高中物理复习——弹簧专题

一、“轻弹簧”类问题

在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .

【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12

F F a m

-=

仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .

说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12

F F a m

-=

1F 二、质量不可忽略的弹簧

【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.

【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F

a M

=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:

x x F x T ma M F L M L

==

= 【答案】x x T F L

=

三、弹簧的弹力不能突变(弹簧弹力瞬时)问题

弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平

方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块

A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.

以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0

说明:区别于不可伸长的轻质绳中张力瞬间可以突变.

【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用

倾角为0

30的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0

图 3-7-4

图 3-7-2

图 3-7-1 图 3-7-3

B.

,方向竖直向下 C.

,方向垂直于木板向下

D.

, 方向水平向右

【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mg

F θ

=

. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的

N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小

为cos N F g a m θ=

== 【答案】 C.

四、弹簧长度的变化问题

设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆

说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量. 【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .

【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,

弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.

由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长

量分别为:1211()m m g k +和122

1

()m m g k +

故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了211212

11

()()m m m g k k ++

【答案】221221()m m m g k + 211212

11

()()m m m g k k ++

五、弹簧形变量可以代表物体的位移

弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.

【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).

图 3-7-5

图 3-7-7

图 3-7-6

【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==

解得:1sin A m g x k

θ

=

在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离

开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x k

θ

=

设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=

解得:()sin A B A

F m m g a m θ

-+=

因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即

()sin A

B m m g d k

θ

+= 【答案】()sin A B m m g d k

θ

+=

六、弹力变化的运动过程分析

弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.

结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).

(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?

(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?

【解析】 由题意可知,弹簧开始的压缩量0mg

x k =

, 物体B 刚要离开地面时弹簧的伸长量也是0mg

x k

=.

(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F

所做的功等于物体A 增加的动能及重力势能的和.

即:201222

F x mg x mv ⋅=⋅+得

: v =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上

除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.

在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=

而0kx mg =,简谐运动在上、下振幅处12a a =,解得:

图 3-7-8

032

mg

F =

也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由0

02

x mg k F +=,解得: 032

mg

F =

.

【答案】32

mg

说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.

八、弹力做功与弹性势能的变化问题

弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212

P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.

弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:

(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;

(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.

由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等

时,往往弹性势能的改变可以抵消或替代求解.

【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的

轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处

于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .

(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?

【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.

设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q E

x k = ①

设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q E

x k

= ② 故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B E

h Q Q k

=

+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤

图 3-7-13

当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:

21

2(2)2

B B MgH Q Eh E M m v =+∆++弹 ⑥

由④⑤⑥三式可得A 刚离开P 时B 的速度为:

v =

【答案】(1)()A B E

h Q Q k

=

+(2

)v =

【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的

质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g

【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g = 悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =

B 不再上升表明此时物体A 、

C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:

212112()()E m g x x m g x x ∆=+-+

物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:

22211211211211

()()()()22

m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为

:v =

【答案】v =

说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性

弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.

【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -

【解析】 由于两弹簧间的夹角均为0

120,弹簧a b 、对质点作用力的合力

仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子

弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 十一、弹簧串、并联组合

弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式

图 3-7-14

图 3-7-15

计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.

【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.

【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;

两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112G

x k =,22

2G x k =,两弹簧伸长量之和

12x x x =+,故重物下降的高度为:1212

()

24G k k x h k k +==

【答案】1212()

4G k k k k +

十三、物体沿弹簧螺旋运动

【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .

【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin H

L θ=;由位移公式可知:212

L at =,联立上式解得:2t L

gH

= 【答案】2L

gH

弹簧类模型中的最值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。一、最大、最小拉力问题

例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2

)。求此过程中所加外力的最大和最小值。

图 图

图1

解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg

k

m =

=025.,末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,

故对A 物体有21

2

2∆l at =,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度问题

例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2

解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:

v gx 006= ①

物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②

刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +

=12

22120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:

2302mv mv = ④

碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +

=+123312

32202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:

h v g

=2

2 ⑥

解①~⑥式可得h x =

2

。 三、最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3

解析:A 下落到与B 碰前的速度v 1为: v gh 12=

A 、

B 碰后的共同速度v 2为:mv m m v 12=+() ② B 静止在弹簧上时,弹簧的压缩量为x 0,且: mg kx =0 ③

A 、

B 一起向下运动到最大速度v 时的位移为x ,此时A 、B 的加速度为0,即有:

20mg k x x =+() ④

由机械能守恒得: 212212

222

2mgx m v m v E p +

=+()()∆ ⑤

∆E m v p =

1

2

22() ⑥ 解①~⑥得:v mg k gh =+21

4

例4. 在光滑水平面内,有A 、B 两个质量相等的木块,m m kg A B ==2,中间用轻质弹簧相连。现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

图4

解析:当撤除恒力F 后,A 做加速度越来越小的加速运动,弹簧等于原长时,加速度等于零,A 的速度最大,此后弹簧压缩到最大,当弹簧再次回复原长时速度最小,根据动量守恒得:2mv mv mv A B =+ ① 根据机械能守恒得:1001212

22

=

+mv mv A B ② 由以上两式解得木块A 的最小速度v =0。 四、最大转速和最小转速问题

例5. 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为F fm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?

图5

解析:当转速n 较大时,静摩擦力与弹簧弹力同向,即: k L F m n L L fm ∆∆+=+()()212

π ①

n k L F m L L fm 11

2=

++π

∆∆()

当转速n 较小时,静摩擦力与弹簧弹力反向,即: k L F m n L L fm ∆∆-=+()()222

π ②

n k L F m L L fm 21

2=

-+π

∆∆()

所以圆盘转速n 的最大值和最小值分别为: 12π

k L F m L L fm ∆∆++()

12π

k L F m L L fm ∆∆-+()

五、最大加速度问题

例6. 两木块A 、B 质量分别为m 、M ,用劲度系数为k 的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A 压下一段距离静止,释放后A 做简谐运动,在A 振动过程中,木块B 刚好始终未离开地面,求木块A 的最大加速度。

图6

解析:撤去外力后,A 以未加外力时的位置为平衡位置作简谐运动,当A 运动到平衡位置上方最大位移处时,B 恰好对地面压力为零,此时A 的加速度最大,设为a m 。 对A :由牛顿第二定律有k x x mg ma m ()-+=0 对B :k x x Mg ()-=0 所以a M m g

m

m =+(),方向向下。 六、最大振幅

例7. 如图7所示,小车质量为M ,木块质量为m ,它们之间静摩擦力最大值为F f ,轻质弹簧劲度系数为k ,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?

图7

解析:在最大位移处,M 和m 相对静止,它们具有相同的加速度,所以对整体有:kA M m a =+() ①

对m 有: F ma f = ②

所以由①②解得:A F M m km f =

+()。

七、最大势能问题 例8. 如图8所示,质量为2m 的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k 的轻质弹簧,弹簧的自由端到小车右端的距离为L 0,一个质量为m 的小木块从板的右端以初速度v 0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为μ,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。

图8

解:弹簧被压缩至最短时,具有最大弹性势能E pm ,设m 在M 上运动时,摩擦力做的总功产生内能为2E ,从初状态到弹簧具有最大弹性势能及从初状态到末状态,系统均满足动量守恒定律,即:

mv m m v 02=+() ①

由初状态到弹簧具有最大弹性势能,系统满足能量守恒: 1212

3022mv m v E E pm =++() ② 由初状态到末状态,系统也满足能量守恒且有:

1212

32022mv m v E =+() ③ 由①②③求得:E mv pm =1602 从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关

