时间序列

合集下载

时间序列的实际例子

时间序列的实际例子

时间序列的实际例子
1. 想想看咱们每天的生活呀,从早上起床到晚上睡觉,这就是一个时间序列呀!就好比你每天早上固定时间起来,然后刷牙洗脸吃早餐,接着去上班或者上学,这一系列的动作不就是按照时间顺序来的嘛。

2. 四季的更替也是超明显的时间序列例子呢!春天万物复苏,夏天骄阳似火,秋天果实累累,冬天白雪皑皑,年复一年都是这样有规律地循环着呀,难道不是超级神奇的嘛!
3. 你的成长过程那也是时间序列哦!从呱呱坠地的小婴儿,到蹒跚学步的幼儿,再到蹦蹦跳跳的少年,逐渐成长为成熟的大人,这一路走来,都是时间在起着作用呀,你说这多有意思!
4. 一场体育比赛不也是吗!从比赛开始的哨声响起,运动员们奋力拼搏,到中场休息,再到最后的冲刺和决出胜负,这不就是在时间轴上展开的嘛,多让人热血沸腾啊!
5. 城市的发展也是典型的时间序列呀!从过去的小村落,慢慢变成繁华的大都市,建筑越来越高,街道越来越热闹,这都是时间带来的变化呀,难道你不惊叹吗!
6. 植物的生长过程呀,从种子发芽,到长出叶子,再到开花结果,这都是在时间的流淌中一步步完成的呀,这就像是一场神奇的魔法表演呢!
7. 再看看一部电影的播放,从开头的字幕出现,到情节逐渐展开,再到高潮和结局,不也是顺着时间进行的嘛,多吸引我们沉浸其中啊!
我觉得时间序列真的是无处不在呀,它让我们的世界变得更加有序和精彩呢!。

时间序列分析第一章 时间序列 ppt课件

时间序列分析第一章 时间序列 ppt课件
当 0 时,称为零均值白噪声; 当 0,2 1称为标准白噪声。
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t

统计学-第十章 时间序列分析

统计学-第十章  时间序列分析

1
38(a1)
2
42(a2)
3
39(a3)
4
37(a4)
5
41(a5)
解: a 38 42 39 37 41 39.(4 台/天) 11111
三、平均发展水平
3.由绝对数时间序列计算的序时平均数
(2)由时点序列计算序时平均数
②间隔不相等的连续的时点数列
a af
季度在某地区销售量的走势 250 200
图。
150
100
那么,如何预测该品牌 50
空调2018年各个季度在该地 0
区的销售量呢?
单位:销售量(百台)
3
第一节 时间序列概述
一、时间序列概述
1.定义:将表明社会经济现象在不同时间发展 变化的某同一指标数值,按时间先后顺序排列所形 成的序列。(规模和水平)
③序列中每个指标的数值,通 常通过连续不断的登记取得。
由反映某种现象在一定 时点(瞬间)上发展状况的总量 指标所构成的绝对数动态序列所 处的数量水平。其中时点序列无 时点长度;两个相邻时点间的时 间距离称为时点间隔。也可为 日、周、旬、季、年等。
①序列中各个指标的 数值不可以直接相加;
②序列中指标数值的大小与其 时间间隔长短没有直接联系;
表9.3 我国普通高校毕业生数(时期序列)
年份 1912-1948 1978 1995 2000 2004 2014 2016
毕业生数(万人) 21.08 16.5 80.5 95 239.1 669.4 756
10
第二节 时间序列分析的基本原 理 一、时间序列分析的意义
:以时间序列为依据,对影响动态序列变 动过程的主要因素及其相互关系进行分解与综合, 以认识社会经济现象发展变量的规律性,借以鉴别 过去、预测未来的分析研究工作。

