小学生奥数余数问题五篇
五年级奥数同余问题

1.两数相除商37余73,求被除数的最小值。
解析:28812.两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少?解析:被除数是424,除数是79.3.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来的除数。
解析:除数是10.4.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也比原来大了3.求原来的除数。
解析:除数是9.5.求算式3218+26-757除以9的余数。
解析:3.6.求413除以5的余数。
解析:1.7. 2461×135×6047÷11的余数是多少?解析:5.8. 19992000÷7的余数是多少?解析:0.9.……199200除以9的余数是________;解析:3.10. 数11…1(2007个1),被13除余多少?解析:711.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.12.有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?解析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313——2=238(个) ,313—7=306(个) ,(238,306)=34(人) .因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。
奥数余数问题带余除法

精心整理
页脚内容
带余除法
被除数=除数×商+余数
被除数—余数=除数×商
余数=被除数—除数×商
商=(被除数—余数)÷除数
要注意以下几点:
1. 余数总是小于除数的整数。
2. 只要
3. 整除例1、 例2、 数是多
1、 被
2、一个
3、两个
4、1705
5、如果例3、 1、被除2、被除3、两个4、一个5、1492
6、从
7、两个例4、 1、一个
2、一个
3、有一个两位数被3除或被4除,余数都是1,符合这一条件的最大三位数和最小三位数各是多少?
4、有一个最小的两位数,除以5余数是3,除以13余数是5,这个最小的两位数除以11余数是多少?
5、一个两位数除以一个一位数,商仍是两位数,余数是8.被除数、除数、商及余数的和是多少?
6、一个两位数除329,这个两位数与商相等,余数是5,求这个两位数。
7、一个三位数,它除以19,所得的商和余数相等,符合这个条件的三位数有多少个?其中最大的是多少?最小的是多少?
精心整理
页脚内容
8、五年级同学去西湖划船,若每船坐8人,则余下7人;若每船坐12人,则余下11人,若每船坐14人,则余下13人,五年级至少有同学多少人?
9、实验小学五年级的同学在操场上做游戏,每组5人则多1人,每组6人则多1人,每组7人则多1人,五年级做游戏的同学至少有多少人?
10、筐子里有一些皮球,三个三个地数余2个,四个四个地数余3个,五个五个地数余4个,筐子里至少有多少个皮球?。
五年级奥数题及答案:带余数的除法问题1

五年级奥数题及答案:带余数的除法问题1 编者小语:奥数教学不能单纯是传授数学知识 ,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题 ,希望小编整理的五年级奥数题及参考答案:带余数的除法问题1 ,可以帮助到你们 ,助您快速通往高分之路!!前面我们讲到除法中被除数和除数的整除问题.除此之外 ,例如:16÷3=5…1 ,即16=5×3+1.此时 ,被除数除以除数出现了余数 ,我们称之为带余数的除法。
一般地 ,如果a是整数 ,b是整数(b≠0) ,那么一定有另外两个整数q 和r ,0≤r当r=0时 ,我们称a能被b整除。
当r≠0时 ,我们称a不能被b整除 ,r为a除以b的余数 ,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r ,0≤r例1 一个两位数去除251 ,得到的余数是41.求这个两位数。
分析这是一道带余除法题 ,且要求的数是大于41的两位数.解题可从带余除式入手分析。
解:∵被除数÷除数=商…余数 ,即被除数=除数×商+余数 ,∴251=除数×商+41 ,251-41=除数×商 ,∴210=除数×商。
∵210=2×3×5×7 ,∴210的两位数的约数有10、14、15、21、30、35、42、70 ,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。
小学奥数5-5-4 余数性质(二).专项练习及答案解析

1.学习余数的三大定理及综合运用 2.理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
小学奥数知识点:余数问题

