06不等式小题
历年高考数学真题精选06 比较大小

历年高考数学真题精选06 比较大小1.已知a=log2(0.2),b=20.2,c=0.20.3,则a<c<b。
2.若a>b,则ln(a-b)<0.3.设f(x)是定义域为R的偶函数,且在(0.+∞)单调递减,则f(log3(2))>f(2)>f(23)。
4.已知a=log52,b=log0.5(0.2),c=0.50.2,则a<c<b。
5.设a=log0.2(0.3),b=log20.3,则ab<a+b<ab。
6.设0<a<1,则log2a<log2(1/a)。
7.设x、y、z为正数,且2x=3y=5z,则3y<2x<5z。
8.已知a=log33,b=3,c=log1(2),则c>a>b。
9.若a>b>1,且ab=1,则b<a<log2(a+b)。
10.设a=log32,b=log52,c=log23,则c<a<b。
已知a=log2(3)+log2(3),b=log2(9)-log2(3),c=log3(2),则a,b,c的大小关系是()答案】D解析】化简得a=log2(9),b=log2(3),c=log2(1.5),由于2^3b>c,选D。
已知x=lnπ,y=log5(2),z=e,则()答案】B解析】由于π>2>e,即lnπ>ln2>1>lne,故x>ln2>y>lne>z,即z<x<y,故选B。
已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()答案】C解析】由于00,故M≠N,故选C。
若x∈(0,π/2),则sinx/x的大小关系是()答案】B解析】当x∈(0,π/2)时,0sin(π/2)/(π/2)=2/π>1/2,故选B。
已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()答案】B解析】设等比数列公比为q,则a1+a2+a3+a4=a1(1+q+q^2+q^3),a1+a2+a3=ln(a1(1+q+q^2)),由题意得a1(1+q+q^2+q^3)=ln(a1(1+q+q^2)),即a1+q+q^2+q^3=ln(a1(1+q+q^2))/(lna1),由于a1>1,故lna1>0,即a1(1+q+q^2)1,故q<1,故1+q+q^2+q^3<1+q+q^2+q^3/(1-q)<1+2q+3q^2<e,即a1+a2+a3+a4<a1+a2+a3,故a4<0,故选B。
不等式练习题六年级

不等式练习题六年级一、填空题1. 13 > _____2. _____ > 83. 5 + _____ > 104. 6 - _____ < 35. _____ × 4 > 24二、判断题判断下列不等式是否成立,若成立则写"√",否则写"×"。
1. 7 > 52. 10 < 123. 3 + 4 > 84. 9 - 5 > 55. 2 × 6 < 12三、计算题1. 将一个数字与9相加,结果大于17。
求这个数字。
2. 从15开始,每次减去4,连续减多少次,结果小于等于0?3. 一个数字的5倍比16多3,求这个数字。
4. 12减去某个数字的一半,结果大于7。
求这个数字。
5. 某个数字四分之一加6的结果小于等于9,求这个数字。
四、应用题1. 一辆汽车以每小时70公里的速度行驶,经过多少小时能行驶超过490公里?2. 一桶水有25升,小明用了多少升水后,这桶水的容量剩下的一半?3. 小华上午做完作业后,给自己规定了下午最多再玩2小时电脑游戏。
如果小华下午到6点才做完作业,他还能玩多长时间电脑游戏?4. 如果小明的年龄是x岁,他的妹妹比他小6岁,爸爸比他们俩之和大10岁。
用不等式表示出爸爸的年龄在20岁以上。
5. 小明妈妈给他买了一本漫画书,价格为9元。
如果小明有10元,那么他还剩下多少钱?五、综合题一根绳子的长度为x米,小明截取了其中的2/5,小红截取了其中的1/4。
如果小明截取的长度比小红长5米以上,求这根绳子的最短长度。
六、解答题不等式3x - 2 > 10的解集是什么?请用文字形式回答上述解答题。
篇幅有限,只能给出部分答案,请根据题目要求和给出的例题练习不等式的解答。
通过不等式的训练,可以提高对数学问题的分析和解决能力。
希望同学们能够认真完成练习,掌握不等式的基本概念和解题方法。
中考数学热点题型专练不等式与不等式组含解析

热点06 不等式与不等式组【命题趋势】1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查.【满分技巧】一、不等式的性质不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.二、一元一次不等式及其解法(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.三、一元一次不等式组及其解法解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、一元一次不等式(组)的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【限时检测】(建议用时:30分钟)一、选择题1.如果0a b c ><,,那么下列不等式成立的是 A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选D .2.不等式2x ﹣1>3﹣x 的解集是A .x <43B .x >34C .x >43D .x <34【答案】C【解析】移项得2x +x >3+1,合并同类项得3x >4,系数化为1得x >43. 故选C .3.不等式3(x +1)>2x +1的解集在数轴上表示为A .B .C .D . 【答案】A【解析】去括号得,3x +3>2x +1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选A .4.不等式组2012x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是 A .B .C .D . 【答案】B【解析】2012x x +>⎧⎨-≤⎩①②, 由①得,x >﹣2,由②得,x ≤3,故此不等式组的解集为:﹣2<x ≤3.在数轴上表示为:故选B .5.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是 A .67m <≤B .67m <<C .7m ≤D .7m <【答案】A 【解析】2150x x m ->⎧⎨-<⎩①② 由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选A .6.