中考数学总复习之尺规作图专项训练题

合集下载

中考数学总复习考点知识专题练习27尺规作图

中考数学总复习考点知识专题练习27尺规作图

中考数学总复习考点知识专题练习27尺规作图1.(2021贵阳)如图1,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D;②作直线CD.直线CD就是线段AB的垂直平分线,则b的长可能是()A.1 B.2 C.3 D.4图1图2图3图42.(2021杭州)如图2,已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E 作EP⊥AB于点P,则AP∶AB=()A.1∶5B.1∶2 C.1∶3D.1∶ 23.如图3,在Rt△ABC中,∠A=90°,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;②以点C为圆心,BM长为半径画弧,交CB 于点D;③以点D为圆心,MN长为半径画弧,与⌒DE相交于点E;④过点E画射线CE 交AB于点F.若AF=2,AC=23,则BF的长为__________.4.如图4,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,那么△CBG的面积为__________.5.如图5,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为__________.图56.(2021赤峰)如图6,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.图6B7.(2021长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()8.(2021百色)如图7,在⊙O中,尺规作图的部分作法如下:(1)分别以弦AB的端点A,B为圆心,适当等长为半径画弧,使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10,AB=16,则tan B等于()A.35B.34C.45D.43图7图89.(2021通辽)如图8,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论错误的是()A.∠BDE=∠BAC B.∠BAD=∠BC.DE=DC D.AE=AC10.如图9,在菱形ABCD中,分别以点C,D为圆心,大于12CD的长为半径作弧,两弧在CD的两侧分别相交于点M,N,作直线MN交CD于点F,交对角线AC于点E,连接BE,DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.图9C11.如图10,已知▱AOCD 的顶点O (0,0),点C 在x 轴的正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径画弧,分别交OA 于点M ,交OC 于点N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOC 内相交于点E ;③画射线OE ,交AD 于点F (2,3),则点A 的坐标为()A .⎝ ⎛⎭⎪⎫-54,3B .(3-13,3)C .⎝ ⎛⎭⎪⎫-45,3 D .(2-13,3)图1012.()已知△ABC 和△CDE 都为正三角形,点B ,C ,D 在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图11①,当BC =CD 时,作△ABC 的中线BF ; (2)如图11②,当BC ≠CD 时,作△ABC 的中线BG .图11答案中考数学总复习考点知识专题练习 27 尺规作图1.D2.D3.44.275.66.(1)解:如答图1,AE 即为所求.答图1(2)证明:∵AE 平分∠BAC ,∴∠CAE =∠DAE .在△ACE 和△ADE 中,⎩⎨⎧AC =AD ,∠CAE =∠DAE ,AE =AE ,∴△ACE ≌△ADE (SAS). ∴∠ADE =∠C =90°.∴DE ⊥AB . 7.A8.B9.B10.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ECB =∠ECD .在△ECB 和△ECD 中,⎩⎨⎧CE =CE ,∠ECB =∠ECD ,CB =CD ,∴△ECB ≌△ECD (SAS).∴BE =DE .由题意可知MN 垂直平分CD ,∴CE =DE .∴BE =CE . (2)解:∵四边形ABCD 是菱形,∴BC =BA .∴∠ECB =∠BAC =12(180°-∠ABC )=12×(180°-72°)=54°.由(1)得BE=CE,∴∠EBC=∠ECB=54°.∴∠ABE=∠ABC-∠EBC=72°-54°=18°.11.A12.解:(1)如答图2,线段BF即为所求.答图2答图3 (2)如答图3,线段BG即为所求.。

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。

2024学年全国中考数学必刷好题(通用版)专项(尺规作图及简单几何证明)练习(附答案)

2024学年全国中考数学必刷好题(通用版)专项(尺规作图及简单几何证明)练习(附答案)