小学奥数知识点:余数问题余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mo d m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
小学奥数经典题1.两辆汽车从A,B两地同时出发相向而行,客车行完全程要8小时,货车行完全程要10小时,两车相遇后又各自往前驶去,已知出发5小时后两车相距50千米,问A,B两地相距多少千米?2.有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?3.工程队挖一条水渠,第一天挖了全长的多28米,第二天挖了全长的少20米,这时剩下22米没挖完.这条水渠全长多少米?4.如图,一个边长为40厘米的正方形ABCD的场地,蚂蚁和蜗牛同时从A 点出发,蚂蚁以5厘米/分钟的速度沿线路A→B→C→D行走,蜗牛以2厘米/分钟的速度沿线路A→D行走.出发18分钟时,蚂蚁走到E点,蜗牛走到F点,求三角形AEF的面积是多少平方厘米?5.运来一批水果.第一天卖出总数的15%,第二天卖出160千克,剩下的与卖出的重量的比是1:3.这批水果共有多少千克?。
五年级奥数同余问题

1.两数相除商37余73,求被除数的最小值。
解析:28812.两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少?解析:被除数是424,除数是79.3.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来的除数。
解析:除数是10.4.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也比原来大了3.求原来的除数。
解析:除数是9.5.求算式3218+26-757除以9的余数。
解析:3.6.求413除以5的余数。
解析:1.7. 2461×135×6047÷11的余数是多少?解析:5.8. 19992000÷7的余数是多少?解析:0.9.求123456789101112……199200除以9的余数是________;解析:3.10. 数11…1(2007个1),被13除余多少?解析:711.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.12.有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?解析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .---精心整理,希望对您有所帮助。
五年级的奥数余数问题解答

五年级的奥数余数问题解答1、(四中小升初选拔试题)被除数,除数,商与余数之和是2143,已知商是33,余数是52,求被除数和除数.分析: 方法1:通过对题意的理解我们可以得到:被除数=除数×商+余数=除数×33+52;又有被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数;所以除数×33+52=2058-除数;则除数=(2058-52)÷34=59,被除数=2058-59=1999.方法2:此题也可以按这个思路来解:从被除数中减掉余数52后,被除数就是除数的33倍了,所以可以得到:2143-33-52-52= (33+1)×除数,求得除数=59 ,被除数=33×59+52=1999 .转化成整数倍问题后,可以帮助理解相关的性质.2、(美国长岛小学数学竞赛)写出所有的除109后余数为4的两位数.分析:还是把带有余数的问题转化成整除性的问题,也就是要找出能整除(109-4)的所有的两位数.进一步,要找出能整除105的两位数,很简单的方法就是把105分解质因数,从所得到的质因子中去凑两位数.109-4=105=3×5×7.因此这样的两位数是:15;35;21.3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.4、数11…1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.5、求下列各式的余数:(1)2461×135×6047÷11 (2)2123÷6分析:(1)5;(2)6443÷19=339……2,212=4096 ,4096÷19余11 ,所以余数是11 .6、1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.7、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.8、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313— 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .9、(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.10、已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a 和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.11.19941994…1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9,1994199419941994÷15余14,......,发现余数3个一循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.12.a>b>c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c)×(a-b)×(b-c)除以11的余数是多少分析:(a+b+c)÷11的余数是7;(a—b)÷11的余数是1l+2—7=6;(b—c)÷11的余数是11+7—9=9.所求余数与7 6×9÷11的余数相同,是4.13.一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.14、自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+ (90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.15、求123456789101112……199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+…..9=45二位数数字之和是1×10+1+2+3+…….9 (10-19)2×10+1+2+3+…….9 (20-29)……9×10+1+2+3+…….9 (90-99) 余90,9余0,11余2故二位数总和为(1+2…..+9)×10+1+2…..+9=495100—199与1—99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3.16、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;、满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)17、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出÷7的余数就可以知道天后是星期几.≡52007(mod7),56≡1(mod7)2007≡3(mod6), ≡52007≡53≡6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是118、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194619、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2 倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A 的倍数;同理乙-2丙也同样没有余数,是A的倍数.939×2-603=1275,939-393×2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51 再实验得到A为17,余数分别为8,4,2.。
五年级奥数第64讲馀数问题逐级满足法-