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围 A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a -,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1B .2C .3D .4 【答案】C【解析】解不等式2x -6+m <0,得:解不等式4x -m >0,得:∵不等式组有解,解得m <4,如果m =2,<2,整数解为x =1,有1个; 如果m =0,则不等式组的解集为0<m <3,整数解为x =1,2,有2个;如果m =-1,整数解为x =0,1,2,3,有4个, 故选C .8.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[–2.5]=–3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 A .2个B .3个C .4个D .5个【答案】C 【解析】解方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩可得[][]1,3,x y ⎧=⎪⎨=⎪⎩又∵[a ]表示不大于a 的最大整数,∴1≤x <2,3≤y <4,∴4≤x 2+y <8,∴[x 2+y ]可能的值有4,5,6,7,故选C .9.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A .20B .35C .30D .40【答案】C 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51,(1)若51≤a +b ≤100,则11(a +b )=990得:a +b =90,①由共需支付门票费为1290元可知,11a +13b =1290②解①②得:b =150,a =–60,不符合题意.(2)若a +b ≥100,则9(a +b )=990,得a +b =110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人故两个部门的人数之差为70–40=30人,故选C .10.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种A .2B .3C .4D .5【答案】B【解析】设搭配A 种造型x 个,则B 种造型为(50﹣x )个.依题意,得: 7040(50)26603080(50)3000x x x x +-≤⎧⎨+-≤⎩,解得:20≤x≤22,∵x是整数,∴x可取20、21、22,∴可设计三种搭配方案:①A种园艺造型20个B种园艺造型30个.②A种园艺造型21个B种园艺造型29个.③A种园艺造型22个B种园艺造型28个.故选B.二、填空题11.不等式2x-3≤3的正整数解是___________.【答案】1、2、3【解析】解不等式2x-3≤3得x≤3,∴正整数解是1、2、3,故答案为:1、2、3.12.不等式组3121230xx+>-⎧⎨-≥⎩的解集为___________.【答案】﹣1<x≤4【解析】解不等式3x+1>﹣2,得:x>﹣1, 解不等式12﹣3x≥0,得:x≤4,则不等式组的解集为﹣1<x≤4,故答案为:﹣1<x≤4.13.解不等式组261,31513.22x xx x⎧+>-⎪⎪⎨⎪+≥-+⎪⎩①②,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.【答案】3x >-;(Ⅱ)2x ≤;(Ⅲ)见解析;(Ⅳ)32x -<≤【解析】(Ⅰ)不等式①移项,得23x +x >1–6;合并同类项,得53x >–5;化系数为1,得x >–3故答案为x >–3.(Ⅱ)不等式②移项,得12x –52x ≥–3–1;合并同类项,得–2x 4≥-;化系数为1,得x 2≤故答案为x 2≤.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)根据数轴上的公共部分可得原不等式组的解集为–3<x 2≤.14.不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是__________.【答案】8≤k <12【解析】﹣4x ﹣k ≤0,﹣4x ≤k ,x ≥4k -, ∵不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2, ∴﹣3<4k -≤﹣2, 解得:8≤k <12,故答案为:8≤k <12.15.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________.【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.三、解答题16.解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6,解得x <3.17.解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩. 【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②, 解①得:x <2,解②得x <72, 则不等式组的解集为2<x <72. 18.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来. 【解析】31251422x x x x +>⎧⎪⎨+-≥⎪⎩①②,解不等式①,得x >﹣1, 解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:19.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵,由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵,根据题意可得,3020(10)230y y +-≤,1030y ≤,∴3y ≤,∵y 为自然数,∴y =3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.20.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售额相同,3件甲种商品比2件乙种商品的销售额多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总额不低于5400万元,则至少销售甲种商品多少万件?【解析】(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得:23321500x y x y =⎧⎨-=⎩. 解得:900600x y =⎧⎨=⎩. 答:甲种商品的销售单价是900元,乙种商品的单价为600元.(2)设销售甲产品a 万件,则销售乙产品(8)a -万件.根据题意得:900600(8)5400a a +-≥.解得:2a ≥.答:至少销售甲产品2万件.21.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【解析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,3600360010+=,0.9x x解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80﹣m)件,总利润为w元,w=(80﹣40)m+(70﹣36)(80﹣m)=6m+2720,∵80﹣m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.。
