高三数学天天练

合集下载

高三基础知识天天练 数学选修4-1-1人教版

高三基础知识天天练 数学选修4-1-1人教版

选修4-1 第1节一、选择题1.若三角形三边上的高分别为a 、b 、c ,这三边长分别为6、4、3,则a ∶b ∶c =( )A .1∶2∶3B .6∶4∶3C .2∶3∶4D .3∶4∶6解析:由三角形面积公式: 12×6a =12×4b =12×3c , ∴6a =4b =3c ,设3c =k ,则a =k 6,b =k 4,c =k 3,∴a ∶b ∶c =k 6∶k 4∶k32∶3∶4.答案:C2.如下图,DE ∥BC ,DF ∥AC ,AD =4 cm ,BD =8 cm ,DE =5 cm ,则线段BF 的长为( )A .5 cmB .8 cmC .9 cmD .10 cm解析:∵DE ∥BC ,DF ∥AC , ∴四边形DECF 是平行四边形, ∴FC =DE =5 cm , ∵DF ∥AC ,∴BF FC =BD DA, 即BF 5=84,∴BF =10 cm. 答案:D3.Rt △ABC 中,∠CAB =90°,AD ⊥BC 于D ,AB ∶AC =3∶2,则CD ∶BD =( )A .3∶2B .2∶3C .9∶4D .4∶9解析:由△ABD ∽△CBA 得AB 2=BD ·BC , 由△ADC ∽△BAC 得AC 2=DC ·BC , ∴CD ·BC BD ·BC =AC 2AB 2=49,即CD ∶BD =4∶9. 答案:D4.已知:如右图,正方形ABCD 的边长为4,P 为AB 上的点,且AP ∶PB =1∶3,PQ ⊥PC ,则PQ 的长为( )A .1 B.54 C.32D. 2解析:∵PQ ⊥PC ,∴∠APQ +∠BPC =90°, ∴∠APQ =∠BCP ,∴Rt △APQ ∽Rt △PBC , ∴AP BC =AQBP. ∵AB =4,AP ∶PB =1∶3,∴PB =3,AP =1, ∴AQ =AP ·BP BC =1×34=34, ∴PQ =AQ 2+AP 2=916+1=54. 答案:B5.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( )A .y 是x 的增函数B .y 是x 的减函数C .y 随x 的增大先增大再减小D .无论x 怎样变化,y 为常数解析:∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12AR ,∵R 固定,∴AR 是常数,即y 为常数.答案:D6.如右图所示,矩形ABCD 中,AB =12,AD =10,将此矩形折叠使点B 落在AD 边的中点E 处,则折痕FG 的长为( )A .13 B.635 C.656D.636解析:过A 作AH ∥FG 交DG 于H ,则四边形AFGH 为平行四边形.∴AH =FG . ∵折叠后B 点与E 点重合,折痕为FG , ∴B 与E 关于FG 对称.∴BE ⊥FG ,∴BE ⊥AH . ∴∠ABE =∠DAH ,∴Rt △ABE ∽Rt △DAH . ∴BE AB =AH AD. ∵AB =12,AD =10,AE =12AD =5,∴BE =122+52=13, ∴FG =AH =BE ·AD AB =656.答案:C 二、填空题7.在Rt △ABC 中,CD 、CE 分别是斜边AB 上的高和中线,设该图中共有x 个三角形与△ABC 相似,则x =________.解析:2个,△ACD 和△CBD . 答案:28.在△ABC 中,D ,E 分别为AB ,AC 上的点,且DE ∥BC ,△ADE 的面积是2 cm 2,梯形DBCE 的面积为6 cm 2,则DE ∶BC 的值为________.解析:△ADE ∽△ABC ,利用面积比等于相似比的平方可得答案. 答案:1∶29.如右图,在直角梯形ABCD 中,上底AD =3,下底BC =33,与两底垂直的腰AB =6,在AB 上选取一点P ,使△PAD 和△PBC 相似,这样的点P 有________个.解析:设AP =x ,(1)若△ADP ∽△BPC ,则AD BP =APBC,即36-x =x 33,所以x 2-6x +9=0,解得x =3. (2)若△ADP ∽△BCP ,则AD BC =APBP ,即333=x 6-x ,解得x =32, 所以符合条件的点P 有两个. 答案:两 三、解答题10.如右图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H .求证:(1)DG 2=BG ·CG ; (2)BG ·CG =GF ·GH .证明:(1)DG 为Rt △BCD 斜边上的高, ∴由射影定理得DG 2=BG ·CG . (2)∵DG ⊥BC ,∴∠ABC +∠H =90°, ∵CE ⊥AB ,∴∠ABC +∠ECB =90°, ∴∠ABC +∠H =∠ABC +∠ECB , ∴∠H =∠ECB .又∵∠HGB =∠FGC =90°, ∴Rt △HBG ∽Rt △CFG , ∴BG GF =GHGC,∴BG ·CG =GF ·GH . 11.如右图,正方形ABCD 中,AB =2,P 是BC 边上与B 、C 不重合的任意一点,DQ ⊥AP 于Q .(1)试证明△DQA ∽△ABP ;(2)当点P 在BC 上变动时,线段DQ 也随之变化,设PA =x ,DQ =y ,求y 与x 之间的函数关系式.解:(1)∵DQ ⊥AP ,∴∠DQA =90°, ∠DAQ +∠ADQ =90°, 又∵∠DAQ +∠BAP =90°, ∴∠BAP =∠QDA . ∴△DQA ∽△ABP .(2)∵△DQA ∽△ABP ,∴DA AP =DQ AB,∴DQ =DA ·AB PA ,即y =4x. 12.有一块直角三角形木板,如右图所示,∠C =90°,AB =5 cm ,BC =3 cm ,AC =4 cm.根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.解:如图(1)所示,设正方形DEFG 的边长为x cm ,过点C 作CM ⊥AB 于M ,交DE 于N ,因为S △ABC =12AC ·BC =12AB ·CM ,所以AC ·BC =AB ·CM ,即3×4=5·CM .所以CM =125. 因为DE ∥AB ,所以△CDE ∽△CAB . 所以CN CM =DE AB ,即125-x125=x 5.所以x =6037.如图(2)所示,设正方形CDEF 的边长为y cm , 因为EF ∥AC ,所以△BEF ∽△BCA . 所以BF BC =EF AC ,即3-y 3=y 4.所以y =127. 因为x =6037,y =127=6035,所以x <y . 所以当按图(2)的方法裁剪时,正方形面积最大,其边长为127cm.。

