泰勒公式与极值问题二
泰勒公式在极限中的用法

泰勒公式在极限中的用法泰勒公式是数学中的一个重要工具,用于在一些点附近的函数近似表达。
它在数学分析、物理学和工程学等领域中有着广泛的应用。
本文将讨论泰勒公式在极限中的用法,并详细解释其背后的原理。
对于函数f(x),泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...其中,f'(a)表示f(x)在点x=a处的导数,f''(a)表示f(x)在点x=a处的二阶导数,以此类推。
这样的级数被称为泰勒级数。
泰勒公式的应用之一就是在一些点附近使用低阶泰勒级数来近似计算函数的值。
这在计算机科学和数值计算中非常有用,因为它可以将一个复杂的函数简化为一个易于计算的多项式表达式。
在极限中,泰勒公式可以用于近似计算函数在一些点附近的极限。
具体来说,当x趋近于一些点a时,我们可以使用泰勒公式将f(x)用泰勒级数展开,并对级数进行适当的截断,以得到一个近似值。
这个近似值可以作为极限的一个近似解。
假设我们想要计算函数f(x)在点x=a处的极限。
首先,我们可以使用泰勒公式展开f(x):f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...然后,我们将x替换为a,并观察级数的趋势。
如果级数在a处收敛,我们可以将级数的各项相加,并取得到的和作为f(x)在x=a处的极限。
例如,我们想要计算函数e^x在点x=0处的极限。
使用泰勒公式展开e^x得到:e^x≈1+x+x²/2!+x³/3!+...我们可以观察到,当x趋近于0时,级数的各项将趋近于0,而级数前面的系数将越来越小。
因此,我们可以将级数的前n项相加,得到一个逼近e^x在x=0处极限的值。
推导极限的泰勒公式与级数的收敛性判定与函数的单调性与凹凸性的综合应用

推导极限的泰勒公式与级数的收敛性判定与函数的单调性与凹凸性的综合应用在数学中,泰勒公式是一种用多项式逼近函数的方法,在极限和级数的研究中有着广泛的应用。
本文将从推导极限的泰勒公式开始,探讨其与级数的收敛性判定以及函数的单调性与凹凸性的综合应用。
一、推导极限的泰勒公式泰勒公式是利用一个点的函数值及其各阶导数,构造一个多项式逼近函数的公式。
首先从一阶泰勒公式开始推导。
设函数f(x)在点x=a处可导,则在x=a处的一阶泰勒公式为:f(x) ≈ f(a) + f'(a)(x-a)根据一阶泰勒公式的推导可知,在x=a处的泰勒公式的误差是由高阶导数引起的。
因此,为了提高逼近的精度,我们可以考虑使用更高阶的泰勒公式。
二阶泰勒公式为:f(x) ≈ f(a) + f'(a)(x-a) + f''(a)(x-a)²/2类似地,我们可以继续推导出更高阶的泰勒公式。
一般地,n阶泰勒公式可以表示为:f(x) ≈ f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ⁽ᵏ⁾(a)(x-a)ᵏ/ᵏ!这样,我们就得到了推导极限的泰勒公式的方法。
二、级数的收敛性判定级数是无穷多项按照一定顺序相加的和。
在研究级数时,我们常常需要判断级数的收敛性。
下面介绍几种常用的级数收敛性判定方法。
1. 正项级数判别法:如果级数的通项都是非负数,并且该级数的部分和数列有上界,则该级数是收敛的。
2. 比值判别法:对于一般的级数∑aₙ,如果 lim(aₙ₊₁/aₙ)存在且小于1,则级数收敛;若lim(aₙ₊₁/aₙ)大于1或不存在,则级数发散。
3. 根值判别法:对于一般的级数∑aₙ,如果 lim(∛ⁿ│aₙ│)存在且小于1,则级数收敛;若 lim(∛ⁿ│aₙ│)大于1或不存在,则级数发散。
这些判别法可以帮助我们判断级数的收敛性,进而对函数的泰勒级数进行合理的定义和应用。
泰勒公式高中数学应用

