初中数学竞赛指导:“平面几何”竞赛问题的简单剖析
平面几何竞赛之三角形的“五心”[1]
![平面几何竞赛之三角形的“五心”[1]](https://img.taocdn.com/s3/m/7b00490e0740be1e650e9a08.png)
平面几何竞赛之三角形的“五心”一、基本概念1、内心:与三角形所有边相切的圆叫做此三角形的内切圆,其圆心叫做此三角形的内心.内心是三角形三条内角平分线的交点.三角形的内心在三角形内部.内心有以下常用的性质:性质1:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是:I 到三角形三边的距离相等. 证明: 性质2:设I 是⊿ABC 内一点,AI 所在直线交⊿ABC 的外接圆于D , I 为⊿ABC 内心的充要条件是:ID=DB=DC.证明:性质3:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ∠BIC=900+21∠A ,∠AIC=900+21∠B ,∠AIB=900+21∠C. 证明:性质4:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ⊿IBC 、⊿IAC 、⊿IAB 的外心均在⊿ABC 的外接圆上. 证明:性质5:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,I 在BC 、AC 、AB边上的射影分别为D 、E 、F ,内切圆的半径为r ,令p=21(a+b+c),则(1)ID=IE=IF=r ,S ⊿ABC =pr=))()((c p b p a p p ---=xyz z y x )(++;海伦公式推导:(2)r=cb a S ABC++∆2;M(3)abc ·r=p ·AI ·BI ·CI.性质6:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,∠A 的平分线交BC 于K ,交⊿ABC 的外接圆于D ,则IK AI =DI AD =DK DI =a c b .〖例1〗如图,设⊿ABC 的外接圆O 的半径为R ,内心为I ,∠B=600,∠A<∠C,∠A 的外角平分线交圆O 于E ,证明:(1)IO=AE,(2)2R<IO+IA+IC<(1+3)R. (1994高中联赛)〖例2〗如图,在⊿ABC 中,AB=4,AC=6,BC=5,∠A 的平分线交⊿ABC 的外接圆于K ,O 、I 分别是⊿ABC 的外心和内心,求证:IO ⊥AK. (1982四川省数学竞赛题)练习【练习1】如图,已知点I 是ABC ∆的内心,延长AI 交ABC ∆的外接圆于点D ,交BC 于点E .求证:DI 是DE 、AD 的比例中项.D654321IED CBA【解析】 连接BI .因为I 是ABC ∆的内心,所以1122BAC ∠=∠=∠,1342ABC ∠=∠=∠.所以()15132B AC ∠=∠+,()164242DBI BAC ABC ∠=∠+∠=∠+∠=∠+∠.所以5DBI ∠=∠,于是DB DI =.因为26∠=∠,所以16∠=∠.又因为BEA AEB ∠=∠,所以DBE DAB ∆∆∽,所以2BD DE DA =⋅.所以2DI DE AD =⋅,即DI 是DE 、AD 的比例中项.点评:本题用三角形内心的性质先证明DB DI =,再证明DBE DAB ∆∆∽.已知三角形的内心,通常连接内心和顶点,得角相等.本题很明显BD DC =,这个命题的逆命题也成立.【练习2】⑴ 如图,在ABC ∆中,A ∠、B ∠,C ∠的平分线分别交外接圆于点P 、Q 、R .证明:AP BQ CR BC CA AB ++>++.ABCRPQIB'C'A'ABCI⑵ 如图,设I 为ABC ∆的内心,且'A 、'B 、'C 分别为IBC ∆、IAC ∆、IAB ∆的外心,证明:ABC ∆与'''A B C ∆有相同的外心.⑶ 已知I 是ABC ∆的内心,AI 、BI 、CI 的延长线分别交ABC ∆的外接圆于D 、E 、F .求证:EF AD ⊥.MFEDICBAD⑷ 已知一等腰三角形的外接圆半径为R ,内切圆半径为r , 证明:两圆心的距离为d =【解析】 ⑴ 连接AR 、RB 、BP 、PC 、CQ 、QA .