高三基础知识天天练 数学7-6人教版

高三基础知识天天练 数学7-6人教版

第7模块 第6节[知能演练]一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式: ①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→的是( )A .①②B .②③C .③④D .①④解析:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→; ②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→; ③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→, 所以选A. 答案:A2.如右图,在四棱锥S —ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2,给出以下结论:①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的个数是( )A .1B .2C .3D .4解析:容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0, 所以③正确;又因为底面ABCD 是边长为1的正方形, SA =SB =SC =SD =2, 所以SA →·SB →=2·2·cos ∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故选B. 答案:B3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2 B.12a 2 C.14a 2D.34a 2 解析:AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14(a 2cos60°+a 2cos60°)=14a 2.答案:C4.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1→上且AM →=121→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a 解析:以D 为原点建立如右图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ), N (a ,a ,a2).设M (x ,y ,z )∵点M 在AC 1→上且AM →=12MC 1→,∴(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3得M (2a 3,a 3,a 3),∴|MN →|=(a -23a )2+(a -a 3)2+(a 2-a 3)2=216a . 答案:A 二、填空题5.下列命题中不.正确的所有命题的序号是________. ①若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;④对空间任意点O 与不共线的三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.解析:①正确;②不正确,因为a ,b 共线,不一定有|a |-|b |=|a +b |成立;③不正确,因为a 、b 共线,也可得a 与b 所在直线重合;④不正确;若O ∉平面ABC ,则OA →、OB →、OC →不共面,由空间向量基本定理知,P 可为空间任一点,所以P 、A 、B 、C 四点不一定共面.答案:②③④6.已知三点A (1,0,0),B (3,1,1),C (2,0,1),则 (1)CB →与CA →的夹角等于________; (2)CB →在CA →方向上的投影等于________. 解析:CB →=(1,1,0),CA →=(-1,0,-1). (1)cos 〈CB →,CA →〉=CB →·CA →|CB →||CA →|=-1+0+02·2=-12,∴〈CB →,CA →〉=2π3;(2)CB →在CA →方向上的投影=CB →·CA →|CA →|=-1+0+02=-22.答案:(1)2π3 (2)-22三、解答题7.已知向量a =(1,-3,2),b =(-2,1,1),O 为原点,点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b? 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)假设存在一点E 满足题意OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95,因此存在点E ,使得OE →⊥b , 此时点E 的坐标为(-65,-145,25).8.如右图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系O -xyz .(1)写出点E 、F 的坐标; (2)求证:A 1F →⊥C 1E →;(3)若A 1、E 、F 、C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.解:(1)E (a ,x,0),F (a -x ,a,0). (2)证明:∵A 1(a,0,a )、C 1(0,a ,a ),∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ). ∴A 1F →·C 1E →=-ax +a (x -a )+a 2=0. ∴A 1F →⊥C 1E →.(3)证明:∵A 1、E 、F 、C 1四点共面, ∴A 1E →、A 1C 1→、A 1F →共面.视A 1E →与A 1C 1→为一组基向量,则存在唯一实数对λ1、λ2,使A 1F →=λ1A 1C 1→+λ2A 1E →, 即(-x ,a ,-a )=λ1(-a ,a,0)+λ2(0,x ,-a )=(-aλ1,aλ1+xλ2,-aλ2), ∴⎩⎪⎨⎪⎧-x =-aλ1,a =aλ1+xλ2,-a =-aλ2,解得λ1=12,λ2=1.于是A 1F →=12A 1C 1→+A 1E →.[高考·模拟·预测]1.如右图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12+12b +c C.12a -12b +cD .-12a -12b +c解法一:B 1M →=B 1B →+BM →=A 1A →+12(BA →+BC →)=c +12(-a +b )=-12+12b +c ,∴选A.解法二:∵B 1M →=B 1A 1→+A 1A →+AM →=(-a )+c +a +b 2=-12a +12b +c .答案:A2.已知直线AB 、CD 是异面直线,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为( )A .30°B .45°C .60°D .75°解析:∵AB →·CD →|AB →|·|CD →|=(AC →+CD →+DB →)·CD →2×1=CD →22=12.∴AB →与CD →所成角为60°.答案:C3.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).解析:OE →=12(OD →+OA →)=12[12(OC →+OB →)+OA →]=12a +14b +14c .答案:12a +12b +14c4.如右图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.解析:以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系, 则A (1,0,0),A 1(1,0,1), B 1(1,1,1),B (1,1,0),C (0,1,0), ∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12×12+(12)2=25. 答案:255.在▱ABCD 中,AB =AC =CD =a ,∠ACD =90°,现将它沿对角线AC 折成60°的二面角.(1)求B 、D 两点间的距离;(2)求异面直线AC 与BD 所成角的大小. 解:(1)∵AB =AC =CD =a , ∴|AB →|=|AC →|=|CD →|=a . ∵AB ∥CD ,∠ACD =90°. ∴∠BAC =90°, ∴AB ⊥AC ,AC ⊥CD .由于二面角B -AC -D 的度数为60°,∴〈AB →,CD →〉=60°. ∴AB →·AC →=0,AC →·CD →=0, BA →·CD →=a ·a ·cos120°=-12a 2.∵BD →=BA →+AC →+CD →,∴|BD →|2=(BA →+AC →+CD →)2=|BA →|2+|AC →|2+ |CD →|2+2(BA →·AC →+AC →·CD →+CD →·BA →) =a 2+a 2+a 2+2(0+0-12a 2)=2a 2.∴|BD →|=2a .故B 、D 两点间的距离为2a . (2)设异面直线AC 与BD 所成的角为θ, 则cos θ=|cos 〈AC →,BD →〉|=|AC →·BD →|AC →||BD →||.由于AC →·BD →=AC →·(BA →+AC →+CD →)=AC →·BA →+AC →2+AC →·CD →=0+a 2+0=a 2, ∴cos θ=|AC →·BD →|AC →||BD →||=|a 2a ·2a |=22.由于0°<θ≤90°,∴θ=45°.故异面直线AC 与BD 所成角的大小为45°.[备选精题]6.如右图所示,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)证明平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解:如题图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12).(1)解:BF →=(-1,0,1),DE →=(0,-1,1), 于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12·2=12.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明:由AM →=(12,1,12),CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊆平面CDE ,所以平面AMD ⊥平面CDE .(3)解:设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0.令x =1,可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1). 所以,cos 〈u ,v 〉=u ·v |u ||v |=0+0+13·1=33.因为二面角A -CD -E 为锐角,所以其余弦值为33.。