2024学年全国中考数学必刷好题(通用版)专项(尺规作图及简单几何证明)练习1.如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.2.如图,在矩形ABCD中,AO=OC.(1)用尺规过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F,连接AF,CE.(用基本作图,保留作图痕迹,不写作法、结论)(2)求证:四边形AFCE是菱形.3.如图,已知等边△ABC中边AB=10,按要求解答下列问题:(1)尺规作图:作∠ABC的角平分线BP,射线BP交边AC于点P.(不写作法,用2B 铅笔作图并保留痕迹)(2)在(1)作图中,若点D在线段BP上,且使得AD=5,求BD的长.(结果保留根号)4.在△ABC中,AB=AC,AD⊥BC于点D.(1)尺规作图:作边AB的垂直平分线EF,分别与线段AB、AC,AD交于点E、F,G;(不写作法,保留作图痕迹)(2)连接BG、CG,若AG=1,∠BAC=45°,求△BGC的面积.5.求证:等腰三角形两腰上的中线相等.(1)请用尺规作出△ABC两腰上的中线BD、CE(保留痕迹,不写作法);(2)结合图形,写出已知、求证和证明过程.6.如图,在△ABC中,AB=AC,且∠BAC=120°.(1)作AB的垂直平分线,交AB于点D,交BC于点E,连接AE,延长CA,交直线DE于点F;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,求证:AC=AF.7.如图,在△ABC中,AB=8,∠ABC=30°,∠ACB=45°.(1)用尺规作图的方法作出AC边的中垂线;(保留作图痕迹,不写作法)(2)求△ABC的面积.8.如图,已知四边形ABCD是平行四边形.(1)请用直尺和圆规在AB上取一点E,使得EA=ED;(2)在(1)的条件下,连接CE,若∠A=60°,AB=6,AD=4,求线段CE的长.9.如图,BD是△ABC的角平分线.(1)用直尺和圆规过点D作DF⊥BC,垂足为F(不要求写作法,保留作图痕迹);(2)若BC=5,AB=6,S△ABC=11,求DF的长.10.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M. (1)尺规作图:作∠BCD的平分线CN,交BD于点F.(基本作图,保留作图痕迹,不写作法,并标明字母)(2)求证:AE=CF.11.如图,在△ABC中,AB=AC,D是边BC的中点,连接AD,E是边CA延长线上一点,射线AF平分∠BAE.(1)过点B作AF的垂线,垂足为G(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,求证:四边形BDAG是矩形.12.如图,在平行四边形ABCD中,CF平分∠BCD交B于点F.(1)尺规作图:过点A作AE平分∠BAD交BD于点E;注意:不写作法,保留作图痕迹,并标明字母.(2)求证:AE=CF.13.如图,△ABC中,BA⊥AC,∠B=31°.(1)尺规作图:作线段BC的垂直平分线交AB于点D,交BC于点E;(2)在(1)作图的基础上,连接AE、CD,求∠AED的度数.14.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.15.如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N,交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④作FE∥AB交BC于E;⑤连接AE交BF于点P;(1)求证:四边形ABEF是菱形;(2)连接CP,若AB=8,AD=12,∠ABC=60°,求CP的长.16.如图,在矩形ABCD中,AB=3,BC=5,P是边AD上一点,将△ABP沿着直线PB 折叠,得到△EBP.(1)请在备用图上用没有刻度的直尺和圆规,在边AD上作出一点P,使BE平分∠PBC,并求出此时△BEC的面积;(作图要求:保留作图痕迹,不写作法.)(2)连接CE并延长交线段AD于点Q,则AQ的最大值为.(直接写出答案)17.如图,已知⊙O,请用无刻度的直尺和圆规按要求画图(不写画法,保留作图痕迹)(1)图1中,若点P为⊙O外一点,请过点P作⊙O的一条切线PM(点M为切点);(2)图2中,若点Q为⊙O外一点,点C为优弧AB上一点,试确定点C,使得CQ平分∠ACB.18.如图,四边形ABCD为正方形.(1)请用直尺(不含刻度)与圆规在正方形内作一点P,使得点P到AB、CD的距离相等,且点P到BC的距离等于P A的长;(不要求写做法,但要保留作图痕迹)(2)在(1)的条件下,若正方形的边长为4,求P A的长.19.已知:∠AOB和线段a.求作:⊙P,使它与∠AOB的两边相切,半径等于线段a.20.下面是小文设计的“过圆外一点作圆的切线”的作图过程. 已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作⊙M,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计完成作图(保留作图痕迹)及证明.证明:连接OA,OB.∵OP为⊙M的直径,∴∠OAP=∠OBP= °,()(填推理的依据) ∴OA⊥AP, ⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.()(填推理的依据)参考答案1.如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.【详细解答】解:(1)如图:(2)证明:如图,连接DF,∵AD∥BC,∴∠ADE=∠EBF,∵AF垂直平分BD,∴BE=DE.在△ADE和△FBE中,,∴△ADE≌△FBE(ASA),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.2.如图,在矩形ABCD中,AO=OC.(1)用尺规过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F,连接AF,CE.(用基本作图,保留作图痕迹,不写作法、结论)(2)求证:四边形AFCE是菱形.