因为12∠=∠,34∠=∠,56∠=∠,所以AP 、BQ 、CR 相交于一点I ,即I 为ABC ∆的内心, 则PB PI PC ==,QA QI QC ==,RA RI RB ==. 在BPC ∆中,因为PB PC BC +>,所以2PI BC >. 同理可证2QI AC >,2RI AB >.将这三个式子相加并整理,得()12PI QI RI BC CA AB ++>++…①因为BI CI BC +>,AI BI AB +>,AI CI CA +>,所以()12AI BI CI BC CA AB ++>++ …②⑵ 作ABC ∆的外接圆,延长AI 交圆心于"A ,连接"A B 、"A C .因为I 是ABC ∆的内心,所以"""A B A I A C ==. 从而"A 为IBC ∆的外心.又因为'A 为IBC ∆外心,所以"A 与'A 两点重合, 即点'A 在ABC ∆的外接圆上.同理可证点'B 、'C 也都在ABC ∆的外接圆上. 所以A 、'C 、B 、'A 、C 、'B 六点共圆, 因此,ABC ∆与'''A B C ∆有相同的外心. ⑶ 连接DE .∵I 是ABC ∆的内心∴ADF ABF CBF ∠=∠=∠,BFE BCE ACE ∠=∠=∠,BFD BAD CAD ∠=∠=∠ ∴ADF BFE BFD ∠+∠+∠ ()1902ABC ACB BAC =∠+∠+∠=︒ ∴EF AD ⊥⑷ 如图,设AB AC =,O 为ABC ∆的外接圆圆心,I 为ABC ∆的123456ABCRPQIABCIDEFMICBAA'(A'')C'B'内切圆圆心(即I 为ABC ∆的内心),连接AI 并延长AI ,交圆O 于D ,则易知AD 是圆O 的直径.设AC 与圆O 相切于E ,连接IE 、DC ,则90AEI ACD ∠=∠=︒,所以IE DC ∥,从而AI IE AD DC=, 于是2AI DC AD IE Rr ⋅=⋅=,由此,得DC DI =. 因为AI OA OI R d =+=+,DI OD OI R d =-=-, 所以()()2R d R d Rr +-=,整理,得d点评:本题根据轴对称构造直径,使问题简化.本题的结论对任意三角形(不一定是等腰三角形)也成立,这就是著名的欧拉公式.【练习3】如图,ABC ∆的三边满足关系()12BC AB AC =+,O 、I 分别为ABC ∆的外心,内心,BAC ∠的外角平分线交圆O 于E ,AI 的延长线交圆O 于D ,DE 交BC 于H .求证:⑴ AI BD =;⑵ 12OI AE =.IH OEDCBABGACD EOH I【解析】 ⑴ 作IG AB ⊥,连接BI ,有()12AG AB AC BC =+-.因为()12BC AB AC =+,所以12AG BC =.由I 为ABC ∆的内心,BD CD =,且DE 为圆O 的直径,得DE BC ⊥,12BH BC =.所以AG BH =.易证:Rt Rt AGI BHD ∆∆≌.故AI BD =⑵ 因为IBD IBH HBD ∠=∠+∠ABI BAI BID =∠+∠=∠.由中位线定理,得12OI AE =. 点评:首先必须掌握三角形内心的性质,即内心是角平分线的交点,它到三边的距离都相等,所以通常作边的垂线;其次要掌握ID BD DC ==.【练习3】设ABC ∆的内切圆O 切BC 于点D ,过点D 作直径DE ,连接AE ,并延长交BC 于点F ,则BF CD =.F DC B F DCBH GI 1ABCDFE【解析】 解法1:如图,令圆O 分别切AB 、AC 于点M 、N . 过点E 作GH BC ∥,分别交AB 、AC 于点G 、H , 则GH 切圆O 于点E ,且AGE ABF ∆∆∽,AGH ABC ∆∆∽. 记AGH ∆与ABC ∆的周长分别为2'p 、2p ,则AG GE AG GM +=+AM AN =='AH HN AH HE p =+=+=.于是'2'2p p AG p p AB =='GF AG GE p BF AB BF AB BF+===++ 即有p AB BF =+,故BF p AB CD =-=. 解法2:设AB c =,AC b =,BC a =,则()12BD b a b c +=++,∴()12BD a c b =+- 下面仅需证明()12CF a c b =+-. 