高一上期 反函数基础练习

合集下载

大一反函数的经典例题(范文5篇)

大一反函数的经典例题(范文5篇)

大一反函数的经典例题(范文5篇)以下是网友分享的关于大一反函数的经典例题的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

大一反函数的经典例题(1)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) (x ≤1) ,求g (x ). 选题意图:本题考查互为反函数的函数的图象间的对称关系.解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是2y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x )互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值.选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用.解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =+b 的图象上,⎧⎪2=a +b 因此:⎨解得:a =-3,b =7. ⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.[例3]已知函数f (x )=(1+x 2-1) -2(x ≥-2) ,求方程f (x )=f (x ) 的2解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运用这一关系解决问题的能力.分析:若先求出f (x )=2x +2-2(x ≥-2), 再解方程(1+-1-1图2—8 x 2) -2=2x +2-2,整理得四2次方程,求解有困难,但我们可以利用y =f (x ) 与y =f (x ) 的图象的关系求解. 先画出y =f (x )=(1+x 2-1) -2的图象,如图,因为y =f (x ) 的图象和y =f (x ) 的图象关于直线y =x 对称,2-1可立即画出y =f (x ) 的图象,由图象可见两图象恰有两个交点,且交点在y =x 上,因此,由x 2⎧⎪y =(1+) -2方程组⎨联立即可解得. 2⎪⎩y =x解:由函数f (x )=(1+x 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函数的图象与2函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图),由图可知两图象恰有两x 2⎧y =(1+) -2⎪-1个交点且交点都在y =x 上. 因此,方程组⎨的解即为f (x )=f (x ) 的解,于是2⎪⎩y =x解方程组得x =-2或x =2,从而方程f (x )=f (x ) 的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为直线y =x 与其中-1y =(1+x 2) -2一个方程组的解的问题. 2大一反函数的经典例题(2)[例1]下列各组函数中,不互为反函数的是( ) ......1(x -3) 21B. f (x )=2x +3,g (y )= (y -3)2A. f (x )=2x +3,g (x )=C. f (x )=x , g (x )=x2D. f (x )=x (x <0) , g (x )=-x (x >0)2选题意图:本题主要考查函数的反函数的有关概念,判断互为反函数的两个函数必须满足的条件:即函数解析式之间的关系是互相能确定x 、y ,定义域与值域之间的关系,是否是一个函数的定义域和值域分别是另一个函数的值域和定义域.解析:由f (x )=x 的定义域为x ∈R ,而值域为y ≥0; g (x )= x 的定义域为x ≥0,而值域为y ≥0. 由反函数的概念知反函数的定义域和值域正是原函数的值域和定义域推得它们不能互为反函数.说明:注意例1是判断不互为反函数的命题,否定互为反函数的三条件之一即不是反函数.[例2]判断函数y =x -x 有无反函数? 如果有,求出其反函数.选题意图:加深函数有无反函数判断的理解以及熟悉求反函数的方法与步骤.解:判断函数y =f (x ) 有无反函数,根据反函数的概念,应该判断:对每个确定的y 的(可能取到) 值,是否有惟一确定的x 值与之相对应. 由y =x -x112-12-1,得∴(x ) -y ⋅x -1=0112212①.11y ±y 2+4y -y +4x =, , x 0, ∴x =舍去,22y +y 2+4y 2+y y 2+4∴x =, ∴x =+1∴每一个确定的y 值,对应着(即只能221求出) 一个x , ∴x是y 的函数,即y =x -x1-1有反函数,,由上面过程,易见反函数为x 2+x x 2+4x 2+x x 2+4,值域为(0,y =+1, 且f (x ) =y =+1的定义域是(x ∈R)22+∞).说明:上述过程包含着:对于任意实数y 的取值方程①必有根,因此x 2-x11-12可以取到任意实数即函数y =x -x 的值域为(-∞,+∞),所以反函数的定义域为(-∞,x 2+x x 2+4+∞),恰是函数y =+1的定义域,在这种情况下,可以不注明函数的定义2域,当然原函数y =x -x 的值域也可以用以下方法解:当x =1时,y =0,当0<x<1时,0<x <1,x112-12-1>1, 则y <0,且当x →0时,x →0, x121-1→+∞, 这时y 可以取任12何负数. 当x >1时,x >1,0<x12-12<1, 则y >0,且当x →+∞时,x →+∞, x-12-12→0.这时y 可以取任何正数,∴y =x -x 的值域为R ,即(-∞,+∞).[例3]已知一次函数y =f (x ) 的反函数仍是它自己,求f(x ). 选题意图:本题考查反函数的概念,利用反函数与原函数的关系分析问题解决问题的能力.解:设y =f (x )=ax +b (a ≠0) ,则f1bx -, a a 1bax +b =x -对于一切x 都成立,a a-1(x ) =1⎧a =⎪⎧a =1⎧a =-1⎪a ∴⎨∴⎨或⎨⎪-b =b , ⎩b =0. ⎩b ∈R, ⎪⎩a∴f (x )=x 或f (x )=-x +b (b ∈R).说明:利用互为反函数的条件判断或证明某个或某两个函数是互为反函数的基本方法,此题是一个特殊函数的反函数的证明,希望读者掌握这种证明方法和思路.大一反函数的经典例题(3)函数的性质、反函数函数的单调性例题例1-5-1 下列函数中,属于增函数的是[ ]解 D例1-5-2 若一次函数y=kx+b(k≠0) 在(-∞,+∞) 上是单调递减函数,则点(k,b) 在直角坐标平面的[ ]A .上半平面B.下半平面C .左半平面D.右半平面解 C 因为k <0,b ∈R .例1-5-3 函数f(x)=x2+2(a-1)x+2在区间(-∞,4) 上是减函数,则实数a 的取值范围是[ ]A .a ≥3 B.a ≤-3C .a ≤5 D.a=-3解 B 因抛物线开口向上,对称轴方程为x=1-a,所以1-a ≥4,即a ≤-3.例1-5-4 已知f(x)=8+2x-x2,如果g(x)=f(2-x2) ,那么g(x) [ ]A .在区间(-1,0) 内是减函数B .在区间(0,1) 内是减函数C .在区间(-2,0) 内是增函数D .在区间(0,2) 内是增函数解 A g(x)=-(x2-1) 2+9.画出草图可知g(x)在(-1,0) 上是减函数.+bx在(0,+∞) 上是______函数(选填“增”或“减”) .解[-2,1]大一反函数的经典例题(4)反函数例题讲解例1.