复数复习课
《复数复习课》课件

3 模长和角度
复数的模长是复数到原点的距离,角度是复 数与正实轴的夹角。
4 欧拉公式
欧拉公式是复数的一种表示形式,将复数表 示为以e为底的指数函数。
解析式
复数的三角式
将复数写成模长和角度的形式,使用三角函数表示。
指数形式
将复数写成以e为底的指数函数的形式,使用指数运算表示。
复数在实际中的应用
电学中的应用
复数在交流电路分析中起着重 要作用,可以描述电流和电压 之间的关系。
机械中的应用
复数在机械振动和波动的计算 中有广泛应用,可以描述物体 的运动和振幅。
物理中的应用
复数在光学和量子力学中有重 要应用,可以描述光的干涉和 物质的量子态。
结语
复数的重要性
复数在数学和科学领域具有重要的地位,可以描述和解决许多实际问题。
《复数复习课》PPT课件
欢迎来到《复数复习课》!在本课程中,我们将深入了解复数的概念、运算 和性质,以及在实际中的应用。让我们开始吧!
复数概述
定义
复数是由实数和虚数构成的数,形式为a+bi,其中a和b为实数,i为虚数单位。
复数形式
复数可以写成代数形式、指数形式和三角形式。
复数表示方法
复数可以用直角坐标系或极坐标系表示。
复数的运算
复数加法
复数相加的规则是将 实部相加,虚部相加。
复数法
复数相减的规则是将 实部相减,虚部相减。
复数乘法
复数相乘的规则是使 用分配律进行运算。
复数除法
复数除法的规则是求 复数的共轭,然后进 行乘法运算。
复数的性质
1 共轭复数
2 虚部为零的复数
共轭复数是将复数的虚部取负得到的新复数。
复数复习课

把集合C={a +bi |a,b∈R}中的数,即形如a+bi(a,b∈R)
的数叫做复数。 其中 i 叫做虚数单位 i 21 全体复数所成的集合C叫做复数集。 复数通常用字母 z 表示,即
z a bi
实部 虚部
(a, b R)
复数集
虚数集 纯虚数集 实数集
----复数的代数形式
复数的几何意义:
例6
若
z 2 ,求 z i
的最大值。
例7 若 z bi(b R) ,若使 z 2 i z 2 3i 的最小,求b的值。
实数m取什么值时,复数
(m 8m 15) (m 5m 14)i
2 2
对应的点
(1)位于第一、三象限?
(2)位于第四象限?
复数z满足z〃 z +z+ z =3,则z对应点的轨 迹是________.
例 5、下列命题中的真命题的 为: ( A ) 若 Z 1 + Z 2 = 0, 则 #43; Z 2 = 0, 则 Z 1与 Z 2互为共轭复数。 ( C ) 若 Z 1 - Z 2 = 0, 则 Z 1与 Z 2互为共轭复数。 ( D ) 若 Z 1 - Z 2 = 0, 则 Z 1与 Z 2互为共轭复数。
4 n 2
1, i
4 n 3
i
例1、计算 (1) (5-6i)+(-2-i)-(3+4i) (2) 已知(3-ai)-(b+4i)=2a-bi,求实数a、b的值。 (3)
(4)
i
2002
例2 如果复数
2 50 ( 2 2i) ( ) 1 i 2 bi
8
(其中i为虚数单位,b为实 1 2i )
第3章 复数章末复习课

复数的概念数、相等复数、共轭复数、复数的模)的前提.两复数相等的充要条件是复数问题转化为实数问题的依据. 求字母的范围时一定要关注实部与虚部自身有意义.【例1】 复数z =log 3(x 2-3x -3)+ilog 2(x -3),当x 为何实数时, (1)z ∈R ;(2)z 为虚数.[思路探究] 根据复数的分类列方程求解.[解] (1)因为一个复数是实数的充要条件是虚部为0, 所以⎩⎪⎨⎪⎧x 2-3x -3>0,①log 2(x -3)=0, ②x -3>0,③由②得x =4,经验证满足①③式. 所以当x =4时,z ∈R .(2)因为一个复数是虚数的充要条件是虚部不为0,所以⎩⎪⎨⎪⎧x 2-3x -3>0,①log 2(x -3)≠0, ②x -3>0,③由①得x >3+212或x <3-212. 由②得x ≠4,由③得x >3.所以当x >3+212且x ≠4时,z 为虚数.1.设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( ) A .-3 B .-1 C .1D .3(2)设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 的实部是__________.[解析] (1)因为a -103-i =a -10(3+i )(3-i )(3+i )=a -10(3+i )10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.(2)法一:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +b i +1)=-b +(a +1)i =-3+2i.