“今有物,不知其数,三三数之,剩二,五五数之,剩 三,七七数之,剩二,问物几何?” 答曰:“二十三”
口诀诗: 程大位的算法口诀诗,就是解答此类
问题的金钥匙,它被世界各国称为中国 剩余定理或孙子定理,是我国古代数学 的一项辉煌成果.
“三人同行七十稀” “五树梅花廿一枝” “七子团圆正半月” “除百零五便得知”
BA
2
【例9】(★★★★★) 在200至300之间,有三个连续的自然数,其中,最小的能被3整除, 中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数 分别是多少?
一、本讲重点知识回顾 三大绝招:减同余 加同补 逐级满足法(必会)
二、本讲经典例题 例1,例4,例6,例8,例9
答案
【例1】5 【例2】8 【例3】11 【例4】140 【例5】 18,38,58
【例6】 91
【例7】 1102
【例8】91
【例9】 258、259、260
3
【例8】(★★★★) (华杯赛试题) 如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从 A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到 A孔。他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4 孔跳一步,也只能跳到B孔。最后他每隔6孔跳一步,正好跳回到A孔, 你知道这个圆圈上共有多少个孔吗?
【例5】(★★★) (《小数报》数学竞赛) 写出满足除以4余2且除以5余3的最小三个自然数。
【例4】(★★★) (小学数学奥林匹克预赛B卷) 一个小于200的数,它除以11余8,除以13余10,那么这个数是______。
【例6】(★★★) 1~100中的哪个自然数被3和5除余1,且能被7整除?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学生奥数余数问题五篇
1.小学生奥数余数问题
余数相关知识点:
1、除法的一般表达式子是被除数÷除数=商,这个商称为完全商。
2、有余数的除法表达式是被除数÷除数=商……余数(余数
3、考虑不完全商的问题,即t≠0时,m=nq+t,则m-t=nq,故m-t是n的倍数,因此不能整除的问题可以转化为能整除的问题。
2.小学生奥数余数问题
1、数111(2007个1),被13除余多少
分析:
根据整除性质知:13能整除111111,而20076后余3,所以答案为7。
2、1013除以一个两位数,余数是12。
求出符合条件的所有的两位数。
分析:
3、1013-12=1001,1001=71113,那么符合条件的所有的两位数有13,77,91有的同学可能会粗心的认为11也是。
11小于12,所以不行。
大家做题时要仔细认真。
某个自然数被247除余63,被248除也余63。
那么这个自然数被26除余数是多少?
解答:
由余数的性质,这个数减去63得到的新数既能被247整除,也能被248整除,而相邻的两个整数互质,所以新数能被247×248整除,显然能被26整除。
于是这个数除以26的余数等于63除以26的余数,为11。
解余数问题时,掌握余数的性质很重要:若a÷b…n,则b|a-n。
若a|b,c|b,且a,c互质,则a×c|b。
3.小学生奥数余数问题
1、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同。
请问学校共有多少个班
分析:
所求班级数是除以118,67,33余数相同的数。
那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17。
2、有一个大于1的整数,除45,59,101所得的余数相同,求这个数。
分析:
这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就
是说它是任意两数差的公约数。
101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14。
3、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?
分析:
此题是一道求除数的问题。
原题就是说,已知一个数除240余2,除313余7,求这个数为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这3137=306恰为这个数的倍数,我们只需求238和306的公约数便可求出小朋友最多有多少个了。
2402=238(个),3137=306(个),(238,306)=34(人)。
4.小学生奥数余数问题
1、已知一个两位数除1477,余数是49。
那么,满足那样条件的所有两位数是。
分析:
1477-49=1428是这两位数的倍数,又1428=223717=5128=6821=8417,因此所求的两位数51或68或84。
2、有一个大于1的整数,除45,59,101所得的余数相同,求这个数。
分析:
这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数。
101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14。
3、已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值。
分析:
127-3=124,99-3=96,则b是124和96的公约数。
而(124,96)=4,所以b=4。
那么a的可能取值是11,15,19,23,27。
5.小学生奥数余数问题
1、除107后,余数为2的两位数有_____。
2、四位数8□98能同时被17和19整除,那么这个四位数所有质因数的和是_____。
3、一串数1、2、
4、7、11、16、22、29这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是_____。
3、22222除以13所得的余数是_____。
4、小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔_____次。
5、七位数3□□72□□的末两位数字是_____时,不管十万位上和万位上的数字是0,1,2,3,4,5,6,7,8,9中哪一个,这个七位数都不是101的倍数。
小学生奥数余数问题五篇.doc。