高中数学必修三《用样本的数字特征估计总体的数字特征》优秀教学设计
高中数学 2.2.2用样本的数字特征估计总体的数字特征教案 新人教B版必修3

2.2.2用样本的数字特征估计总体的数字特征教学目标:1.通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2.进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学重点:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学过程:1. 本均值:nx x x x n +++= 21 2.样本标准差:nx x x x x x s s n 222212)()()(-++-+-== 3.通过例1、例2、例3、例4、例5熟悉上述两个公式4.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
5.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用;“去掉一个最高分,去掉一个最低分”中的科学道理课堂练习:第73页,练习A,练习B小结:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
课后作业:第74页,习题2-2A 第4、5、6题,精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
【精品教学课件】高中数学(新增5页)课标人教A版)必修三《2.2.2 用样本的数字特征估计总体的数字

精品课件
2
解 该组数据的平均数为14(x+28),中位数一定是其中两个 数的平均数,由于 x 不知是多少,所以要分几种情况讨论.
(1)当 x≤8 时,原数据按从小到大的顺序排列为 x,8,10,10,
其中位数为12×(10+8)=9.若14(x+28)=9,则 x=8,此时中 位数为 9.
(2)当 8<x≤10 时,原数据按从小到大的顺序排列为 8,
方法技巧 分类讨论思想的应用
在解决问题时,由于条件的变化,问题的结果有多种情况,不能用同一标准 或同一种方法解决,这就需要对条件进行分类讨论,这就是分类讨论思想.
精品课件
1
【示例】某班4个小组的人数为10,10,x,8,ห้องสมุดไป่ตู้知这组数据的中位数与平均数相等,
求这组数据的中位数. [思路分析] 从中位数的定义入手进行讨论,根据不同情况分类求解.
不一会,又来了一只小狗熊,小狗熊对柠檬桉树苗看了又看,闻了又闻,咂着嘴说:“不只长得好看,还有股醉人的香味儿,我要尝一片叶子,看看到底是什么滋味。人们就算不干 活也不会饿死了。,
老远跑过来
大家仔细把这只从人类世界来的鸟打量了一番,一只狐狸站出来嘲笑说:“我还以为是什么稀奇的事物呢!人类世界的鸟跟我们这里的鸟也没什么不同嘛,真是浪费时间,害得我大
综上所述,这组数据的中位数为 9 或 10.
精品课件
3
方法点评 当在数据中有未知数x求其中位数时,因x的取值不同,所以数据 由大到小(或由小到大)的排列顺序不同,故中位数也不同,这就是本题分类讨 论的原因.
精品课件
4
“什么?我胆小要黑狗保护?”公鸡气得脸色发紫,它大嚷大叫:“我怕过谁来着,你们没见我格斗时的气势?哼,我再也不跟黑狗住在一起了,你们都看看我能不能活下去。 我的同胞被全部带走了! 原来人类是贪图我们身体上的美丽羽毛……怎么办?我们剩下的同伴们在一起商量。” “那太好了,让我们一起来欣赏阿土先生的参赛曲目——《黑土高坡》。 股票入门基础知识 https://www.gpzs.vip
高中数学人教版A版必修三《用样本的数字特征估计总体的数字特征》优质PPT课件

y ( x ≠ y ).若样本(x1,x2,…,xn,y1,y2,…,ym)的平均数 z =α x +(1-α) y ,
其中 0<α<12,则 n,m 的大小关系为( )
A.n<m
B.n>m
C.n=m
D.不能确定
反思与感悟 解析答案
跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的 成绩如下表所示:
人数 1
1
2
1
5
3
20
工资 5 500
5 000 3 500 3 000 2 500 2 000 1 500
(1)求该公司职工月工资的平均数、中位数、众数;
解析答案
(2)若董事长、副董事长的工资分别从5 500元、5 000元提升到30 000元、 20 000元,那么公司职工的月工资的新的平均数、中位数和众数又是什么? 解 若董事长、副董事长的工资提升后,职工月工资的平均数为
30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×20
x=
33
=10833500≈3 288(元).
中位数是1 500元,众数是1 500元.
解析答案
(3)你认为哪个统计量更能反映这个公司职工的工资水平? 解 在这个问题中,中位数和众数都能反映出这个公司职工的工资水平, 因为公司少数人的工资额与大多数人的工资额差别较大,这样导致平均 数偏差较大,所以平均数不能反映这个公司职工的工资水平.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 方差、标准差 思考 若两名同学的两门学科的平均分都是80分,一名是两门均为80分, 另一名是一门40分,一门120分,如何刻画这种差异?
必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。
高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征(第2课时) 教案