泰勒公式高中数学应用泰勒公式是数学中一种重要的数值逼近方法,常应用于高等数学、物理学等科学领域中。
它的基本思想是通过泰勒级数将一个函数在一些点处展开成无穷级数,从而在该点的邻域内用该级数来逼近原函数的值,从而简化计算或研究问题。
下面将介绍泰勒公式的原理以及在高中数学应用中的具体例子。
泰勒公式的原理:泰勒公式是将一个函数在其中一点的邻域内用无穷级数来表示的方法。
它利用函数在该点处的导数以及所有高阶导数来进行级数展开。
对于光滑函数f(x),在特定点a处的泰勒级数展开可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...这里f(a)为函数在点a处的函数值,f'(a)为一阶导数在点a处的函数值,f''(a)为二阶导数在点a处的函数值,依此类推。
可以看出,泰勒级数展开的每一项都是原函数在a点的一些导数乘以(x-a)的幂和阶乘的商。
泰勒级数展开常常会被截断为有限项,这样就得到了泰勒公式:f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!这里n为截断的项数。
在高中数学中,泰勒公式主要应用于以下几个方面:1.函数逼近:在一些情况下,一些函数无法直接求出解析表达式,但是可以通过泰勒公式对其进行逼近计算。
比如,对指数函数exp(x)在x=0处进行泰勒级数展开:exp(x) = 1 + x + x^2/2! + x^3/3! + ...然后,可以通过截断泰勒级数并选取合适的项数,来逼近计算exp(x)的值。
这种方法同样适用于对三角函数、对数函数等的逼近计算。
2.函数极值:在高中数学的最优化问题中,经常需要求取函数的极值点。
泰勒公式可以辅助求解函数的极值点。
泰勒公式与极值问题

纯偏导
2 z 2 z z z f ( x , y ), f yx ( x , y ) xy y x xy x y yx
混合偏导
定义:二阶及二阶以上的偏导数统称为高阶 偏导数.
例 1 设 z x 3 y 2 3 xy 3 xy 1,
定理 1(必要条件) 设函数 z f ( x , y ) 在点 ( x0 , y0 ) 具有偏导数,且 在点 ( x0 , y0 ) 处有极值,则它在该点的偏导数必然 为零:
f x ( x 0 , y0 ) 0 ,
f y ( x 0 , y0 ) 0 .
证
不妨设 z f ( x , y ) 在点 ( x0 , y0 ) 处有极大值,
在 (0, 0) 处, A f xx (0,0) 0,
C f yy (0,0) 0.
AC B 2 9 0.
因此,驻点 (0, 0) 不是极值点.
在 (1, 1) 处, A f xx (1,1) 6 0,
B f xy (1,1) 3, C f yy (1,1) 6.
f ( x0 h , y0 k ) 1 1 h k f ( x0 , y0 ) h k y (n 1)! x y i 0 i ! x
n i n 1
f ( x0 h , y0 k ).
得驻点 ( 1 , 1 ) 和 ( 1 , 1 ) , 2 2 2 2
因为 lim
x y
x y 0 2 2 x y 1
即边界上的值为零.
x y 因为 lim 2 0 2 x x y 1
y
即边界上的值为零.
泰勒公式例题

泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大sin* —分v2n+l 1-X量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明.2预备知识定义2.1[1]若函数/在X。
存在〃阶导数,则有= /(兀)+ 晋(―兀)+ -(X - XJ + …+斗%7。
)+©7)”)(1)n\这里0 ((X-X。
)")为佩亚诺型余项,称⑴f在点X。
的泰勒公式.当兀二0 时,(1 )式变成f(x) = /(0) + / 丫)x + ' 丫)/ + …+ 一x"+o(x"),称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2[21若函数/在入某邻域内为存在直至” + 1阶的连续导数,则f(x) = f(x0) + f '(x Q)(x-x Q) +丄平(X- X。
)' + ... + -一y(X- X。
)" + 心(X),2! n\f 5十1)(已(2)这里尺,(x)为拉格朗日余项R代x)= —(A- + x0)w+1,其中点在x与兀。
之间,称(2)仪 + 1)!为/在兀的泰勒公式.当心二0 时,(2)式变成/•(Q = /(O) + /'(O)x+厶岁亍+...+£21H + R“(X)2! n\称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:X ’ X2 X"产…+1e =1 + x+ -------- ・・•+一H------ x ・2! n\(” + 1)!V2 V4工 6 ”曲八亍矿h…+7而+。
泰勒公式与极值问题

⎧ x2 − y2 2 2 , x + y ≠0 ⎪ xy 2 2 f ( x, y ) = ⎨ x + y . ⎪0, 2 2 + =0 x y ⎩
4. 混合偏导
f xyx ( x , y ), f xxy ( x , y ), f yxx ( x , y ).
是否一定相等?何时相等?
若Z=f(x,y)的两个偏导函数 fx(x,y)与fy(x,y)关于x和y存在偏导数,则称 f(x,y)具有二阶偏导数。 z=f(x,y)的二阶偏导数有四种情形:
分析:
f ( x + Δx , y ) − f ( x , y ) f x ( x , y ) = lim , Δx →0 Δx
Δy →0
f xy ( x , y ) = lim
Δy →0
f x ( x , y + Δy ) − f x ( x , y ) Δy
f y ( x + Δx , y ) − f y ( x , y ) Δx
§4 泰勒公式与极值问题 一、高阶偏导数 问题:
1. 以下符号的含义:
∂2 z ∂2 z ∂2 z ∂2 z , f xy ( x , y ), , f yx ( x , y ), , f yy ( x , y ). , f xx ( x , y ), 2 2 ∂x∂y ∂y∂x ∂y ∂x
2. 二阶偏导数的定义(极限形式). 3. 典型例子:求二元函数f(x,y)在的二阶偏导数:
ϕ ( x ),ψ ( y )
问题答:
5. 若记 则
ϕ ( x ) = f ( x , y + Δy ) − f ( x , y ), ψ ( y ) = f ( x + Δx , y ) − f ( x , y ),
泰勒公式与极值问题

§ 4泰勒公式与极值问题教学计划:6课时.教学目的:让学生掌握多元函数高阶偏导数的求法;二元函数的中值定理和泰勒公式;二 元函数取极值的必要和充分条件.教学重点:高阶偏导数、泰勒公式和极值的判定条件.教学难点:复合函数高阶偏导数的求法;二元函数的泰勒公式. 教学方法:讲授法. 教学步骤: 一 高阶偏导数由于z = f(x, y)的偏导函数f x (x, y), f y (x, y)仍然是自变量x 与y 的函数,如果它们 关于x 与y 的偏导数也存在,则说函数f 具有二阶偏导数,二元函数的二阶偏导数有如下四种情形:.:x : yfy ;:x但这个结论并不对任何函数都成立,例如函数22 x - y22xy 飞 2,x y - 0, x y0,x 2 +y 2 =0.它的一阶偏导数为y(x 4 +4x 2y 2 _y 4 )2 + 2」o (x 2+ y 2 2,x y ,. 0,x 2+y 2=0,,仪4 _4x 2y 2 _ y 4 ) 2 + 2* (x 2 + y 22 ,x 『2 2L 0,x +y =0, 进而求f 在(0, 0)处关于x 和y 的两个不同顺序的混合偏导数,得f x 0, y - f x 0,0y 4f xy O,o =啊— 厂 啊可=7以0,0)=慎 ------------ Zx ------------ 瓦"由此看到,这里的f x, y 在原点处的两个二阶混合偏导数与求导顺序有关,那么,在什么 条件下混合偏导数与求导顺序无关呢?为此, 我们按定义先把f xy x 0, y 0与f yx x 0, y 0表成极限形式•由于;2Z.\jy ?z -:y ;:x -y 2 2创 l x +yx * +这些函数关于一 x 2 y 2 2,2 2x - y =~ (2 . 22 ,x y -2xy.:y : y注意 从上面两个例子看到, 种既有关于x 又有关于y 的高阶偏导数称为 已2z 2_ro 2 x 和y 的不同顺序的两个二阶偏导数都相等(这 混合偏导数),即-2 :zf x x, y =f y x, y =f x X o ,y ° L y - f x x o , y o也yf X o :x, y ° :y _ f (x o ,y o :y )△xf x o xy 。
泰勒展开与泰勒公式的原理及应用