统计学中的时间序列

统计学中的时间序列

统计学中的时间序列时间序列(Time Series)是统计学中重要的研究对象之一,它描述了同一变量在不同时间点上的观测结果。

时间序列在许多领域都有广泛的应用,如经济学、金融学、气象学等。

通过对时间序列的分析,可以揭示出其中的规律和趋势,为决策和预测提供依据。

一、时间序列的基本概念时间序列是按照时间顺序排列的数据序列。

通常,时间序列中的观测值可以按照以下两个因素进行分类:1. 时间单位:观测点之间的时间间隔可以是固定的,如每日、每月、每年等,也可以是不规则的,如每小时、每分钟等。

2. 观测值类型:时间序列可以包含单变量(单个观测变量)或多变量(多个观测变量)。

二、时间序列的经典模型时间序列分析的目标是识别和建模数据中的模式和结构。

经典的时间序列模型包括以下几种:1. 自回归移动平均模型(ARMA):ARMA模型是将自回归模型(AR)和移动平均模型(MA)结合起来,它假设时间序列的当前观测值与过去的观测值和随机误差有关。

2. 自回归整合移动平均模型(ARIMA):ARIMA模型是在ARMA模型的基础上引入差分操作,用于消除时间序列的非平稳性。

3. 季节性模型:对于具有明显季节性变化的时间序列,可以采用季节性模型,如季节性ARIMA模型(SARIMA)。

4. 非线性模型:除了上述线性模型外,时间序列还可能具有非线性特征,因此可以采用非线性模型,如ARCH、GARCH模型等。

三、时间序列分析的方法时间序列分析主要包括以下几个步骤:1. 数据获取和预处理:从数据源获取时间序列数据,并对数据进行预处理,如处理缺失值、异常值等。

2. 数据可视化和描述性统计:通过绘制时间序列图、自相关图、偏自相关图等,对数据进行可视化和描述性统计,以了解数据的整体特征。

3. 模型识别和参数估计:根据观察到的时间序列图和自相关函数,选择适当的模型,并对模型的参数进行估计。

4. 模型检验和诊断:对所建立的模型进行检验,如检验模型的拟合优度、残差序列是否平稳等,并进行诊断,如检验残差是否具有自相关性等。

时间序列的概念

时间序列的概念

时间序列的概念时间序列的概念时间序列是指在一段时间内按照固定时间间隔所观测到的一系列数据或变量的集合。

这些数据或变量可以是任何类型的,例如经济指标、天气变化、股票价格等。

时间序列分析是对这些数据进行统计分析和预测的方法。

一、时间序列的基本概念1.1 时间序列的定义时间序列是指按照固定时间间隔所观测到的一系列数据或变量的集合。

这些数据可以是任何类型的,例如经济指标、天气变化、股票价格等。

1.2 时间序列的组成元素时间序列由三个基本组成元素构成:趋势、季节性和随机性。

趋势是长期上升或下降趋势,季节性是周期性波动,随机性则代表着随机波动。

1.3 时间序列的应用领域时间序列广泛应用于经济学、金融学、气象学、环境科学等领域。

在金融领域中,它被用于预测股票价格和汇率波动;在气象领域中,它被用于预测天气变化;在环境科学领域中,它被用于预测自然灾害的发生。

二、时间序列的分析方法2.1 描述性统计描述性统计是对时间序列数据进行总体和样本统计特征的分析。

平均值、标准差、最大值和最小值等。

2.2 时间序列图时间序列图是一种展示时间序列数据的图表。

它通常由时间轴和变量轴组成,可以直观地反映出数据的趋势和季节性波动。

2.3 分解法分解法是将时间序列分解为趋势、季节性和随机性三个部分。

通过对这三个部分进行独立分析,可以更好地理解和预测时间序列数据。

2.4 平稳性检验平稳性检验是判断一个时间序列是否具有平稳性的方法。

平稳性是指时间序列在长期内具有相同的统计特征,如均值、方差等。

如果一个时间序列不具有平稳性,则需要进行差分或其他处理方法以实现平稳化。

2.5 预测方法预测方法是利用历史数据来预测未来趋势或波动的方法。

常用的预测方法包括移动平均法、指数平滑法、ARIMA模型等。

三、时间序列的应用案例3.1 经济领域时间序列在经济领域中广泛应用,例如预测GDP增长率、通货膨胀率、失业率等。