【详细解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的中点是O,∴OA=OC,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA),∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.3.如图,已知等边△ABC中边AB=10,按要求详细解答下列问题:(1)尺规作图:作∠ABC的角平分线BP,射线BP交边AC于点P.(不写作法,用2B铅笔作图并保留痕迹)(2)在(1)作图中,若点D在线段BP上,且使得AD=5,求BD的长.(结果保留根号)【详细解答】解:(1)如图所示,射线BP即为所求.(2)∵△ABC为等边三角形,∠PBA=30°,∴BP平分∠ABC,∴BP⊥AC,在Rt△ABP中,BP=AP=5,∴AP=AB=5<5,在Rt△ADP中,PD===5,∴BD=BP﹣PD=5﹣5.4.在△ABC中,AB=AC,AD⊥BC于点D.(1)尺规作图:作边AB的垂直平分线EF,分别与线段AB、AC,AD交于点E、F,G;(不写作法,保留作图痕迹)(2)连接BG、CG,若AG=1,∠BAC=45°,求△BGC的面积.【详细解答】解:(1)如图,直线EF即为所求作.(2)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=∠BAC=22.5°,BD=CD,∵GB=GC,∵EF垂直平分线段AB,∴GA=GB=GC=1,∴∠GBA=∠BAG=22.5°,∠GCA=∠GAC=22.5°,∴∠BGD=∠GBA+∠GAB=45°,∠CGD=∠GCA+∠GAC=45°,∴∠BGC=90°,∴S△BGC=•BG•GC=.5.求证:等腰三角形两腰上的中线相等.(1)请用尺规作出△ABC两腰上的中线BD、CE(保留痕迹,不写作法);(2)结合图形,写出已知、求证和证明过程.【详细解答】解:(1)如图所示,中线BD、CE即为所求;(2)已知:△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.6.如图,在△ABC中,AB=AC,且∠BAC=120°.(1)作AB的垂直平分线,交AB于点D,交BC于点E,连接AE,延长CA,交直线DE于点F;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,求证:AC=AF.【详细解答】(1)解:如图,EF为所作;(2)证明:连接AE,如图,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=×(180°﹣120°)=30°,∵DE垂直平分AB,∴∠ADF=90°,EB=EA,而∠DAF=180°﹣∠BAC=60°,∠EAB=∠B=30°,∴∠DF A=90°﹣60°=30°,∠EAF=90°,∴∠EF A=∠C,∴EF=EC,而EA⊥CF,∴AC=AF.7.如图,在△ABC中,AB=8,∠ABC=30°,∠ACB=45°. (1)用尺规作图的方法作出AC边的中垂线;(保留作图痕迹,不写作法) (2)求△ABC的面积.【详细解答】解:(1)如图(1)所示:EF即为所求;(2)如图(2),过A作AD⊥BC于D,在Rt△ABD中,∵AB=8,∠ABC=30°,∴AD=AB=4,∴BD==4,在Rt△ACD中,∵∠ACB=45°,∴∠CAD=45°,∴CD=AD=4,∴BC=BD+CD=4+4,∴S△ABC=BC•AD=×(4+4)×4=8+8,即△ABC的面积为8+8.8.如图,已知四边形ABCD是平行四边形.(1)请用直尺和圆规在AB上取一点E,使得EA=ED;(2)在(1)的条件下,连接CE,若∠A=60°,AB=6,AD=4,求线段CE的长.【详细解答】解:(1)如图,线段DE即为所求作.(2)过点E作EH⊥CD于H.∵∠A=60°,EA=ED,∴△ADE是等边三角形,∴∠AED=60°,AEB=AD=DE=4,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CDE=∠AED=60°,∵∠DHE=∠CHE=90°,∴DH=DE•cos60°=2,EH=DE•sin60°=2,∵AB=CD=6,∴CH=CD﹣DH=4,∴EC===2.9.如图,BD是△ABC的角平分线.(1)用直尺和圆规过点D作DF⊥BC,垂足为F(不要求写作法,保留作图痕迹);(2)若BC=5,AB=6,S△ABC=11,求DF的长.【详细解答】解:(1)如图,DF为所作;(2)作DE⊥AB于E,如图,∴BD是△ABC的角平分线.∴DE=DF,∵S△ABC=S△ABD+S△DBC=AB•DE+BC•DF,∴DF(5+6)=11,∴DF=2.10.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M. (1)尺规作图:作∠BCD的平分线CN,交BD于点F.(基本作图,保留作图痕迹,不写作法,并标明字母)(2)求证:AE=CF.【详细解答】(1)解:如图,CN为所作;(2)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∠BAC=∠BCD,∵AE平分∠BAD,CN平分∠BCD,∴∠BAE=∠BAD,∠DCF=∠BCD,∴∠ABE=∠DCF,∵AB∥CD,∴∠ABE=∠CDF,在Rt△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.11.如图,在△ABC中,AB=AC,D是边BC的中点,连接AD,E是边CA延长线上一点,射线AF平分∠BAE.(1)过点B作AF的垂线,垂足为G(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,求证:四边形BDAG是矩形.【详细解答】(1)解:如图,BG为所作;(2)证明:∵AB=AC,D是边BC的中点,∴AD⊥BC,∠ABC=∠ACB,∵射线AF平分∠BAE,∴∠EAF=∠BAF,∵∠EAB=∠ABC+∠ACB,即∠EAF+∠BAF=∠ABC+∠ACB,∴∠EAF=∠ACB,∴AF∥BC,∴AD⊥AF,∴∠ADB=∠DAG=90°,∵BG⊥AF,∴∠BGA=90°,∴四边形ADBG为矩形.12.