专题6 绝对值不等式高二数学(文)下学期期中专项复习(人教A版选修1-2+4-4+4-5)(原卷版)

专题06绝对值不等式【专项训练】-2020-2021学年高二数学下学期期中专项复习一、单选题1.(2020·江苏高一课时练习)函数y =|x ﹣3|+|x ﹣7|的最小值为( )A .2BC .4D .62.(2020·上海高一专题练习)若|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( ) A .|a+b|+|a-b|>2B .|a+b|+|a-b|<2C .|a+b|+|a-b|=2D .不确定3.(2020·贵溪市实验中学高三月考)不等式123x -<的解集是( )A .{}|1x x <B .{}|12x x -<<C .{}|2x x >D .{|1x x <-或}2x >4.(2021·陕西省黄陵县中学高二期末(文))设x ∈R ,则“30x -≥”是“11x -≤”的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件5.(2021·全国)不等式33log log x x x x +<+的解集( )A .(),-∞+∞B .()0,1C .()1,+∞D .()0,∞+6.(2021·兴义市第二高级中学高二期末(文))不等式3529x ≤-<的解集为( ) A .[2,1)[4,7)- B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-7.(2020·山西太原市·高三期中)若关于x 的不等式13x x m ++-<有实数解,则实数m 的取值范围为( )A .()2,+∞B .()2,4-C .()4,2-D .(],4-∞-8.(2020·江苏苏州市·吴江中学高一月考)不等式||22x x x x >--的解集为( ) A .{x |0<x <2} B .{x |x ≠2}C .∅D .{x |x <0或x >2}9.(2020·江苏高一课时练习)已知函数()f x 是定义在R 上的单调函数,(0,1)A ,(2,1)B -是其图象上的两点,则不等式(1)1f x ->的解集为 ( ) A .(1,1)- B .(,1)(1,)-∞-+∞ C .(1,3) D .(,1)(3,)-∞+∞ 10.(2020·上海高三专题练习)若关于x 的不等式|2||1|x x a ++-<的解集为∅,则实数a 的取值范围是( )A .3a >B .3a ≥C .3a ≤D .3a < 二、填空题 11.(2021·上海高一)存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______. 12.(2020·上海高一专题练习)求函数31y x x =--+的值域______________.13.(2020·河南南阳市·南阳中学高二月考(文))若函数()24f x x x m =++--R ,则实数m 的取值范围为______.14.(2020·上海市洋泾中学高一期中)定义运算,,x x y x y y x y ≤⎧*=⎨>⎩,若11-*=-m m m ,则m 的取值范围为______.三、解答题 15.(2021·全国高三专题练习(文))已知函数()1f x x a x =++-.(1)若0a =,解不等式()13f x -≤;(2)若不等式()21f x a ≥-对任意x ∈R 恒成立,求实数a 的取值范围.16.(2021·四川遂宁市·高三二模(文))设函数()2f x x x t =+--.(1)当1t =时,求不等式()2f x >的解集;(2)若对于任意实数x ,不等式()22f x t t ≤+恒成立,求实数t 的取值范围. 17.(2021·内蒙古包头市·高三一模(文))已知函数()131f x x x =-++.(1)画出()y f x =的图象;(2)求不等式()()1f x f x >-的解集.18.(2021·江西赣州市·高三期末(文))设函数()212f x x x a =++-,()12g x x x =++.(1)若1a =,解不等式()4f x ≥;(2)如果任意1x R ∈,都存在2x R ∈,使得()()12f x g x =,求实数a 的取值范围.。
不等式的基本性质__习题精选(二)

考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │§06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性) (3)c b c a b a +>+⇒>(加法单调性) (4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除)11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈aa R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b ab +≤(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.3,3a b c a b c R abc +++∈≥(4)若、、则(当仅当a=b=c 时取等号) 0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么222.1122a b a b ab a b++≤≤≤+(当仅当a=b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数):特别地,222()22a b a b ab ++≤≤(当a = b时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd abcd +≤++. 