弹簧类型题

弹簧类型题

弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.

一、弹簧类问题命题突破要点

1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.

2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.

3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.

4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程

复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.

二、四种弹簧类问题

题型一牛顿运动定律中的弹簧类问题

1.弹簧弹力的特点:

(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;

(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.

2.此类问题经常伴随临界问题.

当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.

【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )

【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.

题型二功能关系中的弹簧类问题

1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.

2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.

【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:

来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.

题型三动量守恒定律中的弹簧类问题

1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.

2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.

题型四实验中的弹簧类问题

实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述

ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,

弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.

【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.

三、结语

弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析 一、有关弹簧题目类型 1、平衡类问题 2、突变类问题 3、简谐运动型弹簧问题 4、功能关系型弹簧问题 5、碰撞型弹簧问题 6、综合类弹簧问题 二、分类解析 1、平衡类问题 例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k 1 B.m2g/k 2 C.m1g/k 2 D.m2g/k 2 解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力 和弹力,即 当上面木块离开弹簧时,受重力和弹力,则 【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N 。关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零 B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上 C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下 D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上 练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。则1m 所受支持力N 和摩擦力f 正确的是AC

A .12sin N m g m g F θ=+- B .12cos N m g m g F θ=+- C .cos f F θ= D .sin f F θ= 2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少? 解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功), W 弹=-mgx -W F =-4.5J 所以弹性势 能增加4.5焦耳 点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功 2、突变类问题 例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求 (1)烧断细绳瞬间,小球的加速度 (2)在C处弹簧与小球脱开瞬间,小球的加速度 解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳 拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2, 解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得 F AC =mgsinθ2/sin(θ1+θ2) 则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。 0k F E mgx W W ∆=++=弹50J W Fx ≠=弹 E W ∆=-弹弹

弹簧类碰撞试题含答案

弹簧系统中的动量守恒问题 1 (选修3-5选做题) 如图所示,A、B、C三物块的质量均为m,置于光滑的水平台面上。B、C间夹有原已完全压紧而不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展。物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为2v0。求:(1) A、B碰后A的速度;(2)弹簧所释放的势能△E。 解:(1)对A、B、C由动量守恒定律得mv0=3mv A、B碰后A的速度为 (2)对A、B、C由动量守恒定律得3mv=2mv1+m×2v0

质量分别为m A=m C=2m和m B=m,A、B用细绳相连,中间有一压缩的弹簧(弹簧与滑块不栓接),开始时A、B以共同速度V0向右运动,C静止,某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三者的速度恰好相同。 求:(1)B与C碰撞前B的速度 (2)弹簧释放的弹性势能多大 解:(1)设三者最后的共同速度为,滑块A与B分开后的速度为,由动量守恒得: 三者动量守恒得: 得 所以(6分) (2)弹簧释放的弹性势能 (6分) 2、某宇航员在太空站内做了如下实验:选取两个质量分别为m A=0.1kg、m B=0.2kg的小球A、B和一根轻质短弹簧, 弹簧的一端与小球A粘连,另一端与小球B接触而不粘连.现使小球A和B之间 夹着被压缩的轻质弹簧,处于锁定状态,一起以速度V0=0.1m/s做匀速直线运动, 如图所示,过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原

直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t=3.0s ,两球之间的距离增加了S=2.7m ,求弹簧被锁定时的弹性势能E p ? 3.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧 处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行, 当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不 粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。 解:令A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前),由功能关系,有 121202 121mgl mv mv μ=- ① A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为.2v 有212mv mv = ② 碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都为零,利用功能关系,有)2()2()2(2 1)2(2122322l g m v m v m μ=- ③ 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有 1232 1mgl mv μ= ④ 由以上各式,解得 )1610(210l l g v +=μ 4.质量M=3.0kg 的小车放在光滑的水平面上,物块A 和B 的质量均为m=1.0kg ,且均放在小车的光滑水平底板上,物块A 和小车右侧壁用一根轻弹簧连接,不会分离,如图所示,物块A 和B 并排靠放在一起,现用力向右压B ,并保持小车静止,使弹簧处于压缩状态,在此过程中外力做功为W =135J 。撤去外力,当A 和B 分开后,在A 达到小车底板的最左端位置之前,B 从小车左端抛出,求: (1)B 与A 分离时,小车的速度是多大? (2)从撤去外力到B 与A 分离时,A 对B 做了多少功? 解析:(1)当弹簧第一次恢复原长时,B 与A 恰好分离,由: 动量守恒定律:2mv 1=Mv 2 能量守恒定律:22212 1212Mv mv W +?= 解得:v 1=9m/s ,v 2=6m/s (2)根据动能定理,从撤去外力至B 与A 分离时,A 对B 做的功为:

弹簧类问题分类例析与练习

弹簧类问题分类例析 弹簧基础知识 弹簧类弹力: 大小:F=kx(在弹性限度以内); 方向:沿弹簧轴线而指向弹簧的恢复原状的方向 弹簧作为一种工具和模型,在各地历年高考中经常出现,笔者经过多年的研究,现分类总结如下: 一、应用对称性解题 例1 如图1所示,一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中() A. 升降机的速度不断减小 B. 升降机的加速度不断变大 C. 先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功 D. 到最低点时,升降机加速度的值一定大于重力加速度的值 分析:弹簧下端触地后,升降机先加速后减速,加速度先减小后增大。由动能定理知识选项(C)正确,选项(D)学生难于判断。设想有一轻弹簧竖直在水平地面上,将一小球无初速度放于弹簧上,可以证明小球的运动为简谐运动。由简谐运动的对称性知小球在最低点加速度的值等于在最高点的值。若小球以一定速度落在弹簧上,在最低点加速度的值必大于重力加速度的值。故选(D)正确。 评析:简谐运动的对称性在弹簧问题的运动上有广泛的应用,因此在解决有关于位移、速度、加速度及力的变化时,经常用到。 二、用胡克定律解题 例2 如图2所示,两木块的质量分别为m 1和m 2 ,两轻质弹簧的劲度系数分别为k 1 和 k 2 ,上面木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()

A. m g k 11/ B. m g k 21/ C. m g k 12/ D. m g k 22/ 解析:我们把m m 12、看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即 ()()/m m g k x x m g m g k 12211122 +==+则 当上面木块离开弹簧时,m 2受重力和弹力,则 m g k x x m g k x x x m g k C 222222 1212===-=,则所以,应选() //∆ 评析:该题涉及到整体法和隔离法的应用,解题时要看清问题的关键,根据整体法和隔离法的运用条件,选择适当的方法。 三、应用瞬时不变性解题 例3 如图3所示,物体的质量为m ,L 1为质量不计的轻弹簧,一端悬挂在天花板上,与竖直方向夹角为θ,L 2为一水平绳,现将L 2剪断,求剪断瞬间物体的加速度。

弹簧类问题的求解

弹簧类问题的求解 由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。下面我们归纳六类问题探求解法。 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。弹簧一端受力为F ,另一端受力一定也为F 。若是弹簧秤,则弹簧秤示数为F 。 例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数 为 . 分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律 12F F ma -= ∴12F F a m -= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。 二、弹簧弹力瞬时问题 因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。 例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触 面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速 度分别是a A =____ ,a B =____ 分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m 以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一 对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0 以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。瞬时加速度为1.5g 说明 区别不可伸长的轻质绳中张力瞬间可以突变 三、弹簧长度的变化问题 设劲度系数为k 的弹簧受到压力为-F1时压缩量为-x1,弹簧受到拉力为F2时伸长量为x2,此时的“-”号表示压缩的含义。若弹簧受力由压力-F1变为拉力F2,弹簧长度将由压缩量-x1变为伸长量为x2,长度增加量为x1+x2 由胡克定律有: F2=kx2 -F1=k(-x1)

弹簧问题专题训练

弹簧问题专题训练 类型一静力学问题中的弹簧 如图所示,四处完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中的弹簧的左端固定在墙上②中的弹簧的左端也受到大小也为F 的拉力的作用③中的弹簧的左端拴一小物块,物块在光滑的桌面上滑动④中的弹簧的左端拴一个小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有:( ) D A .L 2 >L 1 B .L 4>L 3 C .L 1>L 3 D .L 2=L 4 类型二在弹簧弹力作用下瞬时加速度的求解 如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块P 、Q,它们的质量均为2kg ,均处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施加在物块P 上,则此瞬间,P 对Q 压力的大小为(g 取10m/s 2):( ) C A.5N B.15N C.25N D.35N. 类型三物体在弹簧弹力作用下的动态分析 如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。(F 1=45N ,F 2=285N ) (2)此过程中外力F 所做的功。(49.5J ) 类型四物体在弹簧弹力作用下的运动分析 A 、 B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g=10 m/s 2). (1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功. 类型五传感器问题 两个质量不计的弹簧将一金属块支在箱子的上顶板与下底板之间,箱子只能沿竖直方向运动,如图所示,两弹簧原长均为0.80m,劲度系数均为60N/m.当箱以a=2.0m/s 2的加速度匀减速上升时,上、下弹簧的长度分别为0.70m 和0.60m(g=10m/s 2).若上顶板压力是下底板压力的四分之一,试判断箱的运动情况。 类型六连接体弹簧中的动力学问题 如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板。 ○3 ○4 ○2 ○ 1 F F F F F 图一