高三数学(文)日日练基础题(含答案)

高三数学(文)日日练基础题(含答案)

高三数学(文) 天天练(一)1.如果复数i a a a a z )23(222+-+-+=为纯虚数,那么实数a 的值为( )。

A .-2B .1C .2D .1或 -22. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )。

A .18B .27C .36D .453.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.4.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下: f (1) = -2f (1.5) = 0.625 f (1.25) = -0.984 f (1.375) = -0.260 f (1.4375) = 0.162 f (1.40625) = -0.054那么方程32220x x x +--=的一个近似根(精确到0.1)为( )。

A .1.2B .1.3C .1.4D .1.55.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )。

A .2- B .2 C .4- D .46.已知定义域为(-1,1)的奇函数y =f (x)又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )。

A .(22,3)B .(3,10)C .(22,4)D .(-2,3) 7.已知简谐运动)3sin(2)(ϕ+π=x x f (2||π<ϕ)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为A .6=T ,6π=ϕB .6=T ,3π=ϕC .π=6T ,6π=ϕD .π=6T ,3π=ϕ 8.下图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为 .9.函数y=3x 2-2lnx 的单调递减区间为_________. 10.设向量a 与b 的夹角为θ,)3,3(=a ,)1,1(2-=-a b ,则cos θ= .11.已知函数x x x x f cos sin sin 3)(2+-=(I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 答案:1.C 2.C 3.108π 4.C 5.D 6.A 7.A 8. 4.6 9.(-√6/6,√6/6) 10.3√10/10 11.(1)π (2)[-√3,1-√3/2]。

高考数学天天练带答案

高考数学天天练带答案

高考数学天天练五1.若集合2{|90}A x x x =-<,⎭⎬⎫⎩⎨⎧∈∈=*Z yZ y y B 4|且,则集合AB 的元素个数为 .2.已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 . 3.某校高一、高二、高三共有3600名学生,其中高一学生1400名,高二学生1200名,高三学生1000名,现用分层抽样的方法抽取样本,已知抽取高一学生数为21,则每个学生被抽到的概率为 . 4.各项都是正数的等比数列{}n a 的公比1≠q ,且653,,a a a 成等差数列,则6453a a a a ++= ____. 5.若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是 .6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,且tan B =则角B 的大小是 .7.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a . 8(第8题图)9.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于或等于a 的概率为 .10. 已知P 是△ABC 内任一点,且满足AP xAB yAC =+,x 、y R ∈,则2y x +的取值范围是 .11.若过点(,)A a a 可作圆2222230x y ax a a +-++-=的两条切线,则实数a 的取值范围是 .12.设首项不为零的等差数列{}n a 前n 项之和是n S ,若不等式22212n n S a a nλ+≥对任意{}n a 和正整数n 恒成立,则实数λ的最大值为 .13.定义在R 上的函数f (x )的图象关于点(43-,0)对称,且满足f (x )= -f (x +23),f (1)=1,f (0)=-2,则f (1)+f (2)+f (3)+…+f (2009)的值为 .14. 己知:函数()f x 满足()()()()f x y f x f y xy x y +=+++,又()'01f =.则函数()f x 的解析式为 .1.3; 2.1-; 3.3200; 4.3; 5.3441≤≤m ; 6.3π或32π; 7.35;8.(4,8); 9.21; 10.6π; 11.(0,2); 123312a a <-<<或.; 13. 15; 14.2.。