下列函数中,没有反函数的是(A) y = x 2-1(x 1)2( )(B) y = x 3+1(x ∈R )(D) y =⎨⎧2x -2(x ≥2) ,-4x (x x(x ∈R ,x ≠1)x -1分析:一个函数是否具有反函数,完全由这个函数的性质决定.判断一个函数有没有反函数的依据是反函数的概念.从代数角度入手,可试解以y 表示x 的式子;从几何角度入手,可画出原函数图像,再作观察、分析.作为选择题还可用特例指出不存在反函数.本题应选(D ).因为若y = 4,则由⎨⎧2x -2=4,得x = 3.x ≥2⎩由⎨⎧-4x =4,得x = -1.x ∴(D )中函数没有反函数.如果作出y =⎨⎧2x -2(x ≥2) ,的图像(如图),依图-4x (x 更易判断它没有反函数.例2.求函数y =1--x 2(-1≤x ≤0)的反函数.解:由y =1--x 2,得:-x 2=1-y .∴1-x 2 = (1-y ) 2,x 2 = 1-(1-y ) 2 = 2y -y 2 .∵-1≤x ≤0,故x =-2y -y 2.又当-1≤x ≤0 时,0≤1-x 2≤1,∴0≤-x 2≤1,0≤1--x 2≤1,即0≤y ≤1 .∴所求的反函数为y =-2x -x 2(0≤x ≤1).由此可见,对于用解析式表示的函数,求其反函数的主要步骤是:①把给出解析式中的自变量x 当作未知数,因变量y 当作系数,求出x = φ ( y ).②求给出函数的值域,并作为所得函数的定义域;③依习惯,把自变量以x 表示,因变量为y 表示,改换x = φ ( y ) 为y = φ ( x ).例3.已知函数 f ( x ) = x 2 + 2x + 2(x 分析:依据f -1 (2 )这一符号的意义,本题可由f ( x )先求得f -1 ( x ),再求f -1 (2 )的值(略).依据函数与反函数的联系,设f -1 (2 ) = m ,则有f ( m ) = 2.据此求f -1(2 )的值会简捷些.令x 2 + 2x + 2 = 2,则得:x 2 + 2x = 0 .∴x = 0 或x =-2 .又x 的图像是(( )(B((分析:作为选择题,当然不必由f ( x )求出f -1 ( x ),再作出f -1 ( x )图像,予以比较、判断.由f (x ) =+4x 2(x ≤0)易得函数f ( x )的定义域为(-∞, 0],值域为[1, +∞).于是有函数f-1( x )的定义域为[1, +∞),值域为(-∞, 0].依此对给出图像作检验,显然只有(D )是正确的.因此本题应选(D ).例5.给定实数a ,a ≠0,a ≠1,设函数y =x -11(x ∈R ,x ≠).a ax -1求证:这个函数的图像关于直线y = x 成轴对称图形.分析:本题可用证明此函数与其反函数是同一个函数的思路.证明:先求给出函数的反函数:由y =∴x -11(x ∈R ,x ≠),得y ( ax -1) = x -1 .a ax -1(ay -1) x = y -1 .①若ay -1 = 0,则ay = 1 .又a ≠0,故y =11.此时由①可有y = 1.于是=1,即a = 1, a a这与已知a ≠1是矛盾的,故ay -1 ≠ 0 .则由①得x =∴函数y =≠).由于函数f ( x )与f -1 ( x )的图像关于直线y = x 对称,故函数y =(x ∈R 且x ≠1)的图像关于直线y = x 成轴对称图形. a1ay -11(y ∈R ,y ≠).ay -1ax -11x -1(x ∈R ,x ≠)的反函数还是y =(x ∈R ,xa ax -1ax -1x -1ax -1本题证明还可依轴对称的概念进行,即证明:若点P (x ,y )是函数f ( x ) 图像上任一点,则点P 关于直线的对称点Q (y ,x )也在函数f ( x )的图像上(过程略).例题讲解(反函数)例1.求下列函数的反函数:(1) y =3x -1 (x ∈R ) ;(2) y =x 3+1 (x ∈R ) ;(3)y =x +1 (x ≥0) ;(4)y =2x +3(x ∈R ,且x ≠1) .x -1通过本例,使学生掌握求反函数的方法.求反函数时,要强调分三个步骤进行.第一步将y = f (x ) 看成方程,解出x = f -1 (y ) ,第二步将x ,y 互换,得到y = f -1 (x ) ,第三步求出原函数的值域,作为反函数的定义域.其中第三步容易被忽略,造成错误.如第(3)小题,由y =x +1解得x = (y -1) 2,再将x ,y 互换,得y = (x -1) 2.到此以为反函数即y = (x -1) 2,这就错了.必须根据原函数的定义域x ≥0,求得值域y ≥1,得到反函数的定义域,于是所求反函数为y = (x -1) 2 (x ≥1) .例2.求下列函数的反函数:(1) y = x 2-2x -3 (x ≤0) ;⎧x -1(x ≤0) ,⎪(2) y =⎨1-1(x >0) .⎪⎩x通过本例,使学生进一步掌握求反函数的方法,明确求解中三个步骤缺一不可.解:(1) 由y = x 2-2x -3,得y = (x -1) 2-4,即(x -1) 2 = y +4,因为x ≤0,所以x -1=-y +4,所以原函数的反函数是y =1-x +4 ( x≥-3) .(2) 当x ≤0时,得x = y+1且y ≤-1;当x >0时,得x =1且y >-1,y +1所以,原函数的反函数是:x ≤-1,x >-1.⎧x +1⎪y =⎨1⎪⎩x +1例题讲解(反函数)[例1]若函数f (x ) 与g (x)的图象关于直线y =x 对称,且f (x )=(x -1) 2(x ≤1) ,求g (x ).选题意图:本题考查互为反函数的函数的图象间的对称关系. 解:f (x ) 与g (x ) 在定义域内互为反函数,f (x )=(x -1) 2(x ≤1) 的反函数是y =1-x (x ≥0) ,∴g (x )=1-x (x ≥0).说明:互为反函数的图象关于y =x 对称,反之亦然,也是判断两个函数互为反函数的方法之一,本是f (x ) 与g (x ) 互为反函数,要求g (x ), 只须求f (x ) 在限定区间上的反函数即可.[例2]若点P (1,2) 在函数y=ax +b 的图象上,又在它的反函数的图象上,求a , b 的值. 选题意图:本题考查反函数的概念,反函数的图象与原函数图象的对称关系的应用. 解:由题意知P (1,2) 在其反函数的图象上,根据互为反函数的函数图象关于y =x 对称的性质,P′(2,1) 也在函数y =ax +b 的图象上,⎧⎪2=a +b因此:⎨解得:a =-3,b =7.⎪⎩1=2a +b说明:引导学生树立创造性思考问题的方式、方法,利用互为反函数的图象的对称关系. (1,2)在反函数图象上,则(2,1) 也在原函数图象上是解决该问题的关键所在,即f (2)=1,这是得到a , b 的另一个关系式的条件,这样两个条件两个未知数,就可解出a , b 的值.x[例3]已知函数f (x )=(1+) 2-2(x ≥-2) ,求方程2-1f (x )=f (x ) 的解集.选题意图:本题考查互为反函数的函数的图象关于y =x 对称的关系,灵活运图2—8 用这一关系解决问题的能力.x分析:若先求出 f -1(x )=2x +2-2(x ≥-2), 再解方程(1+) 2-2=2x +2-2,2整理得四次方程,求解有困难,但我们可以利用y =f (x ) 与y =f -1(x ) 的图象的关系x求解. 先画出y =f (x )=(1+) 2-2的图象,如图,因为y =f (x ) 的图象和y =f -1(x ) 的2图象关于直线y =x 对称,可立即画出y =f -1(x ) 的图象,由图象可见两图象恰有两x 2⎧y =(1+) -2⎪个交点,且交点在y =x 上,因此,由方程组⎨联立即可解得. 