高中物理弹簧弹力问题(含答案)

弹簧问题归类 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤 示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为. 【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m -=,仅以轻质弹簧 为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m -=1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M =,取弹簧左部任意长 度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L == =【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可 知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】 0说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 【例4】如图 3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030 的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为23 3 g ,方向竖直向下 C.大小为2 33 g ,方向垂直于木板向下 D.大小为2 33 g ,方向水平向右 【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡, 如图3-7-5所示,有cos N mg F θ = .撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的 图 图 图3-7-2 图3-7-1 图3-7-3

高考物理复习:弹簧类问题

弹簧类问题 一、选择题 1.如图,足够长光滑斜面倾角为30°,斜面底端有一挡板,其上有一小球从某一高度处由静止开始沿斜面滑下,小球上固定一个轻质弹簧,使得小球和弹簧在斜面上可以往复运动,运动过程中弹簧始终在弹性限度内,则以下说法正确的是( ) A .小球不一定可以达到出发位置 B .弹簧刚接触挡板时,小球速度最大 C .弹簧的最大弹力一定大于重力 D .小球向下运动过程中,加速运动时间可能等于减速运动时间 2.如图甲所示轻弹簧竖直放置,下端固定在水平地面上,一质量为m 的小球从弹簧正上方某一高处由静止释放,落到弹簧上瞬间粘连(无能量损失)并压缩弹簧至最低处。设弹簧一直在弹性限度内,空气阻力忽略不计,以地面为参考平面,小球的动能随高度变化的图像如图乙所示。已知h 1 ~ h 4段图线为曲线,h 4 ~ h 5段为直线,下列说法正确的是( ) A .小球从最低点反弹上升的距离小于h 5 B .小球的高度为h 2和h 4时,弹簧的弹性势能相同 C .弹簧的劲度系数为3mg h D .小球的高度为h 2时,动能为mg (h 5 - h 2) 3.如图所示,滑块2套在光滑的竖直杆上并通过细绳绕过光滑定滑轮连接物块1,物块1又与一轻质弹簧连接在一起,轻质弹簧另一端固定在地面上。开始时用手托住滑块2,使绳子刚好伸直处于水平位置但无张力,此时弹簧的压缩量为d 。现将滑块2从A 处由静止释放,经过B 处时速度最大,到达C 处时速度为零,此时物块1还没有到达滑轮位置。已知滑轮与杆的水平距离为3d ,AC 间距离为4d ,不计滑轮质量、大小及摩擦。下列说法正确的是( ) A .物块1和滑块2的质量相等 B .滑块2的加速度先增大后减小,最后减为0 C .滑块1、2组成的系统机械能先增大后减小 D .除A 、C 两点外,滑块1的速度大小始终大于滑块2的速度大小

物理弹簧练习题

物理弹簧练习题 一、单选题 1.如图所示,物块A放在直角三角形斜面体B上面,B放在弹簧上面并紧挨着竖直墙壁,初始时A、B静止.现用力F沿斜面向上推A,但A、B仍未动.下列说法正确的是()A.施力后A、B之间的摩擦力一定比施力前大 B.施力后B与墙面间的弹力可能与施力前相等 C.施力后B与墙面间的摩擦力可能与施力前相等 D.施力后A对B的作用力可能比施力前小 2.如图所示,两根完全相同的劲度系数为20N/cm的轻质弹簧上端分别固定在水平天花板上,下端与一轻质小圆环相连。a、b两根不可伸长的轻质细绳均系在圆环上。现手持细绳a、b的另一端,使a绳水平,b绳与a绳成120°夹角。两弹簧形变量均为 2cm,且夹角为60°。现保持a、b绳夹角不变,逆时针缓慢转动70°,在 转动过程中圆环静止不动且弹簧与细绳始终在同一竖直平面内。则在a、b 绳转动的过程中() A.a绳上的作用力先增大后减小 B.b绳上的作用力先减小后增大 C.a绳上作用力的最大值为803N D.b绳上作用力的最小值为40N 3.如图所示,在倾角为o 30的光滑斜面上端系有一劲度系数为200N/m的轻质弹簧,弹簧下端连一个质量为2kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4m/s2的加速度沿斜面向下做匀加速运动,取 2 ,则 g m s 10/ A.小球从一开始就与挡板分离 B.小球速度最大时与挡板分离 C.小球向下运动0.01 m时与挡板分离 D.小球向下运动0.02m时速度最大 4.如图所示,质量均为m的木块A和B用一劲度系数为k的轻弹簧相连,竖直放置在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态,现将 木块C迅速移开,若重力加速度为g。则下列说法中正确的是() A.木块C移开的瞬间,地面对木块B的支持力为2mg B.木块C移开的瞬间,木块A的加速度大小为3g