系,此类问题一定会迎刃而解。

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

高中物理弹簧专题

高中物理弹簧专题 在我们的日常生活中,弹簧形态各异,处处都在为我们服务。常见的弹簧是螺旋形的,叫螺旋弹簧。做力学实验用的弹簧秤、扩胸器的弹簧等都是螺旋弹簧。螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧秤的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。有的弹簧制成片形的或板形的,叫簧片或板簧。在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。它们在弯曲时会产生恢复原来形状的倾向,弯曲得越厉害,这种倾向越强。有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流计、电压计)内,机械钟表中都安装了这种弹簧。这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。 形形色色的弹簧在不同场合下发挥着不同的功能:1. 测量功能 我们知道,在弹性限度内,弹簧的伸长(或压缩)跟外力成正比。利用弹簧这一性质可制成弹簧秤。2. 紧压功能 观察各种电器开关会发现,开关的两个触头中,必然有一个触头装有弹簧,以保证两个触头紧密接触,使导通良好。如果接触不良,接触处的电阻变大,电流通过时产生的热量变大,严重的还会使接触处的金属熔化。卡口灯头的两个金属柱都装有弹簧也是为了接触良好;至于螺口灯头的中心金属片以及所有插座的接插金属片都是簧片,其功能都是使双方紧密接触,以保证导通良好。在盒式磁带中,有一块用磷青铜制成的簧片,利用它弯曲形变时产生的弹力使磁头与磁带密切接触。在钉书机中有一个长螺旋弹簧它的作用一方面是顶紧钉书钉,另一方面是当最前面的钉被推出后,可以将后面的钉送到最前面以备钉书时推出,这样,就能自动地将一个个钉推到最前面,直到钉全部用完为止。许多机器自动供料,自动步枪中的子弹自动上膛都靠弹簧的这种功能。此外,像夹衣服的夹子,圆珠笔、钢笔套上的夹片都利用弹簧的紧压功能夹在衣服上。3. 复位功能 弹簧在外力作用下发生形变,撤去外力后,弹簧就能恢复原状。很多工具和设备都是利用弹簧这一性质来复位的。例如,许多建筑物大门的合页上都装了复位弹簧,人进出后,门会自动复位。人们还利用这一功能制成了自动伞、自动铅笔等用品,十分方便。此外,各种按钮、按键也少不了复位弹簧。4. 带动功能 机械钟表、发条玩具都是靠上紧发条带动的。当发条被上紧时,发条产生弯曲形变,存储一定的弹性势能。释放后,弹性势能转变为动能,通过传动装置带动时、分、秒针或轮子转动。在许多玩具枪中都装有弹簧,弹簧被压缩后具有势能,扣动扳机,弹簧释放,势能转变为动能,撞击小球沿枪管射出。田径比赛用的发令枪和军用枪支也是利用弹簧被释放后弹性势能转变为动能撞击发令纸或子弹的引信完成发令或发火任务的。5. 缓冲功能在机车、汽车车架与车轮 之间装有弹簧,利用弹簧的弹性来减缓车辆的颠簸。6. 振动发声功能当空气从口琴、 手风琴中的簧孔中流动时,冲击簧片,簧片振动发出声音。典型例题 例如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后 留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此 系统在从子弹开始射入木块到弹簧压缩到最短的过程 中[ ] A.动量守恒,机械能守恒 B.动量不守恒,机械能不守恒 C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒 【错解】以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。 【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条 件不清。 【分析解答】以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为 受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩 擦力做功,系统机械能减少,也不守恒,故B正确。 例如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下 落,从金属块自由下落到第一次速度为零的过程中

高中物理弹簧类问题专题练习(经典总结附详细答案)

- v 甲 For personal use only in study and research; not for commercial use 高中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结, 弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用 于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块 B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3. ( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q 视为质点)固定在光滑绝缘面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过 程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2). (1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过 程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对 木块做的功. 6、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的 物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。一条不可伸 长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳A B C b

高中物理弹簧类问题专题练习经典总结附详细答案)