由复数相等的充要条件,得⎩⎪⎨⎪⎧ -b =-3,a +1=2,解得⎩⎪⎨⎪⎧a =1,b =3.故复数z 的实部是1.法二:由i(z +1)=-3+2i ,得z +1=-3+2ii =2+3i ,故z =1+3i ,即复数z 的实部是1.[答案] (1)D (2)1复数的四则运算21),除法运算注意应用共轭的性质z ·z 为实数.【例2】 (1)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=( )A .-2B .-2iC .2D .2i(2)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2iD .3-2i[思路探究] (1)先求出z 及zi ,结合复数运算法则求解. (2)利用方程思想求解并化简.[解析] (1)∵z =1+i ,∴z -=1-i ,z i =1+i i =-i 2+i i =1-i ,∴z i +i·z -=1-i +i(1-i)=(1-i)(1+i)=2.故选C.(2)由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i )(2-i )(2+i )=2i +2+i =2+3i.[答案] (1)C (2)A2.已知(1+2i)z =4+3i ,则z z的值为( ) A.35+45i B.35-45i C .-35+45iD .-35-45i[解析] 因为(1+2i)z =4+3i ,所以z =4+3i1+2i=(4+3i )(1-2i )5=2-i ,所以z =2+i ,所以zz =2+i2-i=(2+i )25=35+45i.[答案] A复数的几何意义b )来表示.此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.2.复数的向量表示:以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.【例3】 (1)在复平面内,复数i1+i对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)在复平面内,复数1-2i2+i 对应的点的坐标为( )A .(0,-1)B .(0,1) C.⎝ ⎛⎭⎪⎫45,-35 D.⎝ ⎛⎭⎪⎫45,35 [思路探究] 先把复数z 化为复数的标准形式,再写出其对应坐标. [解析] (1)复数i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i.∴复数对应点的坐标是⎝ ⎛⎭⎪⎫12,12.∴复数i1+i在复平面内对应的点位于第一象限.故选A. (2)∵1-2i2+i =(1-2i )(2-i )(2+i )(2-i )=-5i5=-i ,其对应的点为(0,-1),故选A.[答案] (1)A (2)A3.已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )(2)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )A .EB .FC .GD .H[解析] (1)由题图知,z =-2+i ,∴z +1=-2+i +1=-1+i ,故z +1对应的向量应为选项A.(2)由题图可得z =3+i ,所以z1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i ,则其在复平面上对应的点为H (2,-1).[答案] (1)A (2)D转化与化归思想何意义、模的运算、四则运算、共轭复数等问题,都可以转化为实数x ,y 应满足的条件,即复数问题实数化的思想是本章的主要思想方法.【例4】 设z ∈C ,满足z +1z ∈R ,z -14是纯虚数,求z . [思路探究] 本题关键是设出z 代入题中条件进而求出z . [解] 设z =x +y i(x ,y ∈R ),则 z +1z =x +y i +1x +y i=⎝ ⎛⎭⎪⎫x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i , ∵z +1z ∈R , ∴y -yx 2+y 2=0,解得y =0或x 2+y 2=1,又∵z -14=x +y i -14=⎝ ⎛⎭⎪⎫x -14+y i 是纯虚数.∴⎩⎨⎧x -14=0,y ≠0,∴x =14,代入x 2+y 2=1中,求出y =±154, ∴复数z =14±154i.4.满足z +5z 是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.[解] 设虚数z =x +y i(x ,y ∈R ,且y ≠0),则z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i ,z +3=x +3+y i. 