泰勒展开与泰勒公式的原理及应用在数学领域中,泰勒展开和泰勒公式是非常重要的概念。
它们不仅仅是数学的基本理论,还有广泛的应用,涉及到数学、物理、工程等各个领域。
本文将对泰勒展开和泰勒公式的原理和应用进行详细的讲解。
一、泰勒展开的原理泰勒展开是将一个函数在某点进行展开,使得该函数在该点处的函数值等于其展开式中前几项的和。
具体来说,泰勒展开的原理是利用函数的导数来逼近函数的值。
泰勒展开公式如下:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+…$其中,$f(x)$表示要展开的函数,$a$表示展开点,$f'(a)$表示$f(x)$在$a$点的一阶导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,$…$表示高阶导数。
展开式总共有无限项,即展开式中包含了函数的所有导数。
如果只取展开式中的前$n$项,则可以得到如下式子:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(a)}{k!}(x-a)^k$这就是泰勒展开的$n$阶近似公式。
二、泰勒公式的原理泰勒公式是将一个函数在某个区间内进行展开,使得该函数在这个区间内的函数值可以用展开式中的前几项来近似表示。
具体来说,泰勒公式的原理是通过多项式逼近原函数。
泰勒公式与泰勒展开的区别在于,泰勒公式是在一个区间内进行展开,而泰勒展开一般是在某一点进行展开。
泰勒公式可以表示为:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x)$其中,$f(x)$表示要展开的函数,$n$表示要展开的级数,$x_0$表示展开的中心点,$R_n(x)$表示余项,表示展开式与原函数之间的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页 下一页 主 页 返回 退出
例1. 求函数 z e z 解: e x2y x
x2y
2 z x2y e 2 x 2 2 z z x2y x2y 4e 2e 2 y x y 3 2 z z x2y ( ) 2 e y x 2 x y x
2 2
由复合函数求导公式
ቤተ መጻሕፍቲ ባይዱ
得
z f u f v x u x v x
z 1 f1 1 f 2 x y x 1 x f1 ( x , ) f 2 ( x , ) y y y
上一页 下一页 主 页 返回 退出
z 1 x 1 x f1 f 2 f1 ( x , ) f 2 ( x , ) x y y y y
说明: 因为初等函数的偏导数仍为初等函数 , 而初等 函数在其定义区域内是连续的 , 故求初等函数的高阶导
数可以选择方便的求导顺序.
今后除特别指出外,都假设相应的混合偏导数连续, 从而混合偏导数与求导顺序无关.
上一页 下一页 主 页 返回 退出
例6. 证明函数 满足拉普拉斯方程
2u 2u 2u u 2 2 2 0 x y z
上一页 下一页 主 页 返回 退出
2 z z z z ( ) f x y ( x, y ) ( ) 2 f x x ( x, y ); y x x y x x x 2 z 2z z z ( ) f y x ( x, y ); ( ) 2 f y y ( x, y ) x y y x y y y
z . 的二阶偏导数及 2 y x z 2 e x2y y 2z x2y 2e x y
3
上一页 下一页 主 页 返回 退出
y 例2 求函数z arctan 的所有二阶偏导数 . x
注意:从上面两个例子看到,有
2z 2z , x y y x 但这一结论并不总成立.
上一页 下一页 主 页 返回 退出
二 者 不 等
定理17.7 若 f x y ( x,y ) 和 f y x ( x,y ) 都在点( x0 , y0 ) 连续 , 则
f x y ( x 0 , y0 ) f y x ( x 0 , y0 )
本定理对 n 元函数的高阶混合偏导数也成立. 例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
证:
2
2 3 x r 1 3x 1 u 3 4 3 5 2 r x r r x r 2 2 2 2 u 1 3y u 1 3z 利用对称性 , 有 2 3 5 , 3 5 2 z r r y r r 2 2 2 2u 2u 2u 3 3( x y z ) 0 2 2 2 3 5 x y z r r
高阶偏导数 中值定理和泰勒公式
极值问题
上一页 下一页 主 页 返回 退出
一、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
若这两个偏导函数仍存在偏导数, 四个二阶偏导数:
z f x ( x, y) , x
z f y ( x, y) y
则称它们是
z = f ( x , y )的二阶偏导数 . 按求导顺序不同, 有下列
2
类似可以定义更高阶的偏导数.
z = f (x , y) 的三阶偏导数共有八 ( 23 ) 种情形:
上一页 下一页 主 页 返回 退出
又如 z = f (x , y) 关于 x 的 n –1 阶偏导数 , 再关于 y 的一阶偏导数为
( y
n z ) n 1 x y
二阶及二阶以上的偏导数统称为高阶偏导数 .
上一页 下一页 主 页 返回 退出
例如, f ( x, y )
x2 y2 2 2 xy 2 , x y 0 2 x y 0, x2 y2 0
x4 4x2 y 2 y 4 2 2 y , x y 0 2 2 2 f x ( x, y ) (x y ) 0, x2 y2 0 4 2 2 4 x 4x y y 2 2 x , x y 0 2 2 2 f y ( x, y ) (x y ) 0, x2 y2 0 y f x (0, y ) f x (0, 0) lim 1 f x y (0,0) lim y 0 y y 0 y f y ( x, 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
u x, v
上一页 下一页 主 页 返回 退出
上一页 下一页 主 页 返回 退出
r2
注意:多元抽象复合函数的高阶导数在偏微分
方程变形与验证解的问题中经常遇到, 下列几个例题有助于掌握这方面问题的求导技巧 与常用导数符号.
上一页 下一页 主 页 返回 退出
x z z 例3 设z f ( x , ),求 2 , . y x xy x 解 设 u x , v , 于是 z f (u, v ), y
2z x 1 x f1 ( x , ) ( f 2 ( x , )) 2 x x y x y y
f1 u f1 v 1 f 2 u f 2 v ( ) u x v x y u x v x 1 1 1 f11 1 f 12 ( f 21 1 f 22 ) y y y 1 2 f11 f 12 2 f 22 y y x