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 a b A B C D

高中物理弹簧类问题专题

弹簧类问题专题 1、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态 C.有可能N 处于不伸不缩状态而M 处于拉伸状态 D.有可能N 处于拉伸状态而M 处于不伸不缩状态 2、图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d ,则( ) A .若M = m ,则d = d0 B .若M >m ,则d >d0 C .若M <m ,则d <d0 D .d = d0,与M 、m 无关 3、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( ) A 、加速度为0,作用力为mg 。 B 、加速度为m F 2,作用力为2F mg + C 、加速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mg F + 4、如图所示,一根轻弹簧上端固定,下端挂一质量为m1的箱子,箱中有一质量为m2的物体.当箱静止时,弹簧伸长了L1,向下拉箱使弹簧再伸长了L2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( )

A.g m L L 212)1(+ B..g m m L L ))(1(2112++ C.g m L L 212 D.g m m L L )(2112+ 5、如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( ) A .g m k L 1μ+ B .g m m k L )(21++ μ C .g m k L 2μ+ D .g m m m m k L )(2121++ μ 6、如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧。在这过程中下面木块移动的距离为( ) A .11m g k B .21m g k C .12m g k D .22m g k 7、如图所示,竖直放置在水平面上的轻质弹簧上端叠放着两个物块A 、B ,它们的质量均为,并处于静止状态。某时刻突然将一个大小为10N 的竖直向上的拉力加在A 上,则此时刻A 对B 的压力大小为(g 取10m/s2)( ) A .25N B. 20N C. 15N D. 10N 8、如图所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( ) 第7题 第6题

高中物理 力学 综合 弹簧小专题 含答案

弹簧小专题(一) 1.如图所示,在倾角为θ的光滑固定斜面上,劲度系数分别为k1、k2的两个轻弹簧平行于斜面悬挂着,k1在上 k2在下,两弹簧之间有一质量为m1的重物,现用力F(未知)沿斜面向上缓慢推动m2,当两弹 簧的总长等于两弹簧的原长之和时,求: (1)k1轻弹簧的形变量 (2)m1上移的距离 (3)推力F的大小. 考点:共点力平衡的条件及其应用;力的合成与分解的运用. 专题:共点力作用下物体平衡专题. 分析:(1)由题,两弹簧的总长等于两弹簧的原长之和,则知,k1的伸长量与k2的压缩量相等,由m1重物平衡可求出k1轻弹簧的形变量. (2)先求出k1原来的伸长量,再由几何关系求出m1上移的距离. (3)根据两弹簧的形变量相等,由胡克定律列方程,求出F. 2.如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC 绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜面各移动的距离. 考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克 定律. 专题:共点力作用下物体平衡专题. 分析:在旋转前后,物体均处于平衡状态,则共点力的平衡条件可 得出物体弹簧弹力,由胡克定律可求得弹簧的伸长量,则可得出旋 转前后的距离.

3.如图所示,在倾角为θ的光滑斜面上放有两块小木块,劲度系数为k 1 的轻质弹簧两端分别与质量为m1和m2的物块1、2拴接,劲度系数为k2 的轻质弹簧上端与物块2拴接,下端压在挡板上(不拴接),整个系统处 于平衡状态.现施力将物块1缓慢沿斜面向上提,直到下面那个弹簧的下端刚脱离挡板.在此过程中,下列说法正确的是() 考点:共点力平衡的条件及其应用;力的合成与分解的运用. 专题:共点力作用下物体平衡专题.