由已知,得⎩⎪⎨⎪⎧y -5yx 2+y 2=0,x +3=-y ,因为y ≠0,所以⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3,解得⎩⎪⎨⎪⎧ x =-1,y =-2或⎩⎪⎨⎪⎧x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足题设条件.1.设z =1-i1+i+2i ,则|z |=( ) A .0 B.12 C .1 D. 2 [解析] ∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i=-2i2+2i =i ,∴|z |=1.故选C.[答案] C2.在复平面内,复数11-i 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]11-i=12+12i ,其共轭复数为12-12i ,对应点位于第四象限,故选D. [答案] D3.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2D .3[解析] (1+2i)(a +i)=a -2+(1+2a )i , 由题意知a -2=1+2a ,解得a =-3. 故选A. [答案] A4.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)[解析] 由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).[答案] A5.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2[解析] ∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =1. ∴|x +y i|=|1+i|=2,故选B. [答案] B 6.若z =1+2i ,则4iz z -1=( ) A .1 B .-1 C .iD .-i[解析] 因为z =1+2i ,则z =1-2i ,所以z z =(1+2i)(1-2i)=5,则4iz z -1=4i4=i.故选C.[答案] C7.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3B .p 1,p 4C.p2,p3D.p2,p4[解析]设z=a+b i(a,b∈R),z1=a1+b1i(a1,b1∈R),z2=a2+b2i(a2,b2∈R).对于p1,若1z∈R,即1a+b i=a-b ia2+b2∈R,则b=0⇒z=a+b i=a∈R,所以p1为真命题.对于p2,若z2∈R,即(a+b i)2=a2+2ab i-b2∈R,则ab=0.当a=0,b≠0时,z=a+b i=b i∉R,所以p2为假命题.对于p3,若z1z2∈R,即(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(a1b2+a2b1)i∈R,则a1b2+a2b1=0.而z1=z2,即a1+b1i=a2-b2i⇔a1=a2,b1=-b2.因为a1b2+a2b1=0D/⇒a1=a2,b1=-b2,所以p3为假命题.对于p4,若z∈R,即a+b i∈R,则b=0⇒z=a-b i=a∈R,所以p4为真命题.故选B.[答案] B。
复数复习课

虚数的引入 复 数
复数的表示
复数的运算
代数表示
几何表示
代数运算
几何意义
一.基本概念 1、复数的概念和表示形式
实数(b 0) 纯虚数(a 0, b 0) 复数集C (a bi, a, b R) 虚数(b 0)
非纯虚数(a 0, b 0)
z
,表
示的几何意义是复平面上的点z到原点的距离,且
z a 2 b2 即z 0
思考: (1)复数的模能否比较大小? (2)满足|z|=5 (z∈R)的z值有几个?(3)满足|z|=5(z∈C)的z值 有几个?这些复数z对应的点在复平面上构成怎 样的图形?
1、在复平面内,复数1+i与-1+3i分别对应向量
2 2
2 , () 2 , 3 1 () 3 , 1 2 0
Z 2i
(二)复数相等:Z1和Z2相等.记a+bi=c+di 例3:1、若x,y∈R,且(2x-1)+xi=y-(3-y)i,求 x,y
2x 1 y 解:由定义得 x (3 y)
a bi
得x=4,y=7
2、(2010年高考辽宁卷)设a,b为实数,若复 数 1 2i =1+i,则( A ) A.a= , b= C.a= ,b=
用 z 来表示,如果z=a+bi ,则 z a bi
结论: 1.实数的共轭复数就是它本身; 2. z z 问1:互为共轭的两复数在复平面上所对应的 点有什么关系? 问2:互为共轭的两复数的模有什么关系?
1、i 2 的共轭复数是
2、设
。
,且 z z 4 ,
z 的共轭复数是 z
最新人教PEP版英语三年级上册《名词复数形式的读音复习课》精品教学课件

不可数名词 juice milk water
可数名词 eggs
fish bread rice
cakes
名词复数形式的读音 名词
可数名词
不可数名词
单数形式 one pencil a book an eraser
some juice
复数形式
some bread
1、two pencils /z/ some fish
2、three books /s/
3、some cats /ts/
4、How many birds? /dz/
5、two boxes /iz/
6、two feet
课堂小结
1.同桌之间相互交流本课学习收获。 2.老师引导学生总结归纳本课学习知识点,并 总结交流本课学习心得
-s /s/
books
ducks
cakes
-s /s/
books
ducks
cakes
第三种情况
以字母t结尾的名词加了s后,ts可以看成一个 组合读成/ts/,就是what's和let's后面的那个音。
-ts /ts/
what's let's
cats
elephants plates
第四种情况
名词复数形式的读音
名词 pencil
单数形式 one pencil a pencil an eraser
复数形式 two pencils three pencils some pencils How many pencils?
第一种情况
名词复数形式后面加的s大多数时 候都读成/z/的音,就是动物园zoo的 第一个音。
-s /z/ rulers
第3章 复数 章末复习课

2 12+4a-a >0 ∴ 8a-2>0
,解得2<a<6.
∴实数a的取值范围是(2,6).
研一研· 题型解法、解题更高效
章末复习课
小结 在求复数时,常设复数z=x+yi(x,y∈R),把复数z满
本 课 时 栏 目 开 关
足的条件转化为实数x,y满足的条件,即复数问题实数化的 基本思想在本章中非常重要.
本 课 时 栏 目 开 关
解 设z=x+yi(x,y∈R),
则z+2i=x+(y+2)i为实数,∴y=-2. x-2i 1 z 又 = =5(x-2i)(2+i) 2-i 2-i 1 1 =5(2x+2)+5(x-4)i为实数, ∴x=4.∴z=4-2i,
研一研· 题型解法、解题更高效
章末复习课
又∵(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象 限.
本 课 时 栏 目 开 关
=-1-2i.
本 课 时 栏 目 开 关
研一研· 题型解法、解题更高效
章末复习课
方法二
2
1 3 原式=(1-i)(1+i)(- + i) 2 2
本 )(- + i)=2(- + i)=-1+ 3i. 2 2 2 2 -2 3+i 2 2 006 -2 3+ii 21 003 (2) +( ) = + 1-i 1+2 3i 1+2 3ii -2i1 003 -2 3+ii 1 1 = -i1 003=i- =i-i=0. -i i-2 3
所以|z-z1|的最大值可以看成是点Z1(2,-2) 到圆上的点的距离的最大值.
由图知|z-z1|max=|z1|+r(r为圆半径)=2 2+1.
研一研· 题型解法、解题更高效
人教高中数学必修二A版《复数的四则运算》复数说课复习(复数的乘、除运算)
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
复数的乘法运算
(1)(1-i)-12+ 23i(1+i)=(
)
A.1+ 3i
B.-1+ 3i
C. 3+i
D.- 3+i
栏目 导引
第七章 复 数
(2)已知
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(2)记住以下结果,可提高运算速度.
①(1+i)2=2i,(1-i)2=-2i.
②11- +ii=-i,11+ -ii=i.
7.2 复数的四则运算 7.2.2 复数的乘、除运算
课件
第七章 复 数
考点 复数的 乘除运算 复数乘法 的运算律 解方程
学习目标 掌握复数乘除运算的运算法 则,能够进行复数的乘除运算
理解复数乘法的运算律
会在复数范围内解方程
核心素养 数学运算
逻辑推理 数学运算
第七章 复 数
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
z=14+ -ii的虚部为________.
复数复习课课件
概念回顾
1、复数的概念
形如a bi ,( a,b R )的数,叫做复数。
虚部 a叫做复数的____, b叫做复数的____。 实部
i2=___ 。 -1 i叫做 虚数单位 , _______
全体复数所成的集合叫做复数集,用字母C表示。
2、复数的分类:
实数 b 0 复数z a bi b 纯虚数 a 0, 0 (a, b R) 虚数 b 0 b 非纯虚数 a 0, 0
虚数集
复数集 实数集
纯虚数集
讨论?
复数集C和实数集R之间有什么关系?
R C
3、复数相等的充要条件: a=c a+bi=c+di b=d .
4、复数的模:
|a+bi|= 5、共轭复数:a+bi与a-bi互为 共轭复数 . 显然,任一实数的共轭复数是它算
1.复数的加法和减法
求实数x,y的值。
例4.计算下列各式的值。
( (1 3 2i (2) 1 - i) 2i ) () 1 1 i 2 3i
2i 练习.:(1) 1 2i
(2)已知复数Z满足Z(3+4i)=7+i,求|Z|.
课堂小结:
1、复数的概念。 2、复数的分类(实数、虚数、纯虚数) 3、复数相等的条件。 4、共轭复数和复数的模。 5、复数的运算。
练习: 1.设x,y∈R,并且
(x+y)+(y-1)i=(2x+y)+(2y+1)i,求x,y的值。
x=4,y=-2 2. 设复数 z1=x+2i,z2=3-yi,z1+z2=5-6i
求实数x,y的值。
x=2,y=4
2025届高考数学一轮复习——复数讲义
2025届高考数学一轮复习——复数讲义【高考考情分析】复数是高考的必考内容,多出现在选择题中,近几年多选题、填空题形式也有考查,试题较为简单,属于送分题,主要考查复数的概念和复数的四则运算.【基础知识复习】1.复数的有关概念(1)复数相等:i i a b c d a c +=+⇔=且b d =(,,,)a b c d ∈R .(2)共轭复数:i a b +与i c d +共轭a c ⇔=且b d =-(,,,)a b c d ∈R .(3)复数的模:复数i(,)z a b a b =+∈R 对应的向量OZ 的模叫做z 的模,记作||z 或|i |a b +,即|||i |z a b =+=2.复数的几何意义(1)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应复平面内的点(,)Z a b . (2)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应平面向量((0,0),(,))OZ O Z a b . 3.复数的加、减、乘、除运算法则设12i,i(,,,)z a b z c d a b c d =+=+∈R ,则(1)加法:12(i)(i)()()i z z a b c d a c b d +=+++=+++;(2)减法:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-;(3)乘法:12(i)(i)()()i z z a b c d ac bd bc ad ⋅=+⋅+=-++;(4)除法:122222i (i)(i)i(i 0)i (i)(i)z a b a b c d ac bd bc ad c d z c d c d c d c d c d++-+-===++≠++-++. 4.复数加法的运算律复数的加法满足交换律、结合律,即对任何123,,z z z ∈C ,有1221z z z z +=+,123123()()z z z z z z ++=++.5.复数加、减法的几何意义(1)复数加法的几何意义若复数12,z z 对应的向量12,OZ OZ 不共线,则复数12z z +是以12,OZ OZ 为两邻边的平行四边形的对角线OZ 所对应的复数.(2)复数减法的几何意义复数12z z -是1221OZ OZ Z Z -=所对应的复数.6.复数乘法的运算律:对于任意123z z z ∈C ,,,有交换律:1221z z z z =;结合律:123123()()z z z z z z =;乘法对加法的分配律:1231213()z z z z z z z +=+.【重点难点复习】1.复数的模的运算性质(1)1212z z z z ⋅=⋅;(2)()112220z z z z z =≠; (3)()11n n z z n *=∈N .2.共轭复数的相关运算(1)z z z =⇔为实数,0z z +=且0z z ≠⇔为纯虚数;(2)2222||||zz z z a b ===+;(3)2z z a +=,2i z z b -=;(4)1212z z z z ±=±,1212z z z z ⋅=⋅,()112220z z z z z ⎛⎫=≠ ⎪⎝⎭. 【基本方法与技能复习】求解复数相关问题的技巧(1)复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数概念有关的问题时,需先把所给复数化为i()a b a b +∈,R 的形式,再根据题意列方程(组)求解.(2)求复数的模时,直接根据复数的模的公式和性质进行计算.(3)复数问题实数化是解决复数问题最基本也是最重要的方法.(4)在复数的四则运算中,加、减、乘运算按多项式运算法则进行,把含有虚数单位i 的项看作一类同类项,不含i 的项看作另一类同类项;除法运算则需要分母实数化,解题中注意要把i 的幂化成最简形式.(5)由于复数、点、向量之间存在一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【典型例题复习】1i =+,则z =( ) A.1i -- B.1i -+C.1i -D.1i + 2.【2024年新课标Ⅰ卷】已知1i z =--,则||z =( )3.【2023年新课标Ⅰ卷】已知1i 22i z -=+,则z z -=( ) A.i - B.i C.0 D.14.【2023年新课标Ⅰ卷】在复平面内,(13i)(3i)+-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.【2022年新高考Ⅰ卷】若()i 11z -=,则z z +=( )A.-2B.-1C.1D.26.【2022年新高考Ⅰ卷】(22i)(12i)+-=( )A.24i -+B.24i --C.62i +D.62i - 答案以及解析1.答案:C1i =+,所以(1)(1i)z z =-+,即1i i z z z =-+-,即i 1i z =+,所以1i (1i)(i)1i i i(i)z ++-===--,故选C.1=+=11i 11i (1i)(1i)22z --==-+-11i 22=+=所以z =21i 1i=-+,故选C. 2.答案:C解析:|||1i |z =--==3.答案:A解析:因为1i(1i)(1i)2i1i22i2(1i)(1i)42z----====-++-,所以1i2z=,即iz z-=-.故选A.4.答案:A解析:(13i)(3i)3i9i368i+-=-++=+,在复平面内对应的点的坐标为(6,8),位于第一象限,故选A.5.答案:D解析:因为i(1)1z-=,所以111iiz=-=+,所以1iz=-,所以(1i)(1i)2z z+=++-=.故选D.6.答案:D解析:(22i)(12i)24i2i462i+-=-++=-,故选D.。
复习课(第2课时+复数)课件课件-2024-2025学年高一下学期数学人教B版(2019)必修第四册
意义及复数的运算的几何意义.复数的几何意义体现了用几何图形的方法
研究代数问题的数学思想.
复数的加、减法的几何意义实质上是平行四边形法则和三角形法则.由减
法的几何意义知,|z-z1|表示复平面内与复数z,z1分别对应的两点Z与Z1之间
1 (cos 1 + isin 1 ) 1
=
cos(1 -2 ) + isin(1 -2 ) (2 (cos 2 + isin 2 ) ≠ 0)
的乘、除运算 除法:
2 (cos 2 + isin 2 ) 2
要点梳理
1.请完成下表.
内容
意义
一般地,当a与b都是实数时,称a+bi
(1)当k2-5k-6=0,即k=6或k=-1时,该复数为实数.
(2)当k2-5k-6≠0,即k≠6,且k≠-1时,该复数为虚数.
2 -5-6 ≠ 0,
(3)当 2
即 k=4 时,该复数为纯虚数.
-3-4 = 0,
2 -3-4 = 0,
(4)当 2
即 k=-1 时,该复数为 0.
-5-6 = 0,
所对应的向量就是.
*4.复数的代数形式与三角形式怎样转化?
提示:非零复数z=a+bi=r(cos θ+isin θ)(a,b∈R),其中,r为在复平面内复数z
对应的向量 的模;θ是以x轴正半轴为始边、射线OZ为终边的一个角.
*5.复数三角形式乘、除运算的运算法则及几何意义是怎样的?设
z1=r1(cos θ1+isin θ1),z2=r2(cos θ2+isin θ2).请完成下表:
(3)复数加、减法的几何意义
①复数加法的几何意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
A Q
O
X
问题3:设复数Z0、Z1对应于复平面 上的点为A、B,C为复平面上的一点, ∠CAB=θ,求C对应的复数。
C Y B
A X
O
1、已知等边△ABC的两个顶点坐标为 A(2,1)、B(3,2),求顶点C的坐标。
Y
C
B
A
X
O
• 2、正方形ABCD中,作∠EAB=15°, 使AE=AC,连BE,求证:BE∥AC。
• 复数乘除法的几何意 义的应用
问题1:已知复数Z1、Z在复平面上的 对应分别为A、B,O为原点, ∠AOB=π / 6,若Z1=1+2i,求Z。
Y B A
X
O
问题2:将问题1中向量OA平移,使 O移至Q(1,1),A移至P(2,3),再绕Q点逆 时针方向旋转π / 6得向量QB,求点B 对应的复数。
y
A o
演示动画B x1 来自m小结:1.求已知向量 ZZ 1 逆时针方向旋转角所得向量对应 的复数用式子 z z0 z1 z0 cos i sin 即可 求。求z即是 z z0 z1 z0 cos i sin 2.复数乘除运算的几何意义是数形结合的结合的点 之一。利用复数的几何意义解题是数形结合思想 的重要体现。 。
作业: 1.如图,正方形ABCD的中心在坐标原点,A点对应的复 数为Z A= 2+i ,求 B . C. D对应的复数。 2.在复平面上,一个正方形的四个顶点按逆时针方向依次 为Z1 ,Z 2 ,Z 3 , O(其中O是原点) .已知:Z2 对应的复数z =1+ 3 i ,求 z 1 和 z 3 对应的复数 3.已知:点B(4,0) 点A沿抛物线 y 2 = 4x 移动,若以B为 直角顶点,AB为一条直角边作等腰直角三角形ABC. 求C 点的轨迹。
/ 全天时彩计划软件
懂得父女亲情の时候,悠思就像是上天安排の天使,令他の父爱壹时泛滥成灾。父女俩人就那么紧紧地拥抱在壹起,久久别愿分离,哪壹各都别想率先松开手,哪壹各都想将 对方永远地“霸占”在身边。吴嬷嬷当然晓得王爷此番过来壹定有重要の事情要和侧福晋说,既是生怕悠思格格吵咯爷の正事,又是生怕他追究她办差别力,于是小声地悄悄 提醒咯壹下:“爷,要别奴才……”吴嬷嬷の那声提醒确实是恰到好处。王爷既是想念他の小没钕格格,更是想念小没钕格格の额娘。他那么煞费苦心地滞留霞光苑有四盏茶 の功夫,别就是想等其它の诸人们都完完全全地离开,别妨碍他们吗?他在霞光苑门口别要水清送他,别就是在排字琦の眼皮子底下布の迷魂阵吗?他又折回来再追上她们, 别就是想抱壹抱他の小没钕格格,想和他の大没钕侧福晋说句话吗?第壹卷 第641章 考月吴嬷嬷见王爷没什么反对,于是乍着胆子走上前,将悠思抱到自己の手中。悠思虽 然极为别情别愿,但是当小格格看到她の阿玛送给她那各鼓励の微笑,壹下子就将心中の别满完全化解掉,乖乖儿地回到咯吴嬷嬷の怀抱。吴嬷嬷带着悠思知趣地躲到咯壹边, 月影和秦顺儿更是早早就退到主子们见别到の角落,只有水清,没处躲没处藏,壹各人孤零零地面对着他。水清别晓得他大老远地追过来找她有啥啊事情要吩咐,诧异地等着 他发话。而他の心中却是跟明镜似地。那么煞费咯壹晚上の苦心,别惜自导自演、装模作样,他别就是想和水清说说话吗?可是当他真正面对她の时候,却又别晓得该说句啥 啊话,或者是从何说起。上壹次抓周礼の时候,有悠思那各小活宝在壹旁活跃气氛,根本别用他挖空心思来寻找话题,现在没什么咯悠思,他竟然连话都别会说咯。想要说些 啥啊,却又是壹各字也说别出来,气氛逐渐有些尴尬起来。水清因为是各没事儿人,自然只是闲在在地垂首侧立壹旁,静等他の吩咐。而他那各主角儿情急之下,无意间抬眼 望向夜空,映入眼帘の,与刚刚水清所见壹模壹样:夜幕幽远,新月如钩,星光灿烂,摄人心弦。面对如此良辰美景,令他别禁脱口而出:“瑶姬宫殿是仙踪。”闷头看咯半 天自己双脚の水清等咯许久他の吩咐,竟然等来の是那么没头没脑の壹句词!先开始她有些别明所以:爷那是要做啥啊?稍停咯壹会儿才有点儿醒过味来:难道爷那是要考她 对诗?于是水清别敢怠慢,赶快接咯下壹句:“金炉珠帐,香雹昼偏浓”。他本是见到那壹弯新月,随口说咯壹句,没想到水清居然接上咯。那首词,并别是很出名,无论是 作者,还是词本身,水清竟然晓得?他别太相信自己の耳朵,于是追问咯壹句:“那是谁作の?词牌名?”“牛希济の临江仙啊?”水清很奇怪,那么简单の问题,爷也要 问?“月华如水笼香砌,金环碎撼门初闭”“孙光宪,菩萨蛮”“高歌宴罢月初盈,诗情引恨情”“魏承班,诉衷情”“猿啼明月照空滩,孤舟行客,惊梦亦艰难”“阎选, 临江仙”看着那些答案如此轻巧地从水清の口中说出来,他简直是被极度地震惊咯!那是继他见到那如同字帖般の管家汇报以来,第二次被水清の才学所震惊!虽然他晓得她 写得壹手好字,写得壹手好文章,懂壹些诗词歌赋应该别在话下,特别是前些日子见识咯悠思在她の调教下,习得《陋室铭》の成果。但是今天晚上那些如此犄角旮旯の生僻 诗词竟然都难别倒她,那各结果仍是将他惊诧得难以相信自己の耳朵和眼睛。别过他转念壹想,也就完全释然咯:假设连那些诗词都别会,水清怎么可能写得那么壹手漂亮簪 花小楷の好字和词句上乘の好文章?壹想到那里,他又别禁有些洋洋得意起来,他の侧福晋,在各位皇子小格の诸人中,壹定是才学最高の。那各崭新の发现令他登时获得咯 极大の优越感,可是那么值得骄傲、值得炫耀の事情,却因为水清是他の后院诸人而无法与它人分享,只能“独乐乐”,别能“众乐乐”,遗憾别已の同时,又开始为水清の 屈才而暗暗替她
Y D C E
O
A
B
X
3、设B为半圆x2+y2=1( x∈[-1,1],y∈[-1,1] )上
的动点,A点坐标为(2,0)且△ABC是以BC为斜 边的等腰直角三角形(C在X轴上方)。 (1) 求C点的轨迹; (2) B点在何处时,O、C两点间的距离最远。
Y B C
演示动画
O
A
X
4、草原漫步 某人在宽广的大草原上自由漫步,突发如 下想法:向某一方向走1千米后向左转, 再向前走1千米再向左转,如此下去,能 回到出发点吗?