2⎪⎩y =xx 2) -2(x ≥-2) 画出图象,如图,由于函数f (x ) 的反函2数的图象与函数f (x ) 的图象关于y =x 对称,故可以画出其反函数图象(如图) ,解:由函数f (x )=(1+x 2⎧⎪y =(1+) -2由图可知两图象恰有两个交点且交点都在y =x 上. 因此,方程组⎨2⎪⎩y =x 的解即为f (x )=f -1(x ) 的解,于是解方程组得x =-2或x =2,从而方程f (x )=f -1(x )的解集为{-2,2}.说明:解决本题的关键是,根据互为反函数的图象关于y =x 对称,若两个函数有交点,则交点必在直线y =x 上,由此,将要解的两个较复杂的方程组转化为x 2直线y =x 与其中y =(1+) -2一个方程组的解的问题.2例题讲解(练习)例1.函数f (x )=x -x 是否存在反函数?说明理由点评:不存在,∵ f (0)=f (-1)=f (1)=0.例2.求下列函数的反函数.(1) f (x )=36x +5x -1(2) y =-x -1(3) f (x )=x -2x +3,x ∈(1,+∞) (4)f (x )=1--x 2(-1≤x ≤0)点评:(1) f-12(x )=2x +5(x ∈R 且x ≠6) x -6(2) f (x )=x +1 (x ≤0) (3) f (4) f-1-1(x )=(x )=-x -2+1 (x >2)-x -1 (0≤x ≤1)2-1⎧⎪x -1(x ≥1)例3.求函数y =⎨的反函数.⎪⎩--x (x 2 ⎧⎪x +1点评:反函数为y =⎨2⎪⎩1-x(x ≥0).(x 例4.已知f (x )=3x +2-1,求f [f (x )]的值.x +1⎡点评:f ⎢f⎢⎣-1⎛2⎫⎤2⎪⎥=,注意f (x ) 的定义域为{x |x ∈R 且x ≠-1},值域为{y |y 2⎪2⎝⎭⎥⎦∈R 且y ≠-3}.例5.已知一次函数y =f (x ) 反函数仍是它自己,试求f (x ) 的表达式.分析:设y =f (x )=ax +b (a ≠0) ,则f (x )=-11(x -b ) .a⎧1=a ⎪⎧a =-1⎧a =11⎪a由(x -b )=ax +b 得⎨或⎨⇒⎨a b b ∈R b =0⎩⎩⎪-=b ⎪⎩a∴ f (x )=x 或f (x )=-x+b (b ∈R )例6.若函数y =ax +1在其定义域内存在反函数.4x +3(1) 求a 的取值范围;(2) 求此函数的值域.解:(1)方法一:原式可化为4xy +3y =ax +1,(4y -a ) x =1-3y ,a ax +1a≠时,,即44x +344解得a ≠时原函数有反函数.3ax +1方法二:要使y =在其定义域内存在反函数,则需此函数为非常数函数,4x +3a 14ax +1即≠,所以a ≠时函数y =在其定义域内存在反函数.3434x +3当y ≠(2) 由y =ax +1-3y +1解得x =.4x +34y -aax +1-3x +1的反函数为y =.4x +34x -a -3x +1a ∵y =的定义域是{x |x ∈R 且x =}44x -aax +1a 故y =的值域是{y |y ∈R 且y ≠}.44x +3∴y =例7.设函数y =f (x ) 满足f (x -1)=x -2x +3(x ≤0) ,求f (x +1).解:∵x ≤0,则x -1≤-1.∵ f (x -1)=(x -1) +2 (x ≤0) ∴ f (x )=x +2 (x ≤-1) .由y =x +2 (x ≤1) 解得x =-y -2(y ≥3)2222-1∴ f 故f-1(x )=-x -2 (x ≥3) .x -1 (x ≥2) .-1-1-1(x +1)=--1点评:f (x +1)表示以x +1代替反函数f (x ) 中的x ,所以要先求f (x ) ,再以x +1代x ,不能把f (x +1)理解成求f (x +1)的反函数.习题1.已知函数 f (x )=x -1 (x ≤-2) ,那么 f (4)=______________.2.函数y =-x +x -1 (x ≤22-1-11) 的反函数是_________________.22⎧1]⎪x -1,x ∈(0,3.函数y =⎨2的反函数为__________________.⎪⎩x ,x ∈[-1,0)4.函数y =5.已知y =x 2-2x +3 (x ≤1) 的反函数的定义域是_____________.11x +m 与y =nx -是互为反函数,则m =______和n =________.23答案1.-2.y =1--4x -3⎛⎝x ≤-3⎫24⎪⎭3.y =⎧⎪⎨x +1,x ∈(-1,0],⎪⎩-x ,x ∈(0,1]4.2,+∞)5.16,2大一反函数的经典例题(5)反函数求值例1、设互为反函数,求有反函数的值.,且函数与分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果.解:设在函数这样即有,则点的图象上,即,从而在函数的图象上,从而点.由反函数定义有.,小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解.两函数互为反函数, 确定两函数的解析式例2 若函数的值.与函数互为反函数,求分析:常规思路是根据已知条件布列关于布列?如果注意到g(x)的定义域、值域已知,又义域与值域互换,有如下解法:的三元方程组,关键是如何与g(x)互为反函数,其定解:∵g(x)的定义域为.且,的值域为又∵g(x) 的定义域就是∵g(x) 的值域为的值域, ∴,.由条件可知∴.的定义域是, ,∴.令, 则即点(3,1) 在的图象上.又∵与g(x) 互为反函数,的对称点(1,3) 必在g(x)的图象上.∴(3,1) 关于∴3=1+ , .故 .判断是否存在反函数例3、给出下列函数:(1) ;(2) ;(3) ;(4) ;(5) .其中不存在反函数的是__________________.分析:判断一个函数是否有反函数, 从概念上讲即看对函数值域内任意一个,依照这函数的对应法则, 自变量总有唯一确定的值与之对应, 由于这种判断难度较大, 故通常对给出的函数的图象进行观察, 断定是否具有反函数.解: (1) ,(2)都没有问题, 对于(3)当.对于(4)时,和时, 和,且.对于(5)当时, 和 .故(3),(4),(5)均不存在反函数.小结:从图象上观察, 只要看在相应的区间内是否单调即可.求复合函数的反函数例4、已知函数分析: 由于已知是找到解:令,由得. 于是有,再由,则,所求是求出, ,求的反函数.的反函数,因此应首先由的表达式, 再求反函数., ,.,由于,又,的反函数是. 的值域是, .小结:此题涉及对抽象函数符号的认识与理解, 特别是在换元过程中, 相应变量的取值范围也要随之发生改变, 这一点是学生经常忽略的问题.原来的函数与反函数解析式相同求系数例5、已知函数试指出与其反函数是同一个一次函数,的所有取值可能.的反函数的解析式,与分析:此题可以有两种求解思路:一是求解比较, 让对应系数相等, 列出关于的方程, 二是利用两个函数图象的对称性, 找对称点, 利用点的坐标满足解析式来列方程. 解:由上, 于是又于是知点在图象上, 则点定在的图象(1) 过点(2),则点也在的图象上,由(1)得当或,当.时, 代入(2),此时(2)恒成立即;代入(2)解得综上, 的所有取值可能有或 .小结:此题是反函数概念与方程思想的综合. 在这个题目中特殊点的选取一般是考虑计算简单方便, 而且这种取特殊点列方程的方法在其他地方也有应用, 故对此种方法要引起重视. 另外此题在最后作答时, 要求写出的所有取值可能即要把的取值与的取值搭配在一起, 所以解方程组时要特别小心这一点. 选题角度:反函数图象关系、将反函数问题转化为原函数、利用性质求解析式、两函数互为反函数,确定两函数的解析式判断是否存在反函数、求出反函数解析式解关于反函数的不等式、求复合函数的反函数、由原来函数运算关系证明反函数运算。