为此,作1FI BC ⊥交AI 的延长线于1I ,1I G AC ⊥于G , 即仅需证明1I 是ABC ∆旁切圆在A ∠内的旁心.事实上,由111I F AI I GIE AI IH==(H 是边AC 与圆I 的切点)但IE IH =,可知11I F I G =,即1I 确是旁心,∴()12CF a b c =+-,即BD CF =.2、外心:经过三角形各顶点的圆叫做此三角形的外接圆,其圆心叫做此三角形的外心.外心是三角形三条边的垂直平分线的交点. 锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部.外心有以下常用的性质:性质1:⊿ABC 所在平面上一点是其外心的充要条件是:该点到三角形三顶点的距离相等.性质2:设O 是⊿ABC 所在平面内一点,则O 为⊿ABC 的外心的充要条件是: (1)∠BOC=2∠A ,∠ACC=2∠B ,∠AOB=2∠C.(2)OB=OC, 且∠BOC=2∠A.性质3:R=ABCS abc4或S ⊿ABC =R abc 4.〖例3〗如图,设AD 是⊿ABC 的∠BAC 的平分线,O 是⊿ABC 的外心,01是⊿ABD 的外接圆的圆心,02是⊿ADC 的外接圆的圆心.求证:OO 1=OO 2. (1990高中联赛)3、重心:三角形三条边中线的交点叫做此三角形的重心.重心在三角形内部.重心到顶点的距离等于它到对边中点距离的2倍(即:重心将每条中线分成1:2两部分).重心有以下常用的性质:性质1:设G是⊿ABC的重心,连AG并延长交BC于D,则D为BC的中点,AD2=21(AB2+AC2)-BC2,且AG:GD=2:1.性质2:设G是⊿ABC的重心,P为⊿ABC内任意一点,则(1)AP2+BP2+CP2=AG2+BG2+CG2+3PG2;(2)AG2+BG2+CG2=31(AB2+BC2+CA2).性质3:设G 是⊿ABC 内一点,G 是⊿ABC 的重心的充要条件是下列条件之一:(1)S ⊿GBC =S ⊿GCA =S ⊿GAB =31S ⊿ABC ;(2)当AG 、BG 、CG 的延长线交三边于D 、E 、F 时,S ⊿AFG =S ⊿BDG =S ⊿CEG .(3)当点G 在三边BC 、CA 、AB 上的射影分别为D 、E 、F 时,GD ·GE ·GF 值最大;(4)过G 的直线交AB 于P ,交AC 于Q 时,AP AB +AQAC=3;(5)BC 2+3AG 2=CA 2+3GB 2=AB 2+3GC 2.4、垂心:三角形三条边高线的交点叫做此三角形的垂心。
八年级竞赛辅导之图形的面积

八年级数学竞赛辅导之面积问题平面几何学的产生起源于人们对土地面积的测量,面积是平面几何中一个重要的概念,联系着几何图形中的重要元素边与角.计算图形的面积是几何问题中一种常见问题,求面积的基本方法有: 1.直接法:根据面积公式和性质直接进行运算.2.割补法:通过分割或补形,把不规则图形或不易求解的问题转化为规则图形或易于求解的问题. 3.等积法:根据面积的等积性质进行转化求解,常见的有同底等高、同高等底和全等的等积转化.4.等比法:将面积比转化为对应线段的比. 熟悉以下基本图形中常见的面积关系:注 等积定理:等底等高的两个三角形面积相等.等比定理:同底(或等底)的两个三角形面积之比等于对应高之比,同高(或等高)的两个三角形面积之比等于对应底之比.1.如图,是一个圆形花坛,中间的鲜花构成了一个菱形图案(图中尺寸单位为米),如果每平方米种植鲜花20株,那么这个菱形图案中共有鲜花 株. 2.直角三角形斜边上中线长为1,周长为.3.如图,在四边形ABCD 中,∠A =135°,∠B =∠D =90°,BC =23,AD =2,则四边形ABCD 的面积为( )A .42B .43C .4D .6 (2001年湖北省荆州市中考题) 4.ABCD 是边长为1的正方形,△BPC 是等边三角形,则厶BPD 的面积为( )A .41B .413-C .81D .8132- (2001年武汉市选拔赛题)5.有一块缺角矩形地皮ABCDE (如图),其中AB =110m ,BC =80m ,CD =90m ,∠EDC =135°.现准备用此块地建一座地基为长方形(图中用阴影部分表示)的教学大楼,以下四个方案中,地基面积最大的是( ) 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路将这块土地分成形状相同且面积相等的4部分.