高三基础知识天天练 数学6-2人教版

高三基础知识天天练 数学6-2人教版

第6模块 第2节[知能演练]一、选择题1.设全集I 是实数集R ,M ={x |x 2>4}与N ={x |2x -1≥1}都是I 的子集,如图所示,则阴影部分所表示的集合为( )A .{x |x <2}B .{x |-2≤x <1}C .{x |-2≤x ≤2}D .{x |1<x ≤2}解析:∵M ={x |x 2>4}={x |x <-2或x >2}, N ={x |2x -1≥1}={x |1<x ≤3},∴∁I M ={x |-2≤x ≤2},N ∩(∁I M )={x |1<x ≤2}. 即阴影部分所表示的集合为{x |1<x ≤2}.故选D. 答案:D2.已知m >2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图象上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 2<y 1<y 3解析:二次函数y =x 2-2x 的对称轴为x =1,当m >2时,m -1,m ,m +1都在对称轴的右边,在对称轴的右边二次函数y =x 2-2x 为增函数,故y 1<y 2<y 3,故选A.答案:A3.不等式x 2-x -6-x 2-1>0的解集是( )A .{x |-2<x <3}B .{x |x ≤-2或x ≥3}C .{x |x <-2}D .{x |x >3}解析:不等式化为x 2-x -6x 2+1<0,所以x 2-x -6<0⇒-2<x <3.答案:A4.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B A ,则实数a 的取值范围是( )A .a ≤1B .1<a ≤2C .a >2D .a ≤2解析:不等式3x -2-x 2<0化为x 2-3x +2>0⇒x >2或x <1,由不等式x -a <0,得x <a .要使B A ,则a ≤1.答案:A 二、填空题5.若关于x 的不等式-12x 2+2x >mx 的解集是{x |0<x <2},则实数m 的值是________.解析:-12x 2+2x >mx 可化为x 2+(2m -4)x <0,由于其解集为{x |0<x <2},故0,2是方程x 2+(2m -4)x =0的两根,由一元二次方程根与系数的关系知,4-2m =2,所以m =1.故填1.答案:16.关于x 的不等式ax -b >0的解集为(1,+∞),则关于x 的不等式ax +bx -2>0的解集为________.答案:(-∞,-1)∪(2,+∞) 三、解答题7.已知f (x )=-3x 2+a (6-a )x +b . (1)解关于a 的不等式f (1)>0;(2)当不等式f (x )>0的解集为(-1,3)时,求实数a ,b 的值.解:(1)f (1)=-3+a (6-a )+b =-a 2+6a +b -3.∵f (1)>0,∴-a 2+6a +b -3>0,Δ=24+4b ,当b ≤-6时,Δ≤0,∴f (1)>0的解集为Ø;当b >-6时,3-b +6<a <3+b +6.∴f (1)>0的解集为{a |3-b +6<a <3+b +6}.(2)∵不等式-3x 2+a (6-a )x +b >0的解集为(-1,3),∴f (x )>0与不等式(x +1)(x -3)<0同解.∵3x 2-a (6-a )x -b <0的解集为(-1,3),∴⎩⎨⎧2=a (6-a )33=b3,解之得⎩⎨⎧a =3±3b =9.8.设函数f (x )=log a (1-ax ),其中0<a <1.(1)判断f (x )在(a ,+∞)上的单调性; (2)解不等式f (x )>1.解:(1)设f (x )=log a u (x ),u (x )=1-ax.∵0<a <1,∴f (x )=log a u (x )在定义域内是减函数,u (x )=1-ax在(a ,+∞)上是增函数,故f (x )在(a ,+∞)上是减函数.(2)由f (x )>1得log a (1-a x )>1.∵0<a <1,∴不等式可化为0<1-a x <a ,解得a <x <a1-a .故不等式的解集为{x |a <x <a1-a}. [高考·模拟·预测]1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤02x -1,x >0,若f (x )≥1,则x 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .(-∞,0]∪[1,+∞)D .(-∞,-1]∪[1,+∞)解析:将原不等式转化为:⎩⎪⎨⎪⎧ x >02x -1≥1或⎩⎪⎨⎪⎧x ≤0x 2≥1,从而得x ≥1或x ≤-1.答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧x +1(x <0)-x -1(x ≥0),则不等式x +(x +1)f (x -1)≤3的解集是( )A .{x |x ≥-3}B .{x |x ≥1}C .{x |-3≤x ≤1}D .{x |x ≥1或x ≤-3}解析:由函数f (x )可知f (x -1)=⎩⎪⎨⎪⎧x ,x <1-x ,x ≥1,当x <1时,原不等式等价于x +(x +1)x ≤3,解得-3≤x ≤1,又x <1,所以-3≤x <1; 当x ≥1时,原不等式等价于x +(x +1)(-x )≤3,即x 2≥-3恒成立. 综上可知不等式的解集为{x |x ≥-3}. 答案:A3.设函数f (x )=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2-2x -6(x <0),若f (t )>2,则实数t 的取值范围是( )A .(-∞,-1)∪(4,+∞)B .(-∞,-3)∪(2,+∞)C .(-∞,-4)∪(1,+∞)D .(-∞,-2)∪(3,+∞)解析:当x ≥0时,解不等式x 2-2x -1>2得x >3,当x <0时,解不等式x 2-2x -6>2得x <-2,故t 的取值范围是(-∞,-2)∪(3,+∞).故选D.答案:D4.设0<b <1+a .若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析:(x -b )2>(ax )2⇒(x -b )2-(ax )2>0⇒[(1+a )x -b ][(1-a )x -b ]>0. 若-1<a <0,则x >b 1+a 或x <b1-a ,可知不止三个整数解;若0<a <1,则x >b 1-a 或x <b1+a ,可知不止三个整数解;若a >1,有(x -b )2>(ax )2⇒[(1+a )x -b ][(a -1)x +b ]<0,则-b a -1<x <b1+a. 又0<b <1+a ,∴不等式的解集中的整数为-2,-1,0,故-3≤-ba -1<-2,则有2a -2<b ≤3a -3,即⎩⎪⎨⎪⎧2a -2<b <a +1,3a -3≥b >0,解得1<a <3.答案:C5.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)当a =2时,解不等式f (x )-f (x -1)>2x -1; (2)讨论函数f (x )的奇偶性,并说明理由.解:(1)当a =2时,f (x )=x 2+2x ,f (x -1)=(x -1)2+2x -1,由x 2+2x -(x -1)2-2x -1>2x-1,得2x -2x -1>0,x (x -1)<0,0<x <1.∴原不等式的解集为{x |0<x <1}. (2)f (x )的定义域为(-∞,0)∪(0,+∞),当a =0时,f (x )=x 2,f (-x )=(-x )2=x 2=f (x ),∴f (x )是偶函数;当a ≠0时,f (x )+f (-x )=2x 2≠0,f (x )-f (-x )=2ax ≠0,∴f (x )既不是奇函数,也不是偶函数.[备选精题]6.已知集合A ={x ||x -a |<ax ,a >0},若f (x )=sin πx -cos πx 在A 上是单调增函数,求a 的取值范围.解:由|x -a |<ax 得-ax <x -a <ax ,所以⎩⎪⎨⎪⎧(1+a )x >a(1-a )x <a .当0<a <1时,A =(a 1+a ,a1-a );当a ≥1时,A =(a1+a,+∞).又f (x )=sin πx -cos πx =2sin(πx -π4)的单调递增区间为[2k -14,2k +34],(k ∈Z ),显然,当a ≥1时,f (x )在A 上不可能是单调增函数,因此,当0<a <1,要使f (x )在A =(a 1+a ,a1-a )上是增函数,只有(a 1+a ,a 1-a )⊂[-14,34],所以⎩⎪⎨⎪⎧0<a <1a 1-a ≤34,解得0<a ≤37,故a 的取值范围为0<a ≤37.。