反函数练习附答案

反函数练习附答案
解析:∵ ,∴ 不是常函数,且存在反函数.在f(x)的图象上取一点(0, ),它关于y=x的对称点( ,0)也在函数f(x)的图象上,可解得a=-5.
13.已知函数f(x)的定义域为[-1,1],值域为[-3,3],其反函数为1(x),则1(32)的定义域为,值域为.
解析:由于函数f(x)的定义域为[-1,1],值域为[-3,3],所以其反函数1(x)的定义域为[-3,3],值域为[-1,1].所以由-3≤32≤3,解得 ≤x≤ .
3.若函数y=f(1)的图象与函数 的图象关于直线y=x对称,则f(x)等于()
212x2122
解析:由函数y=f(1)的图象与函数 的图象关于直线y=x对称,可知y=f(1)与 互为反函数,有 x=e22,所以y=e22 y=f(1)=e22.故f(x)=e2x.答案
4.已知函数f(x)=231(x)是f(x)的反函数,若=16(∈),则1(m)1(n)的值为( )
又y=f(x)与y=1(x)关于y=x对称=x沿向量(-1,2)平移得到y=3,
∴y=f(1)+2与y=1(1)+2关于y=3对称.答案=3
三、解答题
15.已知函数 (x)=1(),求g(x).
解:由 ,得=1,∴ ,即 ,∴g(x)=1()= .
16.已知函数f(x)=2( )(a>0且a≠1).
8.设0<a<1,函数 ,则函数1(x)<1的x的取值范围是( )
A.(0,2) B.(2∞) C.(0∞) D.((2)∞)
解析(x)在(0,2)上是减函数,所以x>f(1)=0.故选C.
9.设函数为y=f(x)的反函数为y=1(x),将y=f(23)的图象向左平移2个单位,再作关于x轴的对称图形所对应的函数的反函数是( )