若道路的宽度可忽略不计,请设计4种不同的修筑方案.7.如图,已知梯形ABCD 的面积为34cm 2,AE =BF ,CE 与DF 相交于O ,△OCD 的面积为11cm 2,求蝶形(阴影部分)的面积.8.探究规律:如图a ,已知:直线m ∥ n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点. (1)请写出图a 中,面积相等的各对三角形 ;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有 与△ABC 的面积相等.理由是: . 解决问题:如图b ,五边形ABCDE 是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图c 所示的形状,但承包土地与开垦荒地的分界小路(即图c 中折线CDE )还保留着.张大爷想过正点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积) (1)写出设计方案,并在图c 中画出相应的图形; (2)说明方案设计理由. (2003年河北省中考题)9.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为 . (全国初中数学联赛试题)10.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连结AF 、CE ,设AF 与CE 的交点为G ,则AB C D A G C D S S 矩形四边形等于( ) A .65 B .54 C .43 D .32第9题图 第10题图11.已知菱形ABCD 的两条对角线AC 、BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是( ) A .165° D .135° C . 150° D .120° (“希望杯”邀请赛试题)12.如图,设凸四边形ABCD 的一组对边AB 、CD 的中点分别为K 、M ,求证:S 四边形ABCD =S △ABM +S △DCK .13.如图,设G (也称重心)为△ABC 三条中线AD 、BE 、CF 的交点,则2===GFCGGE BG GD AG ,请读者证明.(14题图)14. 如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =6,那么△ABC 的面积等于( )A .12B .14C .16D .18(全国初中数学联赛试题) 15. 如图甲,AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 、S △DBC 分别表示△DMC 、△DAC 、△DBC的面积,当AB ∥CD 时,有S △DMC =2DBCDAC S S ∆∆+·(1)如图乙,若图甲中AB 不平行CD ,①式是否成立?请说明理由;(2)如图丙,若图甲中A 月与CD 相交于点O 时,问S △DMC 和S △DAC 和S △DBC 有何种相等关系?试证明你的结论. (2001年安徽省中考题)16.已知凸四边形ABCD 的对角线AC ,BD 相交于点O ,且△ABC ,△ACD ,△ABD 的面积分别为S 1=5,S 2=10,S 3=6.求△ABO 的面积17.如图2-129,AD ,BE ,CF 交于△ABC 内的一点P ,并将△ABC 分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC 的面积.18.如图1,在直角坐标系中,点A是x 轴正半轴上的一个定点,点B 是双曲线y =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小19.(2009·牡丹江)如图2,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 20.(2009莆田)在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . 21.在直角三角形ABC 中,∠A =90°,AD ,AE 分别是高和角平分线,且△ABE ,△AED 的面积分别为S 1=30,S 2=6,求△ADC 的面积S .22.如图,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB =BD ,BC =CE ,CA =AF ,连DE 、EF 、FD ,求△DEF 的面积。