如图,在平行四边形ABCD中,CF平分∠BCD交B于点F. (1)尺规作图:过点A作AE平分∠BAD交BD于点E;注意:不写作法,保留作图痕迹,并标明字母.(2)求证:AE=CF.【详细解答】(1)解:如图,AE为所作;(2)证明:∵AE平分∠BAD,CF平分∠BCD,∴∠ABE=BAD,∠DCF=∠BCD,∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠BAE=∠DCF,∵AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.13.如图,△ABC中,BA⊥AC,∠B=31°.(1)尺规作图:作线段BC的垂直平分线交AB于点D,交BC于点E;(2)在(1)作图的基础上,连接AE、CD,求∠AED的度数.【详细解答】解:(1)如图所示;(2)∵DE垂直平分BC,∴BE=CE,∠BED=90°,∵BA⊥AC,∴∠CAB=90°,∴AE=BE,∴∠EAB=∠B=31°,∴∠AEB=180°﹣(∠EAB+∠B)=118°,∴∠AED=∠QEB﹣∠BED=118°﹣90°=28°.14.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.【详细解答】解:结论:CE=OF.理由:图形如图所示:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,AD∥BC,∵AE⊥BC,OF⊥AD,∴AE⊥AD,∴∠AEC=∠DAE=∠AOD=∠DFO=90°,∴∠EAC+∠DAO=90°,∠FDO+∠DAO=90°,∴∠CAE=∠ODF,∵OD=2AO,AC=2AO,∴AC=OD,在△AEC和△DFO中,,∴△AEC≌△DFO(AAS),∴CE=OF.15.如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N,交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④作FE∥AB交BC于E;⑤连接AE交BF于点P;(1)求证:四边形ABEF是菱形;(2)连接CP,若AB=8,AD=12,∠ABC=60°,求CP的长.【详细解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∵EF∥CD,∴EF∥AB,∵AF∥BE,∴四边形ABEF为平行四边形,由作法得BF平分∠ABE,即∠ABF=∠EBF,∵AD∥BC,∴∠AFB=∠EBF,∴∠ABF=∠AFB,∴AB=AF,∴平行四边形ABEF为菱形;(2)解:过P点作PH⊥BC于H,如图,∵四边形ABEF是菱形,∴∠PBH=∠ABC=×60°=30°,BP⊥PE,BE=BA=8,在Rt△PBE中,PE=BE=4,∴BP=PE=4,在Rt△BPH中,PH=BP=2,∴BH=PH=2×=6,∴CH=BC﹣BH=12﹣6=6,∴PC==4.16.如图,在矩形ABCD中,AB=3,BC=5,P是边AD上一点,将△ABP沿着直线PB 折叠,得到△EBP.(1)请在备用图上用没有刻度的直尺和圆规,在边AD上作出一点P,使BE平分∠PBC,并求出此时△BEC的面积;(作图要求:保留作图痕迹,不写作法.)(2)连接CE并延长交线段AD于点Q,则AQ的最大值为1.(直接写出答案)【详细解答】解:(1)如图,点P即为所求作.过点E作EH⊥BC于H,由作图可知,∠EBC=30°,∴EH=BE=,∴S△BCE=•BC•EH=×5×=.(2)如图2中,由题意,BE=BA,可知点E的运动轨迹是⊙B,当EC与⊙B相切时,AQ的值最大,此时P,Q重合,∵∠BEC=90°,BC=5,BE=AB=3,∵EC===4,∵AD∥BC,∴∠BCE=∠CPD,∵∠BEC=∠D=90°,∴△BCE∽△CPD,∴=,∴=,∴PD=4,∴AQ的最大值=5﹣4=1.故答案为:1.17.如图,已知⊙O,请用无刻度的直尺和圆规按要求画图(不写画法,保留作图痕迹)(1)图1中,若点P为⊙O外一点,请过点P作⊙O的一条切线PM(点M为切点);(2)图2中,若点Q为⊙O外一点,点C为优弧AB上一点,试确定点C,使得CQ平分∠ACB.【详细解答】解:(1)如图,直线PM即为所求作.(2)如图,点C即为所求作.18.如图,四边形ABCD为正方形.(1)请用直尺(不含刻度)与圆规在正方形内作一点P,使得点P到AB、CD的距离相等,且点P到BC的距离等于P A的长;(不要求写做法,但要保留作图痕迹)(2)在(1)的条件下,若正方形的边长为4,求P A的长.【详细解答】解:(1)如图,点P为所作;(2)设P A=x,则PE=x,∴PF=4﹣x,在Rt△APF中,AF=2,∴22+(4﹣x)2=x2,解得x=,即AP的长为.19.已知:∠AOB和线段a.求作:⊙P,使它与∠AOB的两边相切,半径等于线段a.【详细解答】解:如图,⊙P为所作.20.下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作⊙M,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计完成作图(保留作图痕迹)及证明.证明:连接OA,OB.∵OP为⊙M的直径,∴∠OAP=∠OBP= 90°,(直径所对的圆周角为直角 )(填推理的依据) ∴OA⊥AP, OB⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.(过半径的外端与半径垂直的性质为圆的切线 )(填推理的依据)【详细解答】解:如图,证明:连接OA,OB,∵OP为⊙M的直径,∴∠OAP=∠OBP=90°,(直径所对的圆周角为直角)∴OA⊥AP,OB⊥BP,∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.(过半径的外端与半径垂直的性质为圆的切线)故答案为90°,直径所对的圆周角为直角;OB;过半径的外端与半径垂直的性质为圆的切线.。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