高一数学 函数与反函数同步检测 试题

高一数学 函数与反函数同步检测 试题

高一数学 函数与反函数同步检测第一卷〔选择题一共30分〕一、选择题〔本大题一一共10小题,每一小题3分,一共30分〕1.集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,假设4和10的原象分别对应6和9,那么19在f 作用下的象为〔〕B.30答案:B解析:由题意,可知,8b ,2a 10b 9a 4b 6a -==⇒⎩⎨⎧=+=+∴对应法那么为y =2x -8.故19在f 作用下的象是y =2×19-8=30.2.假设函数y =f (x )的定义域是[-2,4],那么函数g (x )=f (x )+f (-x )的定义域是〔〕A.[-4,4]B.[-2,2]C.[-4,-2]D.[2,4]答案:B 解析:要使函数有意义,只需,2224424242≤≤-⇒⎩⎨⎧≤≤-≤≤-⇒⎩⎨⎧≤-≤-≤≤-x x x x x 即函数的定义域是[-2,2].3.以下图可作为y =f (x )的图象的是()答案:D解析:在A 、B 、C 中,均存在一个x 对应两个y 的情况,因此A 、B 、C 均错.4.以下各式中,表示y 是x 的函数的有()①y =x -(x -3) ②y =2-x +x -1 ③y =⎩⎨⎧≥+<-0,10,1x x x x④y=⎩⎨⎧为实数,为有理数x x 1,0答案:C解析:①③表示y 是x 的函数;在②中由⎩⎨⎧≥-≥-01,02x x 知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x 的函数;在④中假设x =0,那么对应的y 的值不唯一,所以④不表示y 是x 的函数.5.(2021河西模拟)函数f (x )=21-+x x ,那么函数f (x +1)的图象关于直线y =x 对称的图象的函数解析式是() A.f (x )=12-+x x B.f (x )=13-x xC.f (x )=112-+x xD.f (x )=x x 3+ 答案:A解析:f (x )= 21-+x x ,∴f (x +1)=12-+x x ,y=12-+x x 的反函数为y=12-+x x . 6.设f (x )>0是定义在区间I 上的减函数,那么以下函数中增函数的个数是()①y =3-2f (x ) ②y =1+)(2x f ③y =[f (x )]2 ④y =1-)(x f B.2答案:C解析:因为f (x )>0且f (x )在I 上是减函数,故y =3-2f (x ),y =1+)(2x f ,y =1-)(x f 为I 上的增函数,应选C.7.〔2021八校联考〕直角梯形ABCD 如图(1),动点P 从B 点出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).假如函数y =f (x )的图象如图(2),那么△ABC 的面积为()B.16答案:B解析:由图象可知|BC |=4,|CD |=5,|DA |=5,∴|AB |=5+2245-=5+3=8.∴S △ABC =12×8×4=16.8.定义在R 上的函数y =f (x -1)是单调递减函数(如右图所示),给出四个结论,其中正确结论的个数是()①f (0)=1②f (1)<1 ③f -1(1)=0 ④f -1(21)>0 B.2 答案:D解析:由图知,当x =1时,f (x -1)=1,即f (0)=1.∴①正确.∵y =f (x )的反函数存在,∴f -1(1)=0.∴③正确.由题意知x =2时,f (x -1)<1,即f (1)<1.∴②正确.∵y =f (x -1)单调递减,∴y =f -1(x )单调递减.由图知,21<f (0), ∴f -1(21)>f -1[f (0)]=0. ∴④正确.9.函数f (n )=⎩⎨⎧<+≥-,10)],5([,10,3n n f f n n 其中n ∈N ,那么f (8)等于()B.4答案:D解析:f (8)=f [f (8+5)]=f [f (13)]=f (10)=7.10.f (x )=3x +1(x ∈R ),假设|f (x )-4|<a 的充分条件是|x -1|<b (a 、b >0),那么a 、b 之间的关系为…()A.a ≤3bB.b ≤3aC.b >3aD.a >3b 答案:B解析:|f (x )-4|<a 等价于|x -1|<3a , 由|x -1|<b ⇒|x -1|<3a , ∴b ≤3a . 第二卷〔非选择题一共70分〕二、填空题〔本大题一一共4小题,每一小题4分,一共16分〕11.f (x )=⎩⎨⎧>-≤+,0,2,0,12x x x x 假设f (x )=10,那么x = . 答案:-3解析:因为当x >0时,f (x )=-2x <0,所以x 2+1=10,解得x =±3.又因为x ≤0,所以x =-3.12.函数y =12++x x 的定义域为 ,值域为 .答案:R [23,+∞) 解析:y =43)21(2++x ,故定义域为R ,值域为[32,+∞). 13.函数f (x )=1+x x ,那么f (1)+f (2)+…+f (2 005)+f (2 006)+f (1)+f (21)+…+f (20051)+f (20061)= . 答案:2 006解析:∵f (x )+f (x 1)=1+x x +11+x =1, ∴原式=2 006×1=2 006.14.f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两个点,那么|f (x +1)|<1的解集是 .答案:{x |-1<x <2}解析:|f (x +1)|<1,即-1<f (x +1)<1,∴f (0)<f (x +1)<f(3).∵f (x )在R 上单调递增,∴0<x +1<3.∴-1<x <2.三、解答题〔本大题一一共5小题,一共54分.解容许写出文字说明\,证明过程或者演算步骤〕15.(本小题满分是10分)(1)f(x )的定义域为[1,2),求函数f (x 2)的定义域;(2)f (x +1)的定义域为[0,1],求函数f (x )的定义域.解:(1)由f (x )的定义域为[1,2),可知f (x 2)中自变量x 2也应在[1,2)中,故1≤x 2<2.∴-2<x ≤-1或者1≤x <2,即f (x 2)的定义域为(-2,-1]∪[1, 2). (2)f (x )的定义域为[0,1],即0≤x ≤1.那么1≤x +1≤2,∴f (x )的定义域为[1,2].16.(本小题满分是10分)如图,动点P 从边长为4的正方形ABCD 顶点B 开场,顺次经过C 、D 、A 绕周界一圈,设x 表示P 的行程,y 表示△APB 的面积,求函数y =f (x )的解析式.解:设PB =x , ∵AB =4,由三角形面积公式,得y=⎪⎪⎩⎪⎪⎨⎧∈∈-∈∈].16,12[,0],12,8[,224],8,4[,8],4,0[,2x x x x x x 17.(本小题满分是10分)函数f (x )=a x x ++13 (x ≠-a ,a ≠31). (1)求f (x )的反函数;(2)假设f (x )的图象关于y =x 对称,求a 的值.解:(1)设y =ax x ++13,那么y (x +a )=3x +1, 整理得(y -3)x =1-ay .假设y =3,那么a =31,与矛盾, ∴y ≠3. ∴x =31--y ay . 故所求反函数为f -1(x )=31--x ax (x ≠3). (2)依题意得f -1(x )=f (x ), 那么a x x ++13=31--x ax , 整理得3x 2-8x -3=-ax 2+(1-a 2)x +a ,比拟两边对应项的系数,有⎪⎩⎪⎨⎧-=-==-=,3.3,81,32a a a a 故-18.(本小题满分是12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解:(1)当每辆车月租金为3 600元时,未租出的车辆数为5030003600-=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,那么公司月收益为f (x )=(100-503000-x )(x-150)- 503000-x ×50, 整理得f (x )=-502x +162x -2 100 =-501(x -4 050)2+307 050,∴当x =4 050时,f (x )最大,最大值为307 050元.19.(本小题满分是12分)设a ∈R ,函数f (x )=x 2+|x -a |+1,x ∈R ,求f (x )的最小值. 解:(1)当x ≥a 时,f (x )=x 2+x -a +1 =(x +21)2-a +43. 假设a ≤-21时,那么f (x )在[a ,+∞)上的最小值为f (-21)=43-a ; 假设a >-21时,那么f (x )在[a ,+∞)上单调递增, f (x )min =f (a )=a 2+1.(2)当x ≤a 时,f (x )=x 2-x +a +1 =(x -21)2+a +43; 假设a ≤21时,那么f (x )在(-∞,a ]上单调递减, f (x )min =f (a )=a 2+1;当a >21时,那么f (x )在(-∞,a ]上的最小值为f (21)=43+a . 综上所述,当a ≤-21时,f (x )的最小值为43-a ; 当-21<a ≤21时,f (x )的最小值为a 2+1; 当a >-21时,f (x )的最小值为43+a .励志赠言经典语录精选句;挥动**,放飞梦想。

反函数(练习+详细答案)

反函数(练习+详细答案)