初中数学竞赛专题复习 第二篇 平面几何 第10章 四边形试题(无答案) 新人教版

第10章 四边形§10.1 平行四边形与梯形10.1.1★如图(a),在四边形ABCD 中,AC 、BD 是对角线,已知ABC △是等边三角形,30ADC ∠=︒,3AD =,5BD =,求边CD 的长.DABC DAB CE(a)(b)解析 如图(b),以CD 为边向四边形ABCD 外作等边CDE △,连结AE .由于AC BC =,CD CE =, BCD BCA ACD ∠=∠+∠DCE ACD =∠+∠ACE ∠. 所以BCD △≌ACE △,从而BD AE =.又因为30ADC ∠=︒,5BD =,3AD =,于是90ADE ∠=︒,从而在Rt ADE △中,4DE =.所以4CD =.10.1.2★在ABCD 中,2AB AD =,F 为AB 中点,CE AD ⊥D 交AD (或延长线)于E .求证:3BFE AEF ∠=∠.解析 如图,取CD 中点G ,连结FG 、CF .A FBE DGC易知四边形ADGF 与FGCB 均为菱形,FG 垂直平分CE ,于是EFG ∠CFG CFB =∠=∠,于是33BFE EFG AEF ∠=∠∠=∠.10.1.3★AD 、BE 、CF 是ABC △的三条中线,FG BE ∥,EG AB ∥,四边形ADCG 是平行四边形. 解析 如图,连结EF ,则EF 是中位线.AGFEB D C由条件知EG BF ∥,故EG AF ∥,于是AG EF CD ∥∥,故结论成立. 10.1.4★延长矩形ABCD 的边CB 到E ,使CE CA =,F 是AE 的中点,求证:BF FD ⊥.解析 如图,取BD 中点G ,连结FG ,则()11112222FG AD BE CE CA BD =+===,于是BF FD ⊥. ADBCADFGEBC题10.1.4题10.1.510.1.5★菱形ABCD中,2BD AC -=120BAD ∠=︒,求菱形的面积. 解析 如图,易知ABC △与ACD △均为正三角形.设菱形边长为x ,则由120BAD ∠=︒,得BD ,AC x =,所以)12x =x =此菱形面积为212BD AC ⋅=. 10.1.6★在梯形ABCD 中,AD BC ∥,中位线MN 分别交AB 、CD 、AC 、BD 于M 、N 、P 、Q ,若延长AQ 、DP 的交点正好位于BC 上,求BCAD. ADMQPNB RC解析 设AQ 、DP 延长后交于R ,且R 在BC 上,则由中位线知2AD PQ =,2AD PN =,2BC QN =,故2BCAD=. 10.1.7★★四边形ABCD 中,135ABC ∠=︒,120BCD ∠=︒,AB =5BC =6CD =,求AD . 解析 如图所示,作AF BC ⊥,DE BC ⊥分别交BC 所在直线于F 、E ,作FG AD ∥交DE 于G ,则AFB △为等腰直角三角形,90AFB ∠=︒,AB =故FB A F =;90DEC ∠=︒,60DCE ∠=︒,6CD =,故3CE =,DE =.F BCEADG所以EF FB BC CE =++538+=,GE DE DG DE AF =-=-==从而AD FG ==10.1.8★★★已知ABC △中,90A ∠=︒,D 是BC 上一点,D 关于AB 、AC 的对称点分别为F 、E ,若BE CF =,12AD BC =.解析 如图,连结AF 、AE 、BF 、CE .FAEBDC由对称,有22180FAD EAD BAD CAD ∠+∠=∠+∠=︒,故F 、A 、E 共线.又180BFE FEC ADB ADC ∠+∠=∠+∠=︒,故FB ∥EC ,而BE CF =,所以梯ECBF 为等腰梯形.又AF AD AE ==,于是1122AD EF BC ==.10.1.9★★将梯形的各个顶点均作关于不包含该顶点的对角线的对称点,证明:如果所得到的四个像点也形成四边形,则必为一个梯形.B'C'ADBCA'D'O解析 如图,AD BC ∥,A 、B 、C 、D 关于对应对角线的对称点分别为A ′、B ′、C ′、D ′. 