中考数学复习之尺规作图(含答案)

中考数学复习之尺规作图(含答案)

中考数学复习之尺规作图(含答案)1.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A. ①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB. ①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC. ①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD. ①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ2.如图,在△ABC中,AB=AC,∠ABC=70°,以点B为圆心,任意长为半径画弧分别交BA,BC于点E,F,再分别以点E,F为圆心,以大于12EF的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC的度数为()A. 65°B. 75°C. 80°D. 85°3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC= 5.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A. 2 2B. 2 3C. 5D. 64.在△ABC中,AB=AC,∠C=65°,AD⊥BC于点D,按以下步骤作图:①以点A为圆心,适当长为半径画弧,分别交AB,AD于点M,N;②以点B为圆心,AM长为半径画弧,交BC于点E;③以点E为圆心,MN长为半径画弧,交前弧于点F;④作射线BF,交AD于点H,则∠AHB的度数为________________.5.如图,OP平分∠MON,A是边OM上一点,以点A为圆心,大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于12BC的长为半径作弧,两弧交于点D,作直线AD分别交OP、ON于点E、F,若∠MON=60°,EF=1,则OA=___________________.6.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为___________________.7.如图,依据尺规作图的痕迹,计算∠α=___________________°.8.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,连接BD,按以下步骤作图:①分别以点B,D为圆心,大于12BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQ交AB于点E,交BC于点F,则BF=___________________.参考答案:1-3 DBC4. 115°5. 236. 237. 568.13 6。