提能拔高限时训练7 反函数一、选择题1.若y =f(x)有反函数,则方程f(x)=a(a 为常数)的实根的个数为( )A.无实数根B.只有一个实数根C.至多有一个实数根D.至少有一个实数根解析:y =f(x)存在反函数,则x 与y 是“一对一”的.但a 可能不在值域内,因此至多有一个实根. 答案:C2.设函数y =f(x)的反函数y =f -1(x),若f(x)=2x ,则f -1(21)的值为( ) A.2 B.1 C.21 D.-1 解析:令f(x)=2x =21,则x =-1,故f -1(21)=-1,故选D. 答案:D3.若函数y =f(x-1)的图象与函数1ln +=x y 的图象关于直线y =x 对称,则f(x)等于…( )A.e 2x-1B.e 2xC.e 2x+1D.e 2x+2 解析:由函数y =f(x-1)的图象与函数1ln+=x y 的图象关于直线y =x 对称,可知y =f(x-1)与1ln +=x y 互为反函数,有1ln +=x y ⇒1ln -=y x ⇒1-=y e x ⇒x =e 2y-2,所以y =e 2x-2⇒y =f(x-1)=e 2x-2.故f(x)=e 2x .答案:B4.已知函数f(x)=2x+3,f -1(x)是f(x)的反函数,若mn =16(m,n ∈R +),则f -1(m)+f -1(n)的值为( )A.-2B.1C.4D.10 解析:设y =2x+3,则有x+3=log 2y,可得f -1(x)=log 2x-3.于是f -1(m)+f -1(n)=log 2m+log 2n-6=log 2mn-6=-2.答案:A5.设函数x x f -=11)((0≤x <1)的反函数为f -1(x),则( )A.f -1(x)在其定义域上是增函数且最大值为1B.f -1(x)在其定义域上是减函数且最小值为0C.f -1(x)在其定义域上是减函数且最大值为1D.f -1(x)在其定义域上是增函数且最小值为0解析:由x x f -=11)((0≤x <1),得该函数是增函数,且值域是[1,+∞),因此其反函数f -1(x)在其定义域上是增函数,且最小值是0.答案:D6.函数⎩⎨⎧<-≥=0,,0,22x x x x y 的反函数是( )A.⎪⎩⎪⎨⎧<-≥=0,0,2x x x x y B.⎩⎨⎧<-≥=0,0,2x x x x y C.⎪⎩⎪⎨⎧<--≥=0,0,2x x x x y D.⎩⎨⎧<--≥=0,0,2x x x x y解析:当x ≥0时,y =2x,且y ≥0, ∴2)(1x x f =-(x ≥0). 当x <0时,y =-x 2且y <0, ∴x x f --=-)(1(x <0).∴函数⎩⎨⎧<-≥=0,,0,22x x x x y 的反函数是⎪⎩⎪⎨⎧<--≥=.0,,0,2x x x x y 答案:C7.(2009北京东城期末检测,7)已知函数24)(x x f --=在区间M 上的反函数是其本身,则M 可以是( )A.[-2,-1]B.[-2,0]C.[0,2]D.[-1,0] 解析:画出函数24)(x x f --=; 由24x y --=得y 2=4-x 2且y ≤0,即x 2+y 2=4,y ≤0,所以图象是以(0,0)为圆心,以2为半径的圆在x 轴下方的部分(包括点(±2,0));又y =f(x)在区间M 上反函数是其本身,故y =f(x)图象自身关于y =x 对称,故区间M 可以是[-2,0].答案:B8.设0<a <1,函数)2(log log )(1x x x f aa -+=,则函数f -1(x)<1的x 的取值范围是( )A.(0,2)B.(2,+∞)C.(0,+∞)D.(log a (2-a),+∞) 解析:f(x)在(0,2)上是减函数,所以x >f(1)=0.故选C.答案:C9.设函数为y =f(x)的反函数为y =f -1(x),将y =f(2x-3)的图象向左平移2个单位,再作关于x 轴的对称图形所对应的函数的反函数是( ) A.21)(1--=-x f y B.2)(11x f y --=- C.2)(1x f y -= D.21)(-=x f y解析:由题意知,最后得到的图形对应的函数可以表示为y =-f [2(x+2)-3]=-f(2x+1),即-y =f(2x+1),2x+1=f -1(-y),21)(1--=-y f x ,故所求函数的反函数是21)(1--=-x f y . 答案:A 10.已知函数⎪⎩⎪⎨⎧>-+≤-=,1,13,1,12)(x x x x x x f 若函数y =g(x)的图象与函数y =f -1(x-1)的图象关于直线y =x 对称,则g(11)的值是( ) A.512 B.913 C.513 D.1115 解析:∵函数y =g(x)的图象与函数y =f -1(x-1)的图象关于直线y =x 对称,∴函数y =g(x)与函数y =f -1(x-1)互为反函数.由g(11)得f -1(x-1)=11,∴x-1=f(11),即x =f(11)+1.∵57)11(=f ,∴512)11(=g . 答案:A二、填空题11.设f(x)=x 5-5x 4+10x 3-10x 2+5x+1,则f(x)的反函数为f -1(x)=_____________.解析:∵f(x)=(x-1)5+2, ∴12)(51+-=-x x f .答案:125+-x12.若函数)54(541≠++=a x ax y 的图象关于直线y =x 对称,则a =_________. 解析:∵54≠a , ∴541++=x ax y 不是常函数,且存在反函数. 在f(x)的图象上取一点(0,51),它关于y =x 的对称点(51,0)也在函数f(x)的图象上,可解得a =-5.答案:-513.已知函数f(x)的定义域为[-1,1],值域为[-3,3],其反函数为f -1(x),则f -1(3x-2)的定义域为___________,值域为____________.解析:由于函数f(x)的定义域为[-1,1],值域为[-3,3],所以其反函数f -1(x)的定义域为[-3,3],值域为[-1,1].所以由-3≤3x-2≤3,解得31-≤x ≤35.故函数f -1(3x-2)的定义域为[31-,35],值域为[-1,1].答案:[31-,35] [-1,1] 14.(2009河南南阳期末质检,14)定义在R 上的函数y =f(x)有反函数,则函数y =f(x+1)+2与y =f -1(x+1)+2的图象关于直线__________对称.解析:函数y =f(x)沿向量(-1,2)平移得到函数y =f(x+1)+2,函数y =f -1(x)沿向量(-1,2)平移得到函数y =f -1(x+1)+2,又y =f(x)与y =f -1(x)关于y =x 对称,y =x 沿向量(-1,2)平移得到y =x+3,∴y =f(x+1)+2与y =f -1(x+1)+2关于y =x+3对称.答案:y =x+3三、解答题15.已知函数11)(-+=x x x f ,g(x)=f -1(-x),求g(x). 解: 由11-+=x x y ,得xy-y =x+1, ∴11-+=y y x ,即11)(1-+=-x x x f . ∴g(x)=f -1(-x)=11+-x x . 16.已知函数f(x)=2(1121+-x a )(a >0且a≠1). (1)求函数y =f(x)的反函数y =f -1(x);(2)判定f -1(x)的奇偶性;(3)解不等式f -1(x)>1.解:(1)化简,得11)(+-=x x a a x f . 设11+-=x x a a y ,则y y a x -+=11. ∴yy x a -+=11log . ∴所求反函数为xx x f y a-+==-11log )(1(-1<x <1). (2)∵)(11log )11(log 11log )(111x f x x x x x x x f a a a ----=-+-=-+=+-=-, ∴f -1(x)是奇函数. (3)111log >-+xx a . 当a >1时, 原不等式⇒a x x >-+11⇒011)1(<--++x a x a . ∴11+-a a <x <1.当0<a <1时,原不等式⇒⎪⎪⎩⎪⎪⎨⎧>-+<-+,011,11xx a x x 解得⎪⎩⎪⎨⎧<<->+-<.11,111x x a a x 或 ∴-1<x <aa +-11. 综上,当a >1时,所求不等式的解集为(11+-a a ,1); 当0<a <1时,所求不等式的解集为(-1,11+-a a ). 教学参考例题 志鸿优化系列丛书【例1】 设函数⎪⎩⎪⎨⎧<-=>=,0,1,0,0,0,1)(x x x x f 若g(x)=(x-1)2f(x-1),y =g(x)的反函数为y =g -1(x),则g(-1)·g -1(-4)=___________.解析:由题意得⎪⎩⎪⎨⎧<-=>=-.1,1,1,0,1,1)1(x x x x f∴g(x)=(x-1)2f(x-1)=⎪⎩⎪⎨⎧<--=>-.1,)1(,1,0,1,)1(22x x x x x设g(x)=-4,可得-(x-1)2=-4且x <1,解得x =-1.∴g(-1)=-4.∴g -1(-4)=-1.∴g(-1)·g -1(-4)=-4×(-1)=4.答案:4【例2】 已知f(x)是定义在R 上的函数,它的反函数为f -1(x).若f -1(x+a)与f(x+a)互为反函数且f(a)=a(a 为非零常数),则f(2a)=____________.解析:设y =f -1(x+a),则x =f(y)-a,即y =f -1(x+a)的反函数为y =f(x)-a,∴f(x+a)=f(x)-a. 令x =a,得f(2a)=f(a)-a =a-a =0.答案:0。