常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n n n n n n-==-≥++-- ②11111(1)121n n n n n n n nn n +-==--≥+++-(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b ab a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ 332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或 则称f(x)为凸(或凹)函数. 5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法. 6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩(3)无理不等式:转化为有理不等式求解 ○1()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬>⇔≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f(4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为 注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)12423(1)()223279x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x xxx+=+≥与同号,故取等不等式的基本性质习题精选(二)一、选择题1.若a > b ,c>0 ,则下列四个不等式成立的是()A.ac>bcB.a b c c <C.a c b c-<-D.a c<b+c+2.已知a < -1 ,则下列不等式中错误的是()A.4a<-4B.4a<-4-C.a21+<D.2a3->3.若a< b ,则下列不等式中成立的个数是()(1)-3 + a < -3 + b (2)-3a < -3b(3)-3a -1 < -3b - 1 (4)-3a +1 > -3b + 1 A.1个B.2个C.3个D.4个4.若x < y ,则ax > ay ,则a满足的条件是()A.a≥0B.a≤0C.a>0D . a<05.已知a > b 且a < 0 .则下列各不等式成立的个数是( ) (1)2a ab > (2)2ab>b (3)a b 0-< (4)22a b > A .1个 B .2个 C .3个 D .4个 二、填空题1.若x < y ,则22a x<a y ,那么一定有a ________ 。
高考数学不等式典型综合题型 含详解

全国名校高考专题训练06不等式一、选择题1、(江苏省启东中学高三综合测试二)在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则A.11<<-aB.20<<aC.2321<<-a D.2123<<-a 答案:C2、(江苏省启东中学高三综合测试二)已知a ,b ,c ,d 均为实数,有下列命题:0,0,0)2(;0,00)1(>->->>->->ad bc bda c ab b d dc ad bc ab 则若则,若其中正确命题的个数是则若,0,,0)3(>>->-ab bda c ad bcA. 0B. 1C. 2D. 3 答案:D3、(江苏省启东中学高三综合测试二) ab>ac 是b>c 的A.充分不必要条件B. 必要不充分条件C.充要条件D.即不充分也不必要条件 答案:D4、(江苏省启东中学高三综合测试三)当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]答案:D5、(江苏省启东中学高三综合测试四)不等式xx 1log 2-≥1的解集为 ( ) A .(]1,-∞- B .[)∞+-,1 C .[)0,1- D .(]()∞+-∞-,01, 答案:C6、(江西省五校2008届高三开学联考)已知正整数b a ,满足304=+b a ,使得ba 11+取最小值时,则实数对(),b a 是( )A .(5,10)B .(6,6)C .(10,5)D .(7,2)答案:A7、(江西省五校2008届高三开学联考)设2sin1sin 2sin 222n n na =++⋅⋅⋅+ , 则对任意正整数,()m n m n > , 都成立的是A .||2n m m n a a ⋅-<B .||2n m m n a a -->C .1||2n m n a a -<D .1||2n m n a a -> 答案:C12sin(1)sin(2)sin ||||222n m n n mn n ma a ++++-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 1112111111122||||||12222212n m n n m n m ++++-<++⋅⋅⋅+==--12n < . 故应选C . 8、(陕西长安二中2008届高三第一学期第二次月考)设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab,那么( )A.ab a b a a <<B.b a a a b a << C 。
中考数学专题06一元一次不等式(组)-三年(2019-2021)中考真题数学分项汇编(全国通用)

专题06.一元一次不等式(组)一、单选题1.(2021·河北中考真题)已知a b >,则一定有44a b --□,“”中应填的符号是( )A .>B .<C .≥D .=2.(2021·山东菏泽市·中考真题)如果不等式组541x x x m +<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( )A .2m ≤B .2m ≥C .2m >D .2m <3.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( ) A .55a b ->-B .55a b -<-C .a bc c> D .a c b c +>+4.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( )A .1x <B .2x ≤C .12x <≤D .无解5.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( )A .1B .2C .3D .46.(2021·四川遂宁市·中考真题)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(2021·浙江金华市·中考真题)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<8.(2021·四川南充市·中考真题)满足3x 的最大整数x 是( ) A .1B .2C .3D .49.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 10.