高三基础知识天天练2-3. 数学 数学doc人教版

高三基础知识天天练2-3. 数学 数学doc人教版

第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。

第二份

第二份

高三数学天天练(2)班级 姓名 日期1、 已知命题:“在等差数列{}n a 中,若244()102=++a a a ,则11S 为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为___ ______2、 将一个长宽分别是(),0b a b a <<的铁皮的四角切去相同的正方形,然后折成一个无盖的 长方体的盒子,若这个长方体的外接球的体积存在最小值,则ab的取值范围是 .3、如图,已知椭圆)0(12222>>=+b a by a x 的左、右准线分别为21,l l ,且分别交x 轴于D C ,两点,从1l 上一点A 发出一条光线经过椭圆的左焦点F 被x 轴反射后与2l 交于点B , 若AF BF ⊥,且75ABD ∠=︒,则椭圆的离心率等于 . 4、已知集合{}]3,2[,2∈-==x y y A x,{}03322>--+=a a x x x B(1)当4a =时,求A B ; (2)若A B ⊆,求实数a 的取值范围.5、在△ABC 中,a ,b ,c 分别是角A 、B 、C 所对的边,且b 2=ac ,向量()cos()1A C =- ,m 和(1,cos )B = n 满足32⋅= m n .(1)求s i n s i nA C 的值;(2)求证:三角形ABC 为等边三角形.6、在长方体1111ABCD A B C D -中,2AB BC ==,过11A C B 、、三点的的平面截去长方体的一个角后.得到如图所示的几何体111ABCD A C D -,且这个几何体的体积为403. (1)求1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.7、已知椭圆的中心在坐标原点,且经过点M 1,5⎛ ⎝⎭,N 2,5⎛⎫- ⎪ ⎪⎝⎭,若圆C 的圆心与椭圆的右焦点重合,圆的半径恰好等于椭圆的短半轴长,已知点A (,)x y 为圆C 上的一点(1)求椭圆的标准方程和圆的标准方程;(2)求2AC AO AC AO ∙+-(O 为坐标原点)的取值范围;(3)求22x y +的最大值和最小值。