高中物理弹簧类问题试题及答案

1、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态 ( AD ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态 C.有可能N 处于不伸不缩状态而M 处于拉伸状态 D.有可能N 处于拉伸状态而M 处于不伸不缩状态 2、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤 去力F 的瞬间,关于A 的加速度和A 、B 间的相互作用力的下 述说法正确的是( B ) A 、加速度为0,作用力为mg 。 B 、加速度为m F 2,作用力为2F mg + C 、速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mg F + 3、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( A ) A..g m L L 212)1(+ B..g m m L L ))(1(2112++ C.g m L L 212 D.g m m L L )(211 2+ 4、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和

m 2k 1m 1k 22,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( A ) A .g m k L 1μ+ B .g m m k L )(21++μ C .g m k L 2μ + D .g m m m m k L )( 2121++μ 5、如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的 劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧。在这过程中下面木块移动的距离为 ( C ) A .11m g k B .21m g k C .12m g k D .22 m g k 8、如图所示,竖直放置在水平面上的轻质弹簧上端叠放 着两个物块A 、B ,它们的质量均为2.0kg ,并处于静止 状态。某时刻突然将一个大小为10N 的竖直向上的拉力 加在A 上,则此时刻A 对B 的压力大小为(g 取10m/s 2)( C ) A .25N B. 20N C. 15N D. 10N 9、如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s 2的加速度向右运动后,则(g=10m/s 2)( AC ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 F

弹簧专题试题

弹簧专题 1、如图4所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹 簧相连,它们一起在光滑水平面上作简谐振动,振动过程中A 、B 之间 无相对运动。设弹簧的劲度系数为k ,当物体离开平衡的位移为x 时,A 、 B 间磨擦力的大小等于 ( ) 分析和解:此题属于简谐振动。当物体位移为x 时,根据题意将M 、m 视为整体,由胡克定律和牛顿第二定律,得: 再选A 为研究对象,使A 随B 振动的回复力只能是B 振动的回复力只能是B 对A 的静磨擦力,由f=ma ③ 联立①②③得,故选(D ) 2、如图2所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在 上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离为: 分析和解:此题用整体法求最简单。由题意可将图2改为图3所示,这样便于分析求解,当m 1、m 2 视为一系统(整体)时,整个系统处于平衡状态,即∑F=0 3、(2005年全国理综III 卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧 相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k,C 为一固定挡板。 系统处一静止状态,现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d ,重力加速度为g 。 解:令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知 kx g m A =θsin ① 令x 2表示B 刚要离开C 时弹簧的伸长量, a 表示此时A 的加速度,由胡克定律和牛顿定律可知: k x 2=m B gsin θ② F -m A gsin θ-k x 2=m A a ③ 由②③式可得A B A m g m m F a θsin )(+-= ④ 由题意 d=x 1+x 2⑤

高中物理弹簧类问题专题练习经典总结附详细答案)

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 a b A B C D

高中物理弹簧模型经典题型汇总

弹簧专题 1、弹簧弹力的双向性 弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解. 例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0 120,已知弹簧a b 、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为 ( ) A、0 B、F mg +C、F mg -D、mg F - 2、轻弹簧 高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别. 例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有() 3、质量不可忽略的弹簧 例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 答案解析F x =F L x 图3-7-15

