乘积函数为h(x)=f(x)×g(x)。
乘法运算通过对应自变量进行运算得到新的函数。
高一数学函数重点知识点

高一数学函数重点知识点高一数学函数重点知识点1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1); (2)0时,幂函数的图象通过原点,并且在区间) ,0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸; (3)0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当_从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当_趋于时,图象在_轴上方无限地逼近_轴正半轴方程的根与函数的零点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。
2、函数零点的意义:函数)(_fy的零点就是方程0)(_f实数根,亦即函数)(_fy的图象与_轴交点的横坐标。
即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:○ 1 (代数法)求方程0)(_f的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2acb_a_y. (1)△0,方程02cb_a_有两不等实根,二次函数的图象与_轴有两个交点,二次函数有两个零点. (2)△=0,方程02cb_a_有两相等实根,二次函数的图象与_轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程02cb_a_无实根,二次函数的图象与_轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量向量的运算加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
高一指示函数知识点总结

高一指示函数知识点总结高一数学学习的一个重点内容是指示函数。
指示函数是一种非常常见和重要的函数形式,它在数学和实际问题中具有广泛应用。
下面将对高一指示函数的知识点进行总结,从定义、性质、图像和应用等方面进行介绍。
一、定义指示函数是一种特殊的函数形式,它可以分段定义。
对于一个给定的集合A,指示函数I_A(x)的定义如下:当x属于A时,I_A(x)=1;当x不属于A时,I_A(x)=0。
二、性质1. 值域:指示函数的值域是{0,1},即只能取0或1。
2. 奇偶性:指示函数是一个奇函数,即满足条件I_A(-x)=-I_A(x)。
3. 单调性:指示函数不具有单调性,因为它在定义的不同区间上取不同的值,无法通过增减性来描述其单调性。
4. 位移性:指示函数具有位移性,即I_A(x-a)表示将A中的每个元素都向右平移a个单位得到的函数。
三、图像指示函数的图像非常简单,只会在定义集合A内的点上取值为1,在定义集合A外的点上取值为0。
因此,指示函数的图像可以用一条垂直于x轴的线段来表示,线段的高度为1,对应于定义集合A的区域。
在定义集合A外的区域,图像的高度为0。
四、应用指示函数在解决实际问题中具有广泛应用。
以下是其中几个常见的应用:1. 集合运算:指示函数可以用于描述集合的运算,如并集、交集和补集等。
通过指示函数,我们可以轻松地判断元素是否属于某个集合,从而进行集合的相关操作。
2. 条件判断:指示函数可以用于描述条件判断的情况。
例如,某个条件是否满足可以利用指示函数来表示,条件满足时函数取值为1,否则为0。
3. 概率计算:指示函数在概率计算中也有重要的应用。
例如,在进行事件概率计算时,我们可以使用指示函数来表示事件的发生与否,从而进行相应的计算。
4. 导数运算:指示函数在导数运算中也有应用。
虽然指示函数在具体点上不可导,但可以通过极限的概念来讨论其导数。
指示函数在导数运算中的应用可以帮助我们更好地理解导数的概念和性质。
高一数学必修一函数知识点

【导语】考试是检测学⽣学习效果的重要⼿段和⽅法,考前需要做好各⽅⾯的知识储备,对于数学更加要进⾏复习归纳。
下⾯就让给⼤家分享⼀些⾼⼀数学必修⼀函数知识点总结吧,希望能对你有帮助!⾼⼀数学必修⼀函数知识点总结篇⼀1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可⽤于求参数);(3)判断函数奇偶性可⽤定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题⼀定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或⽅程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中⼼(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中⼼(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的⽅程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2⽅程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成⽴,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成⽴,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像⼜关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像⼜关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.⽅程k=f(x)有解 k∈D(D为f(x)的值域);6.a≥f(x) 恒成⽴ a≥[f(x)]max,; a≤f(x) 恒成⽴ a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由⼝诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不⼀定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地⽤定义证明函数的单调性,求反函数,判断函数的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
高一数学函数知识点5
函数的单调性
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
高一数学函数知识点4
函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.
函数的图象
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b>0)
沿y轴向平移b个单位
y=f(x±a)(a>0)
沿x轴向平移a个单位
y=-f(x)
作关于x轴的对称图形
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.
6、证明函数的单调性的方法
(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或(2)设函数y=f(x)在某区间内可导.
如果f′(x)>0,则f(x)为增函数;如果f′(x)高一数学函数知识点6
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.
高一数学函数知识点2
函数的解析式与定义域
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
高一数学函数知识点3
函数的值域与最值
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数.
②在[a、b]上是增函数.
在[a、b]上是减函数.
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
高一数学函数知识点总结
高中数学最难的就是函数部分,各种函数图像和解析式很容易记错。为了方便大家学习,下面给大家分享一些关于高一数学函数知识点总结,希望对大家有所帮助。
高一数学函数知识点1
映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.
2、对于函数的概念,应注意如下几点:
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数.
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.
注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.
②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.
3、求函数y=f(x)的反函数的一般步骤:
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f-1(x)
作关于直线y=x的对称图形
y=f(ax)(a>0)
横坐标缩短到原来的,纵坐标不变
y=af(x)