高三基础知识天天练4-2. 数学 数学doc人教版

高三基础知识天天练4-2. 数学 数学doc人教版

第4模块 第2节[知能演练]一、选择题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn等于( )A .-12B .2 C.12D .-2解析:m a +n b =(2m,3m )+(-n,2n ) =(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1). 由m a +n b 与a -2b 共线, 则有2m -n 4=3m +2n-1∴n -2m =12m +8n ,∴m n =-12.答案:A2.已知向量OM →=(3,-2),ON →=(-5,-1),则12MN →等于( )A .(8,1)B .(-8,1)C .(4,-12D .(-4,12)解析:∵OM →=(3,-2),ON →=(-5,-1), ∴12MN →=12(ON →-OM →) =12[(-5,-1)-(3,-2)] =12×(-8,1)=(-4,12). 答案:D3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 是( )A .梯形B .矩形C .菱形D .正方形解析:∵AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b ,∴AD →=2(-4a -b )=2BC →,∴AD →∥BC →且|AD →|=2|BC →|,故四边形是梯形. 答案:A4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x ,y )满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则x ,y 满足的关系式为( )A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0解析:由OC →=αOA →+βOB →, ∴(x ,y )=(3α-β,α+3β).∴⎩⎪⎨⎪⎧x =3α-β,y =α+3β.∴⎩⎨⎧α=3x +y10,β=-x +3y10.∵α+β=1,∴x +2y -5=0. 答案:D 二、填空题5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c = (-4,-7)共线,则λ=________. 解析:由题意得λa +b =(2+λ,2λ+3), 又λa +b 与c 共线,因此有(λ+2)×(-7)-(2λ+3)×(-4)=0, ∴λ=2. 答案:26.已知点A (1,-2),若向量AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________. 解析:∵向量AB →与a 同向, ∴设AB →=(2t,3t )(t >0).由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4. ∵t >0,∴t =2.∴AB →=(4,6). 设B 为(x ,y ), ∴⎩⎪⎨⎪⎧x -1=4,y +2=6.∴⎩⎪⎨⎪⎧x =5,y =4. 答案:(5,4) 三、解答题7.已知A (-2,4),B (3,-1),C (-3,-4). 设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n . 解:由已知得a =(5,-5), b =(-6,-3),c =(1,8). (1)3a +b -3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1n =-1. 8.在▱ABCD 中,A (1,1),AB →=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD →=(3,5),求点C 的坐标; (2)当|AB →|=|AD →|时,求点P 的轨迹. 解:(1)设点C 坐标为(x 0,y 0), 又AC →=AD →+AB →=(3,5)+(6,0)=(9,5), 即(x 0-1,y 0-1)=(9,5), ∴x 0=10,y 0=6,即点C (10,6). (2)由三角形相似,不难得出PC →=2MP →设P (x ,y ),则BP →=AP →-AB →=(x -1,y -1)-(6,0)=(x -7,y -1),AC →=AM →+MC →=12AB →+3MP →=12AB →+3(AP →-12AB →) =3AP →-AB →=(3(x -1),3(y -1))-(6,0) =(3x -9,3y -3),∵|AB →|=|AD →|,∴▱ABCD 为菱形,∴AC ⊥BD . ∴AC →⊥BP →,即(x -7,y -1)·(3x -9,3y -3)=0. (x -7)(3x -9)+(y -1)(3y -3)=0, ∴x 2+y 2-10x -2y +22=0(y ≠1). ∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.[高考·模拟·预测]1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线解析:a +b =(0,1+x 2),由1+x 2≠0及向量的性质可知,C 正确.故选C. 答案:C2.