反函数练习(含详细解析)

反函数练习(含详细解析)

反函数练习(含详细解析)反函数练习一.填空题1.若f(x)=(x﹣1)2(x≤1),则其反函数f﹣1(x)=.2.定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=3.若函数f(x)=x a的反函数的图象经过点(,),则a=.4.已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.5.函数y=x2+2(﹣1≤x≤0)的反函数是f﹣1(x)=.6.已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m 的值为.7.设f﹣1(x)为的反函数,则f﹣1(1)=.8.函数f(x)=x2,(x<﹣2)的反函数是.9.函数的反函数是.10.函数y=x2+3(x≤0)的反函数是.11.设函数f(x)=3x,若g(x)为函数f(x)的反函数,则g (1)=.12.设函数y=f(x)存在反函数y=f﹣1(x),且函数y=x ﹣f(x)的图象经过点(2,5),则函数y=f﹣1(x)+3的图象一定过点.13.函数(x≤0)的反函数是.14.已知函数,则=.15.函数的反函数为f﹣1(x)=.16.函数的反函数的值域是.17.函数f(x)=x2﹣2(x<0)的反函数f﹣1(x)=.18.设f(x)=4x﹣2x+1(x≥0),则f﹣1(0)=.19.若函数y=ax+8与y=﹣x+b的图象关于直线y=x对称,则a+b=.20.已知函数f(x)=log2(x2+1)(x≤0),则f﹣1(2)=.参考答案一.填空题(共20小题)1.1﹣(x≥0);2.2;3.;4.3;5.,x∈[2,3];6.1;7.1;8.;9.f﹣1(x)=(x﹣1)2(x≥1);10.y=﹣(x ≥3);11.0;12.(﹣3,5);13.(x≥﹣1);14.﹣2;15.,(x∈(0,1));16.;17.(x>﹣2);18.1;19.2;20.﹣;。

反函数基础练习含标准答案doc

反函数基础练习含标准答案doc

反函数基础练习含标准答案.doc反函数基础练习含标准答案一、选择题1.设函数f(x) = 2x + 3,那么它的反函数是: A. f(x) = 2x + 3 B. f(x)= (x - 3) / 2 C. f(x) = (x + 3) / 2 D. f(x) = (x - 3) / 2 + 3答案:C2.设函数f(x) = x^2,那么它的反函数是: A. f(x) = x^2 B. f(x) = √xC. f(x) = x^(1/2)D. f(x) = x^2 - 1答案:B3.设函数f(x) = e^x,其中e为自然对数的底数,那么它的反函数是: A.f(x) = e^x B. f(x) = ln(x) C. f(x) = e^(1/x) D. f(x) = ln(e^x)答案:B4.设函数f(x) = |x|,那么它的反函数是: A. f(x) = |x| B. f(x) = x C.f(x) = -x D. f(x) = x^2答案:B5.设函数f(x) = x^3,那么它的反函数是: A. f(x) = x^3 B. f(x) = ∛x C.f(x) = x^(1/3) D. f(x) = x^2 - 1答案:C二、填空题1.设函数f(x) = 2x + 1,那么它的反函数是________。

答案:f(x) = (x -1) / 22.设函数f(x) = x^2,那么它的反函数是________。

答案:f(x) = √x3.设函数f(x) = e^x,其中e为自然对数的底数,那么它的反函数是________。

答案:f(x) = ln(x)4.设函数f(x) = |x|,那么它的反函数是________。

答案:f(x) = x5.设函数f(x) = x^3,那么它的反函数是________。

答案:f(x) = ∛x三、计算题1.设函数f(x) = 2x + 1,求它的反函数f^(-1)(x)。

推荐-高一数学上反函数训练卷-人教版[原创] 精品

推荐-高一数学上反函数训练卷-人教版[原创] 精品

数学反函数训练题高一 姓名 座号 命题人:厦门外国语学校 吴育文(学生)1.已知函数65(,1),1x y x R x x +=∈≠-且,那么它的反函数为( ) 655.(,1) .(,6)11156.(,) .(,5)6565x x A y x R x B y x R x x x x x C y x R x D y x R x x x ++=∈≠=∈≠----=∈≠-=∈≠-++且且且且 【参考答案与解析】答案:B 解析:1565(6)565()(,6)6y xy y x x y y x y x f x x R x x -+-=+⇒-=+⇒=-+∴=∈≠-且 2.函数1)y x =≤-的反函数为 。

【参考答案与解析】答案:0)y x =≥解析:22221110)()0)y x x y x y f x x -=-⇒=+⇒=≥∴=≥ 方法总结:解反函数题型时应注意扣紧函数定义域和值域进行解题!() (,) () (,)y f x x A y C x y x A y C ϕ=∈∈=∈∈3.设1()42x x f x +=-,则1(0)f -= 。

【参考答案与解析】答案:1解析:121()42220,211x x x x y f x y y x x x ++==--=⇒==+⇒=方法总结:应注意理解反函数的定义4.已知函数5()2x f x x m-=+的图象关于直线y=x 对称,则m= 。

【参考答案与解析】答案:-1 解析:1155()()2125 5 ()()212mx x f x f x x x m mx x f x f x x x m -----=↔=-+--=-⎧=⇒⎨-=+⎩ 解得m=-1方法总结:形如函数f(x)图象关于直线y=x 对称的函数,f(x)互为反函数5.函数())f x x a ≥的图象与其反函数的图象有公共点,则实数a 的取值范围是。