高一物理-弹簧专题

高一物理-弹簧类专题 高中物理所涉及弹簧多为轻弹簧,即不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受力大小相同,弹簧读数始终等于任意一端弹力大小。伸长量等于弹簧任意位置受到的力和劲度系数的比值(胡克定律)。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型:一般考察弹力与重力的平衡。 水平型:明确有无推力,有无摩擦力,物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。 4、临界极值问题

高中物理复习——弹簧专题

一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向 的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加 速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二 定律得其加速度F a M =,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力 为: 【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与 B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究 对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =. 以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 图 3-7-4 图 3-7-2 图 3-7-1 图 3-7-3

高中物理弹簧类问题专题练习(经典总结附详细答案)

- v 甲 高中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质 点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2). A B C D b

高中物理弹簧专题

高中物理弹簧专题 1. 如图所示,不计滑轮的磨擦,将弹簧C 的右端由a 点沿水平拉到b 时,弹簧B 刚 好没有形变.求ab 两点间的距离.已知弹簧B,C 的劲度系数分别是21k k 和, 物体的质量为m,弹簧C 的右端在a 点时它刚好没有形变. 2.如图所示,a,b,c 为三个物块,M,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳, 它们连接如图并处于平衡状态( ) A. 有可能N 处于拉伸状态而M 处于压缩状态. B. 有可能N 处于压缩状态而M 处于拉伸状态. C. 有可能N 处于不伸不缩状态而M 处于拉伸状态. D. 有可能N 处于拉伸状态而M 处于不伸不缩状态. 3.如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放 置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始 终处在弹性限度内。在物块A 上施加一个水平恒力,A 、B 从静止开始运

动到第一次速度相等的过程中,下列说法中正确的有() A .当A 、 B 加速度相等时,系统的机械能最大 B .当A 、B 加速度相等时,A 、B 的速度差最大 C .当A 、B 的速度相等时,A 的速度达到最大 D .当A 、B 的速度相等时,弹簧的弹性势能最大 4.图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M 的木箱与 轨道的动摩擦因数为6 。木箱在轨道端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至 最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端, 再重复上述过程。下列选项正确的是() A .m =M B .m =2M C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度 D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能 5.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木 块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。现将木板沿

高考二轮物理复习专题 弹簧问题(附答案)

专题3 弹簧类问题 高考动向 弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。 弹簧弹力的特点: 弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。 高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。 不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。 弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。 在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。) 一、与物体平衡相关的弹簧 例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1 和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上 提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C 此题若求m l移动的距离又当如何求解? 二、与分离问题相关的弹簧 两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。“恰好分开”既可以认为已经分开,也可以认为还未分开。认为已分开,那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。同时利用这两个结论,就能分析出当时弹簧所处的状态。 特点:1.接触;2.还没分开所以有共同的速度和加速度;3.弹力为零。 两种类型: 1.仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。 例.如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下端固定在水平面上, 用竖直向下的力F压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。这时,若突 然撤去压力F,A、B将被弹出且分离。下列判断正确的是() A.木块A、B分离时,弹簧的长度恰等于原长 B.木块A.B分离时,弹簧处于压缩状态,弹力大小等于B的重力 C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重力 D.木块A、B分离时,弹簧的长度可能大于原长 分析与解:以A为对象,既然已分开,那么A就只受重力,加速度竖直向下,大小为g;又未分开,A、B加速度相同,因此B的加速度也是竖直向下,大小为g,说明B受的合力为重力,所以弹簧对

高考物理弹簧专题

高考物理弹簧专题 第二轮重点突破(2)——弹簧专题 连城一中林裕光 1.(02广东)图中a.b.c为三个物块,M.N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态. A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 2.(04吉林理综)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1.l2.l3.l4依次表示四个弹簧的伸长量,则有 A.l2>l1 B.l4>l3 C.l1>l3 D.l2=l4 3.如图所示,a.b两根轻弹簧系住一球,球处于静止状态.撤去弹簧a的瞬间,小球的加速度大小为a=2.5m/S2,若弹簧a不动,则撤去弹簧b的瞬间小球加速度可能

为: A. 7.5m/S2,方向竖直向上. B. 7.5m/S2,方向竖直向下. a C. 12.5m/S2,方向竖直向上. D. 12.5m/S2,方向竖直向下. b 4.如图所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O,将弹簧压缩,弹簧被压缩了_0时,物块的速度变为零.从物块与弹簧接触开始,物块的加速度的大小随下降的位移_变化的图象,可能是( ) 5.(99)如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向