中考数学《尺规作图》专题复习试卷含试卷分析

中考数学《尺规作图》专题复习试卷含试卷分析

初三数学专题复习尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。

(新)中考数学复习—尺规作图训练(21张)

(新)中考数学复习—尺规作图训练(21张)
尺规作图
1.如图,在 Rt△ABC 中,∠BAC=90°,∠C=30°. (1)请在图中用尺规作图的方法作出 AC 的垂直平分线交 BC 于 点 D,交 AC 于点 E(不写作法,保留作图痕迹); (2)在(1)的条件下,连接 AD,求证:△ABC∽△EDA.
(1)解:如图,DE 为所作.
(2)证明:∵点 D 在 AC 的垂直平分线上, ∴DA=DC,∴∠CAD=∠C=30°,
(新)中 考数学 复习— 尺规作 图训练 (21页) -PPT执 教课件 【推荐 】
(新)中 考数学 复习— 尺规作 图训练 (21页) -PPT执 教课件 【推荐 】
3.如图,在图中求作⊙P,使⊙P 满足以线段 MN 为弦且圆心 P 到∠AOB 两边的距离相等(要求:尺规作图,不写作法,保 留作图痕迹,并把作图痕迹用黑色签字笔加黑).

,∴OE⊥BC,∴EF=3,∴OF=5-3=2,
在 Rt△OCF 中,CF= 52-22= 21, 在 Rt△CEF 中,CE
= 32+ 212= 30.
(新)中 考数学 复习— 尺规作 图训练 (21页) -PPT执 教课件 【推荐 】
(新)中 考数学 复习— 尺规作 图训练 (21页) -PPT执 教课件 【推荐 】
解:如图,作出 BC 的垂直平分线,交 BC 于点 D, ∵AB=AC,∴AD 平分∠BAC,即∠BAD=∠CAD,
AB=AC, 在△ABD 和△ACD 中,∠BAD=∠CAD,
AD=AD,
∴△ABD≌△ACD(SAS),
即分成的两个三角形全等.
9.如图,已知线段 a 及∠α(∠α<90°).
(新)中 考数学 复习— 尺规作 图训练 (21页) -PPT执 教课件 【推荐 】