【参考答案与解析】答案:(1,4⎤-∞⎥⎦解析:由题知y =的图象为抛物线2y x a =-上半部分。

反函数练习附答案

反函数练习附答案
<0,∴<(x<0时=且y当x1x)f(xx,0x,,0x2x,∴函数的反函数是2yy20,xx.0xx,( )M可以是M上的反函数是其本身,则在区间7.已知函数2xx)4f(0,2]-2,0]C.[A.[-21]B.[-1,0]D.[22220,≤4y≤0,即x=得:解析画出函数;由y=4且22xy44f(x)x包括点(,以2为半径的圆在x轴下方的部分所以图象是以(0,0)为圆心图象自身关f(x)上反函数是其本身,故y==(±2,0));又yf(x)在区间M可以是[-2,0].答案,于y=x对称故区间M1的取值范围的x,函数0<a<1,则函数(x)<18.设)x2xf(x)loglog(1aa( )
:∵f(x)=(1)+2,∴解析151xf2(x)41ax.=,则若函数a的图象关于直线y=x对称12.)(ay55x41ax4的图象上取在f(x),:∵,∴且存在反函数.不是常函数解析ya545x11a,可解得也在函数,0)f(x)的图象上的对称点一点(0,它关于),y=x(55-5.
=1(x),,值域为[-3,3]其反函数为,-1,1f(x)13.已知函数的定义域为[]1.
教案审核:6 / 6
=yx对称g(x)的图象与函数y=(1)的图象关于直线解析:∵函数y=1.
(1)互为反函数y=g(x)与函数y=∴函数71即x=f(11)+1.∵,∴得由g(11)(1)=11,∴1=f(11),f(11)512答案.(11)g5二、填空题13254. (x)==x-5x+10x-10x+51,则f(x)的反函数为11.设f(x)5.
C.4 B.1 2
D.10
13于是则有3=y,可得(x)=3.2解析:设y=,2211答案6=-2.(m)(n)=m6=22211( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 反函数·基础练习
(一)选择题
1.函数y =-x 2(x ≤0)的反函数是
[ ]
A y (x 0)
B y (x 0)
C y (x 0)
D y |x|
.=-≥.=≤.=-≤.=-x x x --
2.函数y =-x(2+x)(x ≥0)的反函数的定义域是 [ ]
A .[0,+∞)
B .[-∞,
1]
C .(0,1]
D .(-∞,0]
3y 1(x 2).函数=+≥的反函数是x -2
[ ]
A .y =2-(x -1)2(x ≥2)
B .y =2+(x -1)2(x ≥2)
C .y =2-(x -1)2(x ≥1)
D .y =2+(x -1)2(x ≥1)
4.下列各组函数中互为反函数的是
[ ]
A y y x
B y y 2
.=和=.=和=
x x x
11
C y y (x 1)
D y x (x 1)y (x 0)
2.=
和=≠.=≥和=≥313131
1x x x x x +-+-
5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是
[ ]
A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数
B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数
C.若y=f(x)是偶函数,则y=f-1(x)也是偶函数
D.若f(x)的图像与y轴有交点,则f-1(x)的图像与y轴也有交点
6.如果两个函数的图像关于直线y=x对称,而其中一个函数是
x 1
y=-,那么另一个函数是
[ ] A.y=x2+1(x≤0)
B.y=x2+1(x≥1)
C.y=x2-1(x≤0)
D.y=x2-1(x≥1)
7.设点(a,b)在函数y=f(x)的图像上,那么y=f-1(x)的图像上一定有点
[ ] A.(a,f-1(a))
B.(f-1(b),b)
C.(f-1(a),a) D.(b,f-1(b))
8.设函数y=f(x)的反函数是y=g(x),则函数y=f(-x)的反函数是
[ ] A.y=g(-x) B.y=-g(x)
C.y=-g(-x) D.y=-g-1(x)
9.若f(x-1)=x2-2x+3(x≤1),则函数f-1(x)的草图是
[ ]
10y g(x).函数=的反函数是,则1
3
x
[ ]
A .g(2)>g(-1)>g(-3)
B .g(2)>g(-3)>g(-1)
C .g(-1)>g(-3)>g(2)
D .g(-3)>g(-1)>g(2) (二)填空题
1y 32y (x 0)y f(x)y x .函数=+的反函数是.
.函数=>与函数=的图像关于直线=对称,
x x ++21
21 解f(x)=________.
3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________,b =________.
4y (1x 0).函数=-<<的反函数是
,反函数的定92-x
义域是________.
5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.
6y 7y (x 1)
(x 1)
8f(x)(x 1)f ()1
.函数=
的反函数的值域是

.函数=≥-<的反函数是:
..函数=<-,则-=

1
2
1121232
x x x x ---⎧⎨⎪⎩⎪--
(三)解答题
1y 12f(x).求函数=+的反函数,并作出反函数的图像.
.已知函数=.
x ax x +++25
2
(1)求函数y =f(x)的反函数y =f -1(x)的值域;(2)若点P(1,2)是y =f -1(x)的图像上一点,求函数y =f(x)的值域.
3.已知函数y =f(x)在其定义域内是增函数,且存在反函数,求证y =f(x)的反函数y =f -1(x)在它的定义域内也是增函数.
4f(x)y g(x)y f (x 1).设函数=
,函数=的图像是=+的图像23
1
1x x +-- 关于y =x 对称,求g(2)的值. 参考答案
(一)选择题
1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=
--,∴反函数--≤.y x f (x)=(x 0)1-
2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.
3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-
+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).
4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反
函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.
(C)y =
3x 1x (x 1)y =x 1
x 3
(x 3)y =3x 1
3x 1
(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有
交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1
6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1
+1(x ≤0).选(A).
7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).
8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).
9.(C).解:令t=x -1.∵x ≤1,∴t ≤0,f(t)=t 2+2(t ≤0),即f(x)=x 2+2(x ≤0),值域为f(x)≥2,∴反函数f -1(x)的定义域是x ≥2,值域y ≤0,故选(C).
10(B)g(x)=
1
x (0)33
..解:∵在-∞,上是减函数,又-<-<1 00g(3)g(1)g(2)=1
2
0g(2)g(3)g(1)3,∴>->-而>,∴>->-.故选
(B).
(二)填空题
1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(
x ≥3)
2y =
12x 1(x 0)y 1f(x)=1x
2x
(x 1).解:+>的值域<,其反函数-<.
3y =4x b y =
14x x =ax .解:函数-的反函数是+,则++,b b
4144
3 比较两边对应项系数得,.a =
1
4
b =12 4y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f -1 (x)=(223)--.反函数的定义为,.92x
5.a
6.[0,2)∪(2,+∞)
7f (x)=x 1(x 1)1x
(x 0)
1
22
.+≥-<-⎧⎨⎪⎩⎪
8.-2
(三)解答题
1x 2y 1y =x 21=.解:∵≥-,得值域为≥.由++得反函数f x -1()
(x -1)2-2,(x ≥1),其图像如右图.
2.解(1):∵y=f(x)的定义域是{x|x ≠1,x ∈R ,∴y=f -1(x)的值域是{y|y ≠1,y ∈R}.
解(2):∵点P(1,2)在,y=f -1(x)的图像上,点P(1,2)关于直线y=x
的对称点为′,一定在的图像上,即由++得-,
∴-+,其反函数-+.∵的定义域为≠-
,∈,∴的值域为≠-,∈.P (21)y =f(x)=1a =f(x)=10x 2x 4f -(x)=104x 2x 1
f -(x){x|x x R}y =f(x){y|y y R}1
125221
2121
2
a
3.证明略.
4f(x)=2x3
x1
f-(x)=
x3
f(x1)=
11
.略解;+

的反函数是


,∴+
x2
x4 x1x4
x1
=2x=6g(2)=6
+-,由


得即.。

相关文档
最新文档