4、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。 例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题: (1)现将线L2剪断,求剪断L2的瞬间物体的加速度. (2)若将图甲中的细线L1换成长度相同,质量不计的轻 弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体 的加速度. 例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小 球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。两绳与 弹簧轴线构成正三角形,三个小球处于静止状态,此时弹簧处在伸长状态,且F 弹=mg,小球A与小球B间轻绳拉力为F1,剪断小球与小球C间细绳的瞬间,小 球A与小球B间细绳拉力为的大小为F2,则F1与F2的比值为() A.1:1B.2:1C.2−√3 3D.1+√3 2 5、弹簧串、并联组合 弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;完全相同的两根弹簧并联时,每根弹簧的形变量相等. 串联:F=K 1∆x 1 =K 2 ∆x 2 则有:∆x=∆x 1 +∆x 2 =F(1 K 1 +1 K 2 ) 等效思想,设等效劲度系数为K’则有K 等效=(1 K 1 +1 K 2 )

弹簧问题例题及解析

弹簧问题 一、分离点 1、质量为M=3kg 的小车放在光滑的水平地面上,物块A 和B 的质量均为m=1kg ,且均放在小车的光滑水平地板上,物块A 和小车右侧壁用一根轻弹簧连接,不会分离,如图所示。物块A 和B 并排靠在一起,现用力向右压B ,并保持小车静止,使弹簧处于压缩状态,在此过程中外力做功135J ,撤去外力,当A 和B 分开后,在A 达到小车地板的最左端位置之前,B 已从小车左端抛出。求:B 与A 分离时,小车的速度是多大? s m v s m v W E Mv mv Mv mv v v B A B A B M P M B M B M B 9,62 12210 222====+⋅=-解得:能守恒,得:,则由动量守恒和机械车速度为,分离时小等速,设为、长时分离,分离前应在弹簧第一次恢复原与解析: 2、如图所示,一个弹簧台秤的秤盘和弹簧质量都不计,盘内放有一质量m=12kg 并处于静止的物体P ,弹簧劲度系数k=300N/m ,现给P 施加一个竖直向上的力F ,使P 从静止开始始终向上作匀加速直线运动,在这过程中,头0.2s 内F 是变力,在0.2s 后F 是恒力,则 (1)、物体P 作匀加速运动的加速度大小为多少? (2)、F 的最小值、最大值分别为多少?

N a g m F ma mg F P F N ma F P F s m at x x k mg F F P P 360)(24020a 2 1 max max min 2 2 =+==-====∆∆=所以托盘后,刚要离开托盘时和离开最大值即为刚开始加速时,即:最小值为解得:,原长的时刻。,所以分离时必是弹簧 恒力。因托盘不计质量为变力,分离后为前与托盘分离互间弹力为零。物体与托盘分离的条件为相解析:物体 3、如图所示,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板A 挡住,此时弹簧没有形变,若手持挡板A 以加速度a(ag),现用手控制B 使B 以加速度a/3向下做匀加速直线运动。求砝码做匀加速直线运动的时间。 甲 乙

弹簧题目及答案

八、竖直弹簧 1、如图所示,物体B 和物体C 用劲度系数为k 的轻弹簧连接并竖直地静置于水平地面上。将一个物体A 从物体B 的正上方距离B 的高度为 H 0处由静止释放,下落后与物体B 碰撞,碰撞后A 与B 粘合在一起并立 刻向下运动,在以后的运动中A 、B 不再分离。已知物体A 、B 、C 的质 量均为M ,重力加速度为g ,忽略空气阻力。 (1)求A 与B 碰撞后瞬间的速度大小。 (2)A 和B 一起运动达到最大速度时,物体C 对水平地面的压力为多大? (3)开始时,物体A 从距B 多大的高度自由落下时,在以后的运动中才能使物体C 恰好离开地面? 解:(1)设物体A 碰前速度为v 1,对物体A 从H 0高度处自由下落,由机械能守恒定律得: v 1=02gH 。………………………………………………2分 设A 、B 碰撞后共同速度为v 2,则由动量守恒定律得: Mv 1=2Mv 2,………………………………………………3分 v 2=2 0gH 。………………………………………………2分 (2)当A 、B 达到最大速度时,A 、B 所受合外力为零,设此时弹力为F ,对A 、B 由平衡条件得,F =2Mg 。…………………………………………………………………2分 设地面对C 的支持力为N ,对ABC 整体,因加速度为零,所以N =3Mg 。……3分 由牛顿第三定律得C 对地面的压力大小为N ′=3Mg 。………………………………2分 (3)设物体A 从距B 的高度H 处自由落下,根据(1)的结果,A 、B 碰撞后共同速度 V 2=2gH 。…………………………………………1分 当C 刚好离开地面时,由胡克定律得弹簧伸长量为X =Mg /k 。 根据对称性,当A 、B 一起上升到弹簧伸长为X 时弹簧的势能与A 、B 碰撞后瞬间的势能相等。则对A 、B 一起运动到C 刚好离开地面的过程中,由机械能守恒得: MgX MV 422 122=,………………………………2分 联立以上方程解得:k Mg H 8=。…………………………………………………1分 2、如图9所示,物体B 和物体C 用劲度系数为k 的轻弹簧连接并竖直 地静置于水平地面上,此时弹簧的势能为E 。这时一个物体A 从物体B 的正上方由静止释放,下落后与物体B 碰撞,碰撞后A 与B 立刻一起 向下运动,但A 、B 之间并不粘连。已知物体A 、B 、C 的质量均为M , 重力加速度为g ,忽略空气阻力。求当物体A 从距B 多大的高度自由落 下时,才能使物体C 恰好离开水平地面? B C 图11 A B C A