编写时间:2021年月日2020-2021学年第二学期编写人:马安山课题2.2.2用样本的数字特征估计总体的数字特征(第2课时)授课班级高二(17) 授课时间2021年月日学习目标1知识与技能:通过方差和标准差的学习,培养学生根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征,并作出合理解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
2过程与方法:通过用样本的数字特征估计总体的数字特征的研究,渗透统计学的思想和方法。
培养学生收集数据、分析数据、归纳和整理数据,增强学习的积极性。
3情感、态度与价值观:培养学生自主学习、数学交流能力和数学应用意识。
通过联系观点分析,解决实际生活中的具体问题。
教学重点方差、标准差的计算方法。
教学难点如何利用样本的方差、标准差对总体数据作出分析及判断数据的稳定性。
课型新课主要教学方法自主学习、思考、交流、讨论、讲解教学模式合作探究,归纳总结教学手段与教具几何画板、智慧黑板.教学过程设计各环节教学反思【自主学习】————大胆尝试1.提出问题:问题1:如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.问题2:某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600, 880, 880, 620, 960, 570, 900(平均773)乙:800, 860, 850, 750, 750, 800, 700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.问题3:有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125乙 115 100 125 130 115 125 125 145 125 145哪种钢筋的质量较好?由上图可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range ).由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.问题4:如何考查样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?把问题3中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小, 如何用数字去刻画这种分散程度呢? 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.2.标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =])()()[(122221x x x x x x nn -++-+- . 3.方差的求法:标准差的平方s 2叫做方差.s 2=222121[()()()]n x x x x x x n-+-++-.其中,x n 是样本数据,n 是样本容量,是样本平均数.4.标准差(方差)用来衡量 样本数据的离散程度 ,标准差(方差)越大,数据的离散程度 越大 ;标准差(方差)越小,数据的离散程度 越小 .【课堂探究】探究一:标准差的取值范围是什么?标准差为0的样本数据有什么特点?[0,)+∞;该组各数据全相等,表明数据没有波动,数据没有离散性。
人教版高中数学必修3-2.2《用样本的数字特征估计总体的数字特征》参考教案2

2.2.2用样本的数字特征估计总体的数字特征教学目标:1.通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2.进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学重点:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
教学过程:1.本均值:nx x x x n +++= 21 2.样本标准差:nx x x x x x s s n 222212)()()(-++-+-== 3.例题讲解:例1,P76,本处略。
例2,P77,本处略。
通过这两套习题熟悉上述两个公式。
由于本章节内容识记性知识点较多,对计算能力也有较高要求,故教师可从多渠道补充课堂练习,达到预期目标。
4.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
5.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理课堂练习:小结:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
课后作业:P81第4题;P82第5题.。
学科核心素养下高中数学教学设计——以“用样本估计总体”为例

学科核心素养下高中数学教学设计———以“用样本估计总体”为例文|傅焕铭一、教材分析我们收集的原始数据往往多而杂,需要对原始数据进行分析、处理,找到数据背后蕴藏的信息。
对总体统计特征的刻画包括两个层面:一是总体统计特征的全面刻画,即刻画出总体中所有个体的取值规律,这个规律可以用总体的频率分布表和频率分布直方图描述或近似描述;二是总体部分统计特征的刻画,如平均数、众数、方差、标准差等数字特征。
二、教学目标(一)核心素养学生初步习得科学处理数据的能力。
(二)教学目标(1)学生用频率分布直方图估计样本的众数、中位数、平均数等数据特征。
(2)学生能自行独立计算样本数据的标准差、方差,并知道分别刻画统计的什么特征。
(3)学生会用样本的频率分布估计总体分布,会用样本特征估计总体特征,理解用样本估计总体的思想,并能利用所学知识解决生活中的一些现实问题。
三、教学重难点教学重点:学生能从频率分布直方图上估计出样本数据特征。
教学难点:学生理解总体分布的概念,形成统计思维。
四、教学过程师:同学们,前面我们已经研究过通过抽样调查来研究数据的方法,了解了提高样本代表性的一些具体方法,收集数据后,我们要从中找到数据背后包含的信息,方可达到用样本估计总体的目的。
今天我们就一起研究“用样本估计总体”。
(一)课前导学师:同学们,根据自学任务,思考下列问题并完成检测。
任务1:样本数字特征有哪些?如何求?这些特征在频率分布直方图上如何估计?任务2:样本数字特征是如何反映样本数据的集中趋势和离散程度的?(设计意图:通过出示自学任务,引导学生自学,相机进行自学效果检测。
学生根据自学情况,检测新知中还有哪些内容没有理解和掌握,从而有针对性地学习本节内容,实现高效学习。
同时也旨在培养学生良好的学习习惯,指导学生学会学习数学的方法。
)(二)课堂设计探究一:样本的数字特征11.探究:众数、中位数、平均数的概念。
师:请同学们根据概念解释,完成概念名词的填空,并揣摩这些概念的含义。
人教版高中数学必修3《用样本数字特征估计总体数字特征》说课稿(4)

人教版高中数学必修3《用样本数字特征估计总体数字特征》说课稿(4) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢人教版高中数学必修3《用样本的数字特征估计总体的数字特征》说课稿各位老师:大家好!我叫***,来自**。
我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。
下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。
本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数.⑵体会样本数字特征具有随机性难点:能应用相关知识解决简单的实际问题。
二、教学目标分析1.知识与技能目标能利用频率颁布直方图估计总体的众数,中位数,平均数.能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:通过对本节课知识的学习,初步体会、领悟”用数据说话”的统计思想方法。
3、情感态度与价值观目标:通过对有关数据的搜集、整理、分析、判断培养学生”实事求是”的科学态度和严谨的工作作风。
三、教学方法与手段分析1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用”问答探究”式的教学方法,层层深入。
充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2。
教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析1.复习回顾,问题引入「屏幕显示」〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
2.2.2用样本的数字特征估计总体的数字特征
教学目标:1.通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2.进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基
本数字特征;初步体会样本频率分布和数字特征的随机性。
教学重点:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。进一步体会
用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初
步体会样本频率分布和数字特征的随机性。
教学过程:
1. 本均值:nxxxxn21
2.样本标准差:nxxxxxxssn222212)()()(
3.通过例1、例2、例3、例4、例5熟悉上述两个公式
4.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,
但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、
均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,
它们确实反映了总体的信息。
5.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不
变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的
k倍
(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(sxsx的应用;
“去掉一个最高分,去掉一个最低分”中的科学道理
课堂练习:第73页,练习A,练习B
小结:通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。进一步体会用样
本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;初步体会样
本频率分布和数字特征的随机性。
课后作业:第74页,习题2-2A第4、5、6题,