这些预测结果对政府制定经济政策和企业决策具有重要意义。

时间序列

时间序列

ARMA(w pt,q ) 模型 c 1 wt 1 p wt p t 1 t 1 q t q
Page
22
22
用滞后算子表示,则
( L ) wt c ( L) t
其中 ( L) 1 1 L 2 L 2 p Lp ( L) 1 1 L 2 L2 q Lq 经过d阶差分变换后的ARMA(p,q) 模型称为 ARIMA(p,d,q) ,等价于下式 ( L ) (1 L) d yt c ( L) t
Page 11
四项移动平 均 — — 506.75 536.50 555.00 562.00 569.50 565.50 581.25 584.50 594.25 —
二项移动平 均 — — 526.63 545.75 558.50 565.75 567.50 573.38 582.88 589.38 — —
同月(季)平均数 季节指数(S) 总月(季)平均数
如果某月或季的季节指数大于或小于总平均数,说明现象在该月或季有季节变动 影响;如果其等于总平均数,说明现象在该月或季没有明显季节变动影响。
Page
25
按月(季)平均法举例
[例5.16]根据我国1978~1983年各季度农业生产资
料销售额数据,用按季平均法计算各季的季节指数。
2 p (L)=1 1 L 2 L -... p L 其中
(L)=1+ 1L+ 2L2 ... qLq
当满足条件: 1-1Z- 2Z2 -...- pZp 0 特征方程的根全部落在单位圆以外时,ARMA(p,q)是一个平 稳过程。
Page 21
21
ARIMA模型的概念

第五章 时间序列

第五章  时间序列
4. 不规则变动(I)
是一种无规律可循的偶然性的变 动,包括严格的随机变动和不规 则的突发性影响很大的变动两种 类型。比如股票的价格波动。
前三种都是可以解释的变 动,只有不规则变动是无法解 释的。
传统的时间序列分析的主 要内容就是将这些成分从时间 序列中分离出来,然后将它们 之间的关系用一定的数学关系 式予以表达,并进行分析。
1. 长期趋势(T)
现象在较长时期内受某种根 本性因素作用而形成的总的 变动趋势。比如GDP总量长 期看来具有上升趋势。
2. 季节变动(S)
现象在一年内随着季节的变化 而重复出现的有规律的周期性 变动。比如通常商业上有“销 售淡季”和“销售旺季”。
3. 周期性(C)
现象以若干年为周期所呈现出的围 绕长期趋势的一种波浪形态的有规 律的变动。比如我们常说的经济周 期,5年或者10年一个循环。
• 时期序列的主要特点有: ① 时期序列中各个观察值可以相加,相加后的观察 值表示现象在更长时期内发展过程的总量。 ② 时期序列中每个指标数值的大小与时期的长短有 直接联系,即具有时间长度。 ③ 时期序列中的指标数值一般采用连续登记办法获 得。
2.时点序列
• 当时间序列中所包含的总量指标都是反映社会经 济现象在某一瞬间上所达到的水平时,这种总量 指标时间序列即为时点序列。在时点序列中,相 邻两个时点指标之间的距离为“间隔”。
相对指标时间序列中各个指标数值都是相对数,其计算基础不同,不能直接相加。在编制相对指 标时间序列时,要注意百分号的表示及其在表中的位置和作用。
(三)平均指标时间序列
将同一平均指标的数值按其发生的时间先后顺序排列而成的数列叫做平均指数时间序列。它反映 社会经济现象一般水平的变化过程和发展趋势。
平均指标时间序列中每个指标数值都是平均数,不能相加,相加起来没有经济意义

第10章-时间序列分析

第10章-时间序列分析

67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3

时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下

•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列
维基百科,自由的百科全书
时间序列(Time series)是实证经济学的一种统计方法。