高中物理弹簧专题

! 8.轻弹簧弹性势能的变化量计算问题 一 知能掌握 (一)轻弹簧弹力做功 1.弹力功的特点 弹簧弹力的功与路径无关。同一弹簧在某一过程中弹力的功只是取决于初末状态弹簧形变量的大小,与弹力的作用点经过的路径没有关系。 2.弹力做功的计算 (1)平均力求功:因为弹力随着位移是线性变化的,所以弹力功的大小可以用平均力求得即, 说明: ①上式是弹簧由原长到伸长或者压缩x 长度的过程弹力做的功,上式中的F 是形变量为x 时的弹力。 ①当形变量由x 1变为x 2时弹力功的大小为 (2)图像法求功:如图1所示,弹力F 与形变量l 成线性关系,如果将形变量l 分成很多小段Δl ,在各小段上的弹力可以当作恒力处理,由W =F Δl 知,很多个矩形的面积之和就与弹 力做功的大小相等,综合起来考虑,图线与l 轴所夹面积,就等于弹力做功的大小.则W =12F · l =12kl ·l =12 kl 2. 图1

! (3)功能关系、能量转化和守恒定律求功.同时要注意弹力做功的特点:W k = —( 21kx 22 —21kx 12), (二)轻弹簧弹性势能的大小计算方法 1.功能关系: 弹力的功等于弹性势能增量的负值即:W k = —(21kx 22 —2 1kx 12)=-ΔE p =E p1- E p2,弹力做正功时弹性势能减少;弹力做负功时弹性势能增加。 2.计算公式: 弹性势能的大小计算公式: (此式的定量计算在高中阶段不作要求)。 3.能的转化和守恒定律: (三)弹性势能大小的三个特点: 1.同一弹簧弹性势能与形变量的平方成正比; 2.同一弹簧形变量(拉伸或压缩)相同时弹性势能相同; 3.同一弹簧形变量(拉伸或压缩)的变化量相同时弹性势能的变化量相同。 (四)弹性势能的变化量计算的三种方法 用能量转化与守恒定律分析物理问题时,往往会涉及弹性势能的变化量的计算,有以下三种情形,其中弹性势能的计算式221kx E p 高中不要求掌握,第一种直接计算的方法并不常见。 1.ΔE p =E p2- E p1=21kx 12—2 1kx 22 ,; 1.同一弹簧形变量(拉伸或压缩)相同时弹性势能相同; 2.同一弹簧形变量(拉伸或压缩)的变化量相同时弹性势能的变化量相同。

高中物理弹簧问题专题

弹簧类问题的研究 一、命题趋向与考点 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。 二、知识概要与方法 ㈠弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点: W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 ㈡弹簧类问题的分类 1.弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2.弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。 3.弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4.弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 针对训练 一、弹簧的瞬时问题 此类问题的关键是:弹簧的弹力不会瞬间变。 1.A 、B 球质量均为m ,AB 间用轻弹簧连接,将A 球用细绳悬挂于O 点,如图示,剪断细绳的瞬间,试分析AB 球产生的加速度大小与方向。 2.如图所示甲、乙两装置,所用的器材都相同,只是接法不同,其中的绳为不可 伸长的轻绳,弹簧不计质量,当用剪子剪断甲图中弹簧,乙图中的绳子的瞬间,A 物

高考弹簧问题专题详解

高考弹簧问题专题详解 高考动向 弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。 知识升华 一、弹簧的弹力 1、弹簧弹力的大小 弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。 说明: ①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关; ②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。 2、弹簧劲度系数 弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,

以下主要讨论螺旋式弹簧的劲度系数。 (1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。 (2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。 弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致; 二、轻质弹簧的一些特性 轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

相关主题
相关文档
最新文档