高中物理弹簧类问题专题练习(经典总结附详细答案)

- v 甲 高中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质 点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2). A B C D b

弹簧习题与参考答案

习题与参考答案 一、复习思考题。 1.弹簧有哪些功用? 2.常用弹簧的类型有哪些?各用在什么场合? 3.制造弹簧的材料应符合哪些主要要求?常用材料有哪些? 4.圆柱弹簧的主要参数有哪些?它们对弹簧的强度和变形有什么影响? 5.弹簧刚度K的物理意义是什么?它与哪些因素有关? 6.什么是弹簧的特性曲线?它在设计中起什么作用? 7.设计时,若发现弹簧太软,欲获得较硬的弹簧,应改变哪些设计参数? 8.圆柱螺旋弹簧在工作时受到哪些载荷作用?在轴向载荷作用下,弹簧圈截面上主要产生什么应力?应力如何分布?受压缩与受拉伸载荷时,应力状态有什么不同? 9.如何确定圆柱螺旋弹簧的许用剪切应力?用碳素弹簧钢丝制造弹簧时,其许用剪切应力[]τ值应如何确定? 10.设计弹簧时,为什么通常取弹簧指数C=4~16,弹簧指数C的含义是什么? 11.今有A、B两个弹簧,弹簧丝材料、直径d及有效圈数n均相同,弹簧中径D2A大于D2B,试分析: 1)当载荷P以同样大小的增量不断增大时,哪个弹簧先坏? 2)当载荷P相同时,哪个弹簧的变形量大? 12.圆柱形拉、压螺旋弹簧丝最先损坏的一般是内侧还是外侧?为什么? 13.设计弹簧如遇刚度不足时,改变哪些参数可得刚度较大的弹簧? 14.怎样的装置可把一个圆柱形压缩弹簧作为拉伸弹簧使用? 二、选择题 1.在圆柱形螺旋拉伸(压缩)弹簧中,弹簧指数C是指。 A、弹簧外径与簧丝直径之比值。 B、弹簧内径与簧丝直径之比值。 C、弹簧自由高度与簧丝直径之比值。

D、弹簧中径与簧丝直径之比值。 2.圆柱拉伸(压缩)螺旋弹簧受戴后,簧丝截面上的最大应力是。 A、扭矩T引起的扭切应力τ' σ B、弯矩M引起的弯曲应力 b C、剪力F引起的切应力τ'' D、扭切应力τ'和切应力τ''之和 3.当簧丝直径d一定时,圆柱形螺旋弹簧的旋绕比C如取得太小,则。 A、弹簧尺寸大,结构不紧凑 B、弹簧的刚度太小 C、弹簧卷绕有困难 D、簧丝的长度和重量较大 4.设计圆柱拉伸螺旋弹簧时,簧丝直径d的确定主要依据弹簧的 A、稳定性条件 B、刚度条件 C、强度条件 D、变形条件 三、填空题 1.弹簧在工作时常受载荷或载荷作用。 2.弹簧的材料应具有足够的极限、极限、韧性和良好的性能。3.常用的金属弹簧材料有、和等。 4.圆柱螺旋弹簧的制造工艺过程包括: (1)(2)(拉伸弹簧) (3)(4) 5.弹簧指数C是设计中的重要参数。C值,弹簧刚度小,。C值弹簧刚度大。 四、设计计算题 1.一扭转螺旋弹簧用在760mm的门上(题图)。当门关闭时,手把上加4.5N的推力才能把门打开。当门转到180°后,手把上的力为13.5N。若材料的许用应力[]σ=1100N/mm2,求:1)该弹簧的弹簧丝直径d和平均直径D2;2)所需的初始角变形;3)弹簧的工作圈数。

相关主题
相关文档
最新文档