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解析:在平行四边形ABCD 中,AC →=AB →+AD →,BD →=AD →-AB →, ∴BD →=(AC →-AB →)-AB →=(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5). 答案:B3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13C.12a +14bD.13a +23b 解析:由已知得DE =13EB ,则DF =13DC ,∴CF =23CD ,∴CF →=23CD →=23(OD →-OC →)=23(12b -12a )=13b -13a , ∴AF →=AC →+CF →=a +13b -13a=23a +13b . 答案:B4.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 解析:3-k 1=-63⇒k =5.故填5.答案:55.已知向量a =(1,2),b =(-2,1),k ,t 为正实数,x =a +(t 2+1)b ,y =-1k a +1t b ,问是否存在k 、t ,使x ∥y ,若存在,求出k 的取值范围;若不存在,请说明理由.解:x =a +(t 2+1)b=(1+2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3) y =-1k a +1t b =-1k (1,2)+1t (-2,1)=(-1k -2t ,-2k +1t,假设存在正实数k ,t ,使x ∥y ,则 (-2t 2-1)(-2k +1t )-(t 2+3)(-1k -2t )=0,化简得t 2+1k +1t=0,即t 3+t +k =0,∵k ,t 是正实数,故满足上式的k ,t 不存在. ∴不存在这样的正实数k ,t ,使x ∥y .[备选精题]6.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin2θ+4sin 2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.函数f (x )= f (x )=(x -1) 2-1,x ∈[0,2]的值域为________.
2.f (x )=x 2+(m +2)x +1是偶函数,则m =________.
3. f (x )=x 2-2ax +3的增区间为[4,+∞),则a =________.
4.二次函数f (x )的图象的顶点为(2,4)且过点(3,0),则f (x )=________________.
5.若不等式x 2+bx +c <0的解集是(-1,2),则b +c =________.
6.已知函数f(x)=x 2-2x +2,那么f(1),f(-1),f(
3)之间的大小关系为 .
7.若函数
x x x f 2)12(2-=+,则)3(f =
8.求函数243y x x =-+在区间[],1t t +上的最小值.
9.已知函数2
()2
x f x x =-+在区间[,]m n 上的值域是[3,3]m n ,求m ,n 的值
1.若函数b ax x f +=)(的零点是3,那么函数ax bx x g +=2)(的零点是________.
2.函数32)(2-+=-x x f x 的零点个数为________.
3.设方程2ln 72x x =-的解为x 0∈()1,+k k ,则正整数k = ________.
4已知函数)0()(2<++=a a x x x f 在区间()1,0上有零点,则a 的取值范围是 .
5.函数m x m x x f +++=)2()(22在()1,1-上零点的个数为 .
6.当)2,1(∈x 时,不等式042<++mx x 恒成立,则m 的取值范围是 .
7.若函数x
x x f 2)1ln()(-+=的零点在区间)1,(+k k 上,则k 的值为 . 8. ⎩⎨⎧≥++-≤+=)
1(,32)1(,3)(2x x x x x x f 则函数()x x f x g 3)(-=的零点个数为 . 9.若方程032
=+-m x x 在[]2,0上有解,则实数m 的取值范围是 . 10. 已知函数x x f x +=2)(,x x x g +=2log )(,x x x h +=3)(的零点依次为c b a ,,,则c b a ,,由小到大的顺序是 .
1.若函数3412++-=
mx mx mx y 的定义域是R ,则实数m 的取值范围是 . 2.若函数342++=mx mx y 的定义域是R ,则实数m 的取值范围是 .
3.若函数)34lg(2++=mx mx y 的定义域是R ,则实数m 的取值范围是 .
4.若函数)34lg(2++=mx mx y 的值域是R ,则实数m 的取值范围是 .
5.若函数)34lg(2++=x mx y 的值域是R ,则实数m 的取值范围是 .
6.若不等式210x ax ++≥对于一切1
(0,)2
x ∈成立,则a 的取值范围是 . 7.若关于x 的方程240x mx -+=在[1,1]-有解,则实数m 的取值范围是 .
8.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为 .
9.函数220.3x x y --=的定义域为___ __;单调递增区间 ;值域 .。

相关文档
最新文档