中考数学复习专题练习:尺规作图

中考数学复习专题练习:尺规作图

中考数学复习专题练习:尺规作图1.用尺规作角的平分线,写出已知,求作,保留作图痕迹.解:已知:∠AOB,求作∠AOB的平分线.作法:①以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB 的内部交于点C;③画射线OC,射线OC即为所求2.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为A C,AC⊥l,垂足为C,斜边AB=c.解:如图,△ABC为所求.3.作图:画一个三角形与△ABC全等,要求用尺规作图,保留作图痕迹.解:略4.如图,已知Rt△ABC中,∠C=90°,请画一线段,把这个三角形分成面积相等的两部分.(用尺规作图,不要求写作法、证明,保留作图痕迹)解:作图如下所示:其中线段CD即为所求5.如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O.(用尺规作图,不写作法,保留作图痕迹)解:作出角平分线AD, 作AD的中垂线交AC于点O, 作出⊙O, ∴⊙O为所求作的圆6.已知∠1和∠2如下图所示,用尺规作图画出∠AOB=∠1+∠2,保留作图痕迹.解:作图略7.用尺规作图,要保留作图痕迹.(1)找圆心将残圆补完整;(2)四等分弧AB.解:(1)如图所示(2)如图所示1.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形.(保留作图痕迹,不写作法)解:2.如图,在△ABC的边AC上找一点D,使得点D到直线A B,BC的距离相等.(不写作法,保留作图痕迹)解:略3.在直线AB的同侧作△ABD与△ABC全等(点C与D不重合).(保留作图痕迹,不写作法与证明)解:略4.如图,△ABC中,∠C=90°,小王同学想作一个圆经过A,C两点,并且该圆的圆心到AB,AC的距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹)解:略5.如图,在Rt△ABC中,∠C=90°.(1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D;(不写作法,只保留作图痕迹)(2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.解:(1)如图所示:CD即为所求(2)△ACD∽△ABC,△CBD∽△ABC6.如图,在Rt△ABC中,∠C=90°,AC>BC,请用尺规作图方法把它分成两个三角形,且其中至少有一个是等腰三角形.(保留作图痕迹于图上)解:作法一:作AB边上的中线;作法二:作∠DBA=∠A;作法三:在CA上取一点D,使CD=CB.7.如图,点P是⊙O外一点,请用尺规过点P作⊙O的切线PA,切点为A.(不写作法,保留作图痕迹)解:如图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习之尺规作图专项训练题
1.如图是由小正方形组成的6×6的网格,△ABC 的三个顶点A 、B 、C 均在格点上,请按要求在给定的网格中,仅用无刻度的直尺,分别按下列要求作图,保留作图痕迹,不写画法.
(1)在图1中的AB 上画出△ABC 的高线;
(2)在图2中的AC 上找出一点E ,画线段BE ,使△ABE 与△CBE 面积比为3:7两部分;
(3)在图3中的BC 上找一点F ,画∠BAF ,使得∠C =2∠BAF .
2.如图,正方形ABCD 的对角线AC 和BD 交于点O ,点E 是BD 上的一点,BE =BC .
(1)用直尺和圆规完成以下基本操作:过点B 作∠EBC 的角平分线交OC 和EC 分别于点F 和点G (保留作图痕迹,不写作法):
(2)求证:OF +OC =BC .
证明:在正方形ABCD 中,OB =OC ,∠BOC =∠DOC =90°
∵BE =BC ,BG 平分∠EBC

∴∠BGC =90°
又∵∠OFB =∠GFC
∴90°﹣∠OFB =90°﹣∠GFC

在△OBF 和△OCE 中,{OB =OC
∠OBF =∠OCE (ㅤㅤ)
∴△OBF ≌△OCE

∴OF+OC=OE+OB=BE=BC
3.在如图所示的小正方形网格中,每个小正方形的顶点叫做格点,A,B,C都是格点.请仅用无刻度的直尺完成下列作图,作图过程用虚线表示,作图结果用实线表示.
(1)在图1中,在AB上找点D,使AD=AC且点D恰好在格点上,作出点D,再作CE⊥AD于点E;
(2)在图2中,先作△ABC的角平分线AF交(1)中的CE于点F,再过点F作FH⊥AC于点H.
4.如图,在△ABC中,AB=AC,以AB为直径的OO与BC交于点D,连接AD.(1)尺规作图:作劣弧AD的中点E.(不写作法,保留作图痕迹)
(2)若⊙O与AC相切,求(1)中作图得到的∠ABE的度数.
5.如图,已知⊙O是△ABC的外接圆,∠A=45°,请仅用无刻度的直尺,按下列要求画图(保留画图痕迹).
(1)在图1的⊙O上作点D,使△BCD为等腰直角三角形;
(2)在图2的⊙O上作点M,N,使四边形BCMN为正方形.
6.(2023•鼓楼区校级模拟)已知:如图,P A是⊙O的切线,A为切点.(1)过点P作⊙O的另一条切线PB,且B为切点.
(尺规作图,保留作图痕迹,不写作法);
(2)在(1)的情况下,连接AB,⊙O的半径为2,AP=5,求AB的长.
7.(2023•松原一模)图①、图②均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点.△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.
(1)在图①中画△ABC的中位线DE,使点D、E分别在边AB、BC上;
(2)在图②中画△ABC的高线BF.
8.(2023•金华模拟)在5×5的方格中,A、B、F均在格点上,请用无刻度直尺按要求画图.
(1)在线段AB上找一点C,使得AC=3BC;
(2)作△ABD,使得S△ABD=S△ABF(D为格点);
(3)作GE⊥AB,且GE=AB(E、G为格点).
9.(2023•平潭县模拟)如图,已知钝角△ABC中,CA=CB.
(1)请在图中用无刻度的直尺和圆规作图:作∠ACB的平分线CD交AB于点D;作△ABC的外接圆⊙O;(不写作法,保留作图痕迹)
(2)在(1)中,若AB=2√3,∠ACB=120°,求出此时⊙O的半径长度.(如需画草图,请使用备用图)
10.如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.
(Ⅰ)线段AC 的长等于 ;
(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP =AC .请用无刻度的直尺,在如图所示的网格中,画出点P .
11.(2023•天门一模)尺规作图:按下列要求作出图形,不写作法,保留作图痕迹.
(1)图1是矩形ABCD ,E ,F 分别是AD 和AB 的中点,以EF 为边画一个菱形;
(2)图2是正方形ABCD ,E 是BD 上一点(BE >DE ),以AE 为边画一个菱形.
12.如图,在由4×4的小正方形组成的网格中,每个小正方形的边长都是1,小正方形的顶点叫格点.
(1)在图1中,以A 为顶点,作一个三边长分别为2,√5和√13的格点三角形.
(2)在图2中,以A 为顶点,作一个面积为52的等腰直角三角形.
13.如图,矩形ABCD内接于⊙O.请用直尺(不带刻度)按要求作图,不要求写作法,但要保留作图痕迹.
(1)在图1中,作出圆心O;
(2)在如图2中,点E是AD边的中点,连接BD,作出∠DBC的角平分线.
14.我国纸伞的制作工艺十分巧妙.如图,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AE=AF,DE=DF,从而保证伞圈D能沿着伞柄滑动.
(1)证明:△AED≌△AFD.
(2)若伞圈D滑动到D1,用直尺和圆规作出两条伞骨AB、AC的位置.
(3)若AE=DE=24cm时,当△ADF由正三角形变成直角三角形的过程中,伞圈D滑动的距离是多少?
15.如图,已知甲工厂靠近公路a,乙工厂靠近公路b,为了发展经济,甲、乙两工厂准备合建一个仓库,经协商,仓库必须满足以下两个要求:
①到两工厂的距离相等;
②在∠MON内,且到两条公路的距离相等.
你能帮忙确定仓库的位置吗?(保留作图痕迹,不写作法)。

相关文档
最新文档