(2021·浙江丽水市·中考真题)若31a ->,两边都除以3-,得( ) A .13a <-B .13a >-C .3a <-D .3a >-11.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-212.(2021·浙江中考真题)不等式315x ->的解集是( ) A .2x >B .2x <C .43x >D .43x <13.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .14.(2021·山东临沂市·中考真题)不等式-113x x <+的解集在数轴上表示正确的是( ) A . B .C .D .15.(2021·重庆中考真题)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .16.(2020·广西贵港市·中考真题)如果a b <,0c <,那么下列不等式中不成立的是( )A .a c b c +<+B .ac bc >C .11ac bc +>+D .22ac bc >17.(2020·广西中考真题)不等式组1051x x ->⎧⎨-≥⎩的整数解共有( )A .1个B .2个C .3个D .4个18.(2020·辽宁朝阳市·中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .919.(2020·辽宁铁岭市·)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .520.(2020·辽宁盘锦市·中考真题)不等式417x x +>+的解集在数轴上表示正确的是( ) A .B .C .D .21.(2020·四川宜宾市·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种22.(2020·甘肃天水市·中考真题)若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-23.(2020·山东潍坊市·中考真题)若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( ) A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<24.(2020·山东德州市·中考真题)若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥B .2a <-C .2a >D .2a ≤25.(2020·内蒙古呼伦贝尔市·中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .726.(2019·四川绵阳市·中考真题)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种B .4种C .5种D .6种27.(2019·西藏中考真题)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.( ) A .27本,7人B .24本,6人C .21本,5人D .18本,4人28.(2019·重庆中考真题)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13B .14C .15D .1629.(2019·湖南永州市·中考真题)若关于x 的不等式组26040x m x m -+⎧⎨-⎩<>有解,则在其解集中,整数的个数不可能是( ) A .1B .2C .3D .430.(2019·内蒙古呼和浩特市·中考真题)若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()xx m x +++﹣>成立,则m 的取值范围是( ) A .35m >-B .15m <-C .35m <-D .15m >-31.(2019·山东聊城市·中考真题)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >32.(2019·四川乐山市·中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x +<的概率是()A .15B .14C .13D .1233.(2019·江苏扬州市·中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( ) A .4个 B .5个C .6个D .7个二、填空题目34.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 35.(2021·四川眉山市·中考真题)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______. 36.(2021·上海中考真题)不等式2120x -<的解集是_______.37.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.38.(2021·浙江温州市·中考真题)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.39.(2021·四川泸州市·中考真题)关于x 的不等式组23023x x a恰好有2个整数解,则实数a 的取值范围是_________.40.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.41.(2020·四川绵阳市·中考真题)若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.42.(2020·四川绵阳市·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)43.(2020·黑龙江鹤岗市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨->⎩的解是1x>,则a的取值范围是_______.44.(2020·黑龙江鸡西市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨-<⎩有2个整数解,则a的取值范围是______.45.(2020·山东滨州市·中考真题)若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩无解,则a的取值范围为________.46.(2020·四川遂宁市·中考真题)若关于x的不等式组214322x xx m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m的取值范围是______.47.(2020·贵州黔东南苗族侗族自治州·中考真题)不等式组513(1)111423x xx x->+⎧⎪⎨--⎪⎩的解集为_____.48.(2019·湖北鄂州市·中考真题)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是____.49.(2019·辽宁丹东市·中考真题)关于x的不等式组2401xa x->⎧⎨->-⎩的解集是2<x<4,则a的值为_____.50.(2019·贵州铜仁市·中考真题)如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题51.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步 49662x x ->--+第三步510x ->-第四步 2x >第五步任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ②第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.52.(2021·河北中考真题)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个. (1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:1012x x -=.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.53.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?54.(2021·湖北宜昌市·中考真题)解不等式组3(2)4 21132x xx x--≥⎧⎪-+⎨≤⎪⎩.55.(2021·湖南常德市·中考真题)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?56.(2021·湖北黄冈市·中考真题)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?57.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?58.(2021·陕西中考真题)解不等式组:543121 2xxx+<⎧⎪⎨+≥-⎪⎩59.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.60.(2021·四川乐山市·中考真题)当x取何正整数时,代数式32x+与213x-的值的差大于161.(2021·江苏连云港市·中考真题)解不等式组:311442 x xx x-≥+⎧⎨+<-⎩.62.(2020·柳州市柳林中学中考真题)解不等式组21123xx+>⎧⎨-≥-⎩①②请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式的解集为.63.(2020·山东济南市·中考真题)解不等式组:()42131322x x x x ⎧-≤+⎪⎨->⎪⎩①②,并写出它的所有整数解.64.(2020·山东威海市·中考真题)解不等式组423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩,并把解集在数轴上表示出来65.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b 定义为[]n b 如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?66.(2020·湖南娄底市·中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?67.(2020·江苏淮安市·中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-.…… (1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变; B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.68.(2020·贵州贵阳市·中考真题)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?祝你考试成功!祝你考试成功!。
专题06 一元二次方程、一元一次不等式及其应用-备战2022年中考数学题源解密(原卷版)

专题06 一元二次方程与一元一次不等式(组)及其应用考向1 一元二次方程解法及其应用【母题来源】(2021·浙江丽水)【母题题文】用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3【母题来源】(2021·浙江台州)【母题题文】关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2 B.m<2 C.m>4 D.m<4【母题来源】(2021·浙江舟山)【母题题文】小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.【母题来源】(2021·浙江湖州)【母题题文】今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【试题分析】以上题目考察的一元二次方程的解法及其应用;【命题意图】一元二次方程的解法有四种,其中中考中对配方法与公式法考察较多;一元二次方程的应用题因为和一次方程的应用题的思考方式变化不大,中考中一般也不单独考察,常常和二次函数联合考察其应用;【命题方向】浙江中考中,一元二次方程这个考点通常不会单独出题,并不是因为它在中考中占分少,而是因为在后续几何题目中的计算,都会考到一元二次方程的解法,单独的应用题考察很少,或者基本不考;复习中,能用配方法、公式法、因式分解法熟练解一元二次方程,会用一元二次方程根的判别式判断方程根的情况,了解一元二次方程的根与系数的关系即可; 【得分要点】一元二次方式知识总结一般形式)(002≠=++a c bx ax特征:①自含有1个未知数②未知数的最高次数是2次 ③是整式方程解法直接开方法配方法用法提醒:①先将常数项移到=右边;②二次项系数为1时,配方时加上的是一次想系数一半的平方因式分解法因式分解的一般步骤:①提取公因式,②套用乘法公式,③二次三项式想十字相乘公式法求根公式:)(042422≥--±-=ac b aac b b x根的判别式ac b 42-方程没有实数根;<根;方程有两个相等的实数数根;方程有两个不相等的实>⇔-⇔=-⇔-040404222ac b ac b ac b 韦达定理若一元二次方程)(002≠=++a c bx ax 的两个根分别为21x x 、则ac x x a bx x =•-=+2121; 实际应用 一般步骤:①审题, ②设元, ③列方程, ④解方程, ⑤检验, ⑥写出答案考向2 一元一次不等式(组)的解法【母题来源】(2021·浙江金华)【母题题文】一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A .x +2>0B .x ﹣2<0C .2x ≥4D .2﹣x <0【母题来源】(2021·浙江丽水)【母题题文】若﹣3a >1,两边都除以﹣3,得( ) A .a <﹣B .a >﹣C .a <﹣3D .a >﹣3【母题来源】(2021·浙江衢州)【母题题文】 不等式2(y +1)<y +3的解集为 . 【母题来源】(2021·浙江湖州)【母题题文】不等式3x ﹣1>5的解集是( ) A .x >2B .x <2C .x >D .x <【母题来源】(2021·浙江温州) 【母题题文】 不等式组的解集为 .【母题来源】(2021·浙江绍兴)【母题题文】(1)计算:4sin60°﹣+(2﹣)0.(2)解不等式:5x+3≥2(x+3).【母题来源】(2021·浙江杭州)【母题题文】以下是圆圆解不等式组的解答过程:解:由①,得2+x>﹣1,所以x>﹣3.由②,得1﹣x>2,所以﹣x>1,所以x>﹣1.所以原不等式组的解集是x>﹣1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【母题来源】(2021·浙江宁波)【母题题文】(1)计算:(1+a)(1﹣a)+(a+3)2.(2)解不等式组:.【试题分析】以上题目都考察了一元一次不等式(组)的解法,以及在数轴上表示不等式的解集;【命题意图】一元一次不等式(组)的解法是在理解并掌握不等式的基本性质的基础上,对一元一次不等式的解法步骤的考察,而不等式组则是在解完每个不等式后,考察考生对解集公共部分的理解;【命题方向】浙江中考中,一元一次不等式(组)的解法考察形式较多,选择题、填空题或者简答题都有可能单独出题,而且一般都会考,但考题难度一般不大,考生需要掌握的能力为:准确掌握一元一次不等式(组)的解法,并能在数轴上表示出解集,会用数轴确定由两个一元一次不等式组成的不等式组的解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2006江苏)(12)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 ▲12【思路点拨】本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值. 【正确解答】画出可行域,得在直线2x-y=2与直线x-y=-1的交点 A(3,4)处,目标函数z 最大值为18【解后反思】本题只是直接考查线性规划问题,是一道较为简单的送分题。
近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法。
随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视。
(2006湖南理)12. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是_____________.12.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,如图画出可行域,得交点A(1,2),B(3,4),则22yx +的最小值是5.(2006上海文)9、已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________.9、已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则2y x -的最大值是0.(2006天津理)3、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数yx z +=2的最小值为( )A .2B .3C .4D .93、设变量x 、y 满足约束条件2,36y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩在坐标系中画出可行域△ABC ,A(2,0),B(1,1),C(3,3),则目标函数2z x y =+的最小值为3,选B.(2006浙江理)(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是B(A)24 (B)4 (C) 22 (D)2【考点分析】本题考查简单的线性规划的可行域、三角形的面积。
解析:由题知可行域为ABC ∆, 42204=⨯-=∆ABC S ,故选择B 。
【名师点拔】(2006重庆理)(16)已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤若目标函数z ax y =+(其中0a >)仅在点()3,1处取得最大值,则a 的取值范围为 。
(16)已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤在坐标系中画出可行域,如图为四边形ABCD ,其中A(3,1),1,1AD AB k k ==-,目标函数z ax y =+(其中0a >)中的z 表示斜率为-a 的直线系中的截距的大小,若仅在点()3,1处取得最大值,则斜率应小于1AB k =-,即1a -<-,所以a 的取值范围为(1,+∞)。
(2006四川理)(8) 某厂生产甲产品每千克需用原料A 和原料B 分别为11,a b ,生产乙产品每千克需用原料A 和原料B 分别为22,a b 千克,甲、乙产品每千克可获利润分别为12,d d 元,月初一次性够进本月用原料,A B 各12,c c 千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为x 千克,y 千克,月利润总额为z 元,那么,用于求使总利润12z d x d y =+最大的数学模型中,约束条件为(A )12112200a x a y c b x b y c x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩ (B )11122200a x b y c a x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩(C )12112200a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ (D )12112200a x a y c b x b y c x y +=⎧⎪+=⎪⎨≥⎪⎪≥⎩11,a b ,生产(8) 某厂生产甲产品每千克需用原料A 和原料B 分别为乙产品每千克需用原料A 和原料B 分别为22,a b 千克,甲、乙产品每千克可获利润分别为12,d d 元,月初一次性够进本月用原料,A B各12,c c 千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为x 千克,y 千克,月利润总额为z 元,那么,用于求使总利润12z d x d y =+最大的数学模型中,约束条件为12112200a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,选C. (2006北京理)(13)已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于,最大值等于.解:画出可行域,如图所示:易得A (2,2),OA=B (1,3),OBC (1,1),OC故|OP|(2006湖南文)13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是 .13.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,如图画出可行域,得交点A(1,2),B(3,4),则22y x +的最小值是5.(2006湖北理)9.已知平面区域D 由以(1,3),(5,2),(3,1)A B C 为顶点的三角形内部以及边界组成。
若在区域D 上有无穷多个点(,)x y可使目标函数z=x+my取得最小值,则m=(C ) A.-2 B.-1 C.1 D.4解:依题意,令z=0,可得直线x+my=0的斜率为-1m,结合可行域可知当直线x+my=0与直线AC平行时,线段AC上的任意一点都可使目标函数z=x+my取得最小值,而直线AC的斜率为-1,所以m=1,选C(2006浙江文)(9)在平面直角坐标系中,不等式组20,20,x yx yy+-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是(B)(A)(B)4(C) (D)2易得△ABC的面积为4。
(2006全国I理)⒁、设2z y x=-,式中变量x y、满足下列条件21x y-≥-3223x y+≤1y≥则z的最大值为_____________。
14.2132231x yx yy-≥-⎧⎪+≤⎨⎪≥⎩,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足2z y x=-的最大值是点C,代入得最大值等于11.(2006全国I文)15、设z = 2y – x ,式中变量x、y满足条件2132231x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则z 的最大值为 15.2132231x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC 中满足2z y x =-的最大值是点C ,代入得最大值等于11.(2006天津文)(3)设变量x 、y 满足约束条件2,36y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩则目标函数2z x y =+的最小值为(A )2 (B )3 (C )4 (D )9(3)设变量x 、y 满足约束条件2,36y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩在坐标系中画出可行域△ABC ,A(2,0),B(1,1),C(3,3),则目标函数2z x y =+的最小值为3,选B.(2006山东理)(11)某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是(C )(A)80 (B) 85 (C) 90 (D)95 解:画出可行域:易得A (5.5,4.5)且当直线z =10x +10y 过Az 取得最大值,此时z =90,选C22(2006山东文)(12)已知x 和y 是正整数,且满足约束条件10,2,27.x y x y x +≤⎧⎪-≤⎨⎪≥⎩则z =2x +3y 的最小值是( B ) (A)24 (B)14 (C)13(D)11.5解:画出可域:如图所示 易得B 点坐标为(6,4)且当直线z =2x +3y 过点B 时z 取最大值,此时z =24,点C 的坐标为(3.5,1.5),过点C 时取得最小值, 但x ,y 都是整数,最接近的整数解为(4,2), 故所求的最小值为14,选B(2006福建文)(15)已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是____。
15.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩在坐标系中画出可行域,三个顶点分别是A(0,1),B(1,0),C(2,1),∴ 2x y +的最大值是4.(2006辽宁文)7.双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是( A )A.0003x y x y x -⎧⎪+⎨⎪⎩,,≥≥≤≤B.0003x y x y x -⎧⎪+⎨⎪⎩,,≥≤≤≤C.0003x y x y x -⎧⎪+⎨⎪⎩,,≤≤≤≤D.0003x y x y x -⎧⎪+⎨⎪⎩,,≤≥≤≤解:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围成一个三角形区域时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。
故选A(2006广东)9、在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是A. ]15,6[B. ]15,7[C. ]8,6[D. ]8,7[9、由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--,(1) 当43<≤s 时可行域是四边形OABC ,此时,87≤≤z (2) 当54≤≤s 时可行域是△OA C '此时,8max =z 故选D.(2006重庆文)(16)已知变量x ,y 满足约束条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,0)处取得最大值,则a解:画出可行域如图所示,其中B (3,0), C (1,1),D (0,1),若目标函数z ax y =+得最大值,必在B ,C ,D 三点处取得,故有 3a >a +1且3a >1,解得a >12(2007四川文)(14)设,x y 满足约束条件:112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,则2z x y =-的最小值为_______6-_________;(14)设,x y 满足约束条件:112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,在直角坐标系中画出可行域△ABC ,其中A(1,21),B(1,8),C(4,2),所以2z x y =-的最小值为-6。