目录

1 内涵
2 时间序列变量的特征


3 传统的计量经济学的假设

4 非平稳性的解决

4.1 共整合性

5 波动幅度问题的解决

5.1 ARCH模型
6 时间序列分析方法的优点


7 参见
内涵
时间序列是用时间排序的一组随机变量,国内生产毛额(GDP)、消费者价格指数(CPI)、台湾加权股价指数、利率、汇率等等都是时间序列。

时间序列的时间间隔可以是分秒(如高频金融数据),可以是日、周、月、季度、年、甚至更大的时间单位。

时间序列是计量经济学所研究的三大数据形态(另两大为横截面数据和纵面数据)之一,在总体经济学、国际经济学、金融学、金融工程学等学科中有广泛应用。

时间序列变量的特征

非平稳性(nonstationarity,也译作不平稳性,非稳定性):即时间序列变量无法呈现出一个长期趋势并最终趋于一个常数或是一个线性函数

波动幅度随时间变化(Time-varying Volatility):即一个时间序列变量的方差随时间的变化而变化
这两个特征使得有效分析时间序列变量十分困难。

平稳型时间数列(Stationary Time Series)系指一个时间数列其统计特性将不随时间之变化而改变者。

传统的计量经济学的假设
1.
假设时间序列变量是从某个随机过程中随机抽取并按时间排列而形成的,因而一定存在一个稳定趋势(stationarity)
2.
假定时间序列变量的波动幅度(方差)是固定的(这明显不符合实际,人们早就发现股票收益的波动幅度是随时间而变化的,并非常数)
这样的假设使得传统的计量经济学方法对实际生活中的时间序列变量无法有效分析。

克莱夫·格兰杰和罗伯特·恩格尔的贡献解决了这个问题。

非平稳性的解决
克莱夫·格兰杰解决了这个问题。

虽然单独看不同的时间序列变量可能具有非稳定性,但按一定结构组合后的新的时间序列变量却可能是稳定的,即这个新的时间序列变量长期来看,会趋向于一个常数或是一个线性函数。

例如,时间序列变量)t (X 非稳定,但其二阶差分却可能是稳定的;时间序列变量)t (X 和)t (Y 非稳定,但线性组合)t (Y b −) t (X 却可能是稳定的。

分析非稳定的时间序列变量,可从寻找结构关系入手(例如寻找上述常数b ),把非稳定的时间序列稳定化。

共整合性
克莱夫·格兰杰在1981年的一篇论文中引入了“共整合性”(cointegration ,也译作协整)这个概念。

如果上述常数b 存在,那么原时间序列)t (X 和)t (Y 就具共整合性。

格兰杰和怀思(Weiss )合著的1983年的一篇论文中提出了“格兰杰表述定理”(Granger representation theorem ),证明了以一组特定的动态方程可以重新表述具有“共整合性”的时间序列变量
(cointegrated variables )之间的动态关系,而这组动态方程更具有经济学含义,从而使得时间序列分析更有效。

波动幅度问题的解决
罗伯特·恩格尔在1982年发表在《计量经济学》杂志(Econometrica )的一篇论文中提出了ARCH 模型解决了波动性(volatility )问题,其中他研究的是英国通货膨胀率的波动性。

ARCH 模型
[ARCH 模型能准确地模拟时间序列变量的波动性的变化,它在金融工程学的实证研究中也应用广泛,使人们能更加准确地把握风险(波动性),尤其是应用在风险价值(Value at Risk )理论中,在华尔街是尽人皆知的工具。

时间序列分析方法的优点
既考虑了观测数据在时间序列上的依存性,又考虑了随机波动的干扰
■参见
计量经济学■
ARCH 模型■
风险价值■
A Professional Environment for Time Series and Signal Analysis
(/onlinedocu/dataplore/dp_manual_contents.html)
■来自“/w/index.php?title=%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97&oldid=19267752”
1个分类: 时间序列
本页面最后修订于2012年2月15日(星期三) 20:45。



本站的全部文字在知识共享署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用。

(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是在美国佛罗里达州登记的501(c)(3)免税、非营利、慈善机构。

相关文档
最新文档