设AC 、BD 交于O ,连结A ′O 、B ′O 、C ′O 、D ′O .则A ∠′OB =AOB COD C ∠=∠=∠′OD ,故A ′、O 、C ′共线,且A O AO C O CO '=',同理B ′、O 、D ′共线,B O D O ''BO DO =,所以由1BO CODO AO=≠得1B O C OD O A O''=≠''. 故如A ′、B ′、C ′、D ′不位于同一直线上,则A ′D ′∥B ′C ′,即A ′B ′C ′D ′成梯形.10.1.10★已知:直角梯形ABCD ,AD BC ∥,AB BC ⊥,AB BC =,E 是AB 上一点,AE AD =,75CEB ∠=︒,求ECD ∠.A DE BC解析 如图,连结AC ,则由AB BC =,AB BC ⊥,得45BAC DAC ∠=︒=∠. 又AE AD =,故AEC △≌ADC ,EC CD =.又180754560DEC ∠=︒-︒-︒=︒,故DEC △为正三角形,于是60ECD ∠=︒.10.1.11★★在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 、AD 和BD 的长.ACED解析 如图,延长AD 、BC 至E ,则60DCE ∠=︒,22CE CD ==.又60A ∠=︒,故BE =2BC =,又4AE =,CE,故4AD =.至于求BD ,有多种方法,如勾股定理或余弦定理,也可用A 、B 、C 、D 四点共圆的性质:AC,sin 60BD AC =⋅︒=§10.2 正方形10.2.1★在正方形ABCD 中,E 为BC 的中点,F 为CD 上的点,且AF BC CF =+.求证:2BAF BAE ∠=∠.ADBECFP解析 如图,延长AE 、DC ,设交于P ,则B E C E =得CP AB BC ==,FP FC CP FC BC AF =+++=.于是BAE P FAP ∠=∠=∠,即2BAF BAE ∠=∠.10.2.2★正方形边长等于1,通过它的中心引一条直线,求正方形的四个顶点到这条直线的距离平方和的取值范围.AMDONBCl解析 如图,设O 是正方形ABCD 的中心,l 通过O ,AM 、DN 分别与l 垂直于M 、N . 由于90MAO AOM DON ∠=︒-∠=∠,AO OD =,故AMO △≌OND △,2222212AM DN AM MO AO +=+==.对B 、C 的垂线也有类似结论,因此所求距离的平方和是常数1.10.2.3★正方形ABCD 的对角线交于O ,BAC ∠的平分线交BD 于G ,交BC 于F ,求证:2CFOG =. 解析 如图,作OE FC ∥,交AF 于E ,OE 为ACF △中位线,2CF EO =. 问题变为证明EO GO =.因为么4545GEO OAF FAF OGE ∠=︒+∠=∠+︒=∠,于是结论成立.ADE OG BFC10.2.4★设M 、N 分别为正方形ABCD 的边AD 、CD 的中点,且CM 与BN 交于P ,求证:PA AB =. 解析 如图,由MD CN =知BNC △≌CMD △,故90PBC PCB NCM PCB ∠+∠=∠+∠=︒,故C M B N ⊥.延长CM 、BA ,设交于Q ,则QA CD AD ==,A 为直角三角形QPB 斜边BQ 之中点,于是AP AB =.QADMBCN P题10.2.410.2.5★已知两个正方形ABCD 、AKLM (顶点均按照顺时针方向排列),求证:这两个正方形的中心和BM 、DK 的中点组成一个正方形.题10.2.5MAQBP CDRSLK解析 如图,设DB 、BM 、MK 、KD 的中点分别为P 、Q 、R 、S .由于DA AB =,AK AM =,90DAM BAM BAK ∠=︒+∠=∠,于是DAM △≌BAK △,由此得KB 与DM 垂直且相等.由于12SR DM PQ ∥∥,12SP KB RQ ∥∥,故四边形PQRS 为正方形.10.2.6★★M 是正方形ABCD 内一点,若2222AB MA MB -=,90CMB ∠=︒,求MCD ∠.解析 如图,作MN AB ⊥于N ,则22222,2,AB AN BN AM BM AN BN AB ⎧-=-=⎪⎨⎪+=⎩ADBLCMN解得34AN AB =,14BN AB =. 不妨设3AN =,3BN =,MN x =,则 ()22229(4)DM AN AD MN x =+-=+-, ()2222()14CM BN CM MN x =+-=+-,由条件90CMD ∠=︒,知222DM CM CD +=,即()2102416x +-=,解得4x = 又作ML BC ⊥于L,于是4LC x =-1ML NB ==,故60MCD LMC ∠=∠=︒.10.2.7★O 是正方形ABCD 的两对角线的交点,P 是BD 上异于O 的任一点,PE AD ⊥于E ,PF AB⊥于F ,G 是EO 的延长线和BC 的交点,求OFG ∠.CGB OPFDEA解析 如图,易知AF EP ED ==,AO DO =,45FAO EDO ∠=︒=∠,于是AFO △≌DEO △≌BGO △,于是OF OG =,90AOB FOG ∠=︒-∠,故OFG △为等腰直角三角形,45OFG ∠=︒.10.2.8★★K 是正方形ABCD 的边AB 的中点,点L 分对角线AC 的比为:3AL LC =,证明:90KLD ∠=︒.解析 连结BL ,由正方形关于AC 对称,知BL DL =. 又作LJ AB ⊥于J ,由3AL LC =,易知1142JB AB KB ==,故J 为KB 中点,JL 垂直平分KB ,于是LK LB =,LKB LBK ADL ∠=∠=∠,或180AKL ADL ∠+∠=︒,故90KLD ∠=︒.A EDFPOB GC10.2.9★已知ABC △,向外作正方形ABEF 和ACGH .直线AK 垂直BC 于K ,反向延长交FH 于M ,求证:M 是FH 的中点.解析 如图,作FQ 、HP 分别与直线KA 垂直,垂足为Q 、P .P HMFQ AEBKC G易见,90QFA QAF BAK ∠=︒-∠=∠,又90FQA AKB ∠=︒=∠,FA AB =,故有AQF △≌BKA △,FQ AK =,同理PH AK =,于是FQ PH =,FM MH =.10.2.10★已知:正方形ABCD 中,E 、F 分别在BC 、CD 上,AG EF ⊥于G .若45EAF ∠=︒,求证:AG AB =.反之,若AG AB =,则45EAF ∠=︒.解析 如图,延长CB 至H ,使BH DF =,连结AH ,则AHB △≌AFD △,90HAF BAD ∠=∠=︒,904545HAE EAF ∠=︒-︒=︒=∠,又AH AF =,AE AE =,故AHE △≌AFE △,AB 、AG 为其对应 边上的高,于是AG AB =.A D F GH B E C反之,若AG AB =,则Rt ABE △≌Rt AGE △,EAG BAE ∠=∠,同理,FAG DAF ∠=∠,于是1452EAF BAD ∠=∠=︒.10.2.11★★在梯形ABCD 中,AD BC ∥(BC >AD ),90D ∠=︒,12BC CD ==,E 在边CD 上,45ABE ∠=︒,若10AE =,求CE 的长.解析 延长DA 至M ,使BM BE ⊥过B 作BG AM ⊥,G 为垂足.易知四边形BCDG 为正方形,所以BC BG =.又CBE GBM ∠=∠,Rt BEC △≌Rt BMG △,故BM BE =. 又45ABE ABM ∠=∠=︒,故ABE △≌ABM △,10AM AE ==. 设CE x =,则10AG x =-,()12102AD x x =--=+,12DE x =-.在Rt ADE △中,222AE AD DE =+,故()()22100212x x =++-,即210240x x -+=,解之,得14x =,26x =.故CE 的长为4或6.DEC BAGM10.2.12★★在正方形ABCD 的边BC 上任取一点M ,过C 作CQ DM ⊥于Q ,且延长交AB 于N ,设正方形对角线的交点为O ,连结OM 、ON ,求证:OM ON ⊥.解析 如图,易知MDC NCB ∠=∠,故DMC △≌CNB △,故NB MC =,又45NBO OCM ∠=︒=∠,BO CO =,于是ONB △≌OMC △,90NOM BOC ∠=∠=︒.\ADBCMQON10.2.13★★四边形ABCD 是正方形,四边形ACEF 是菱形,E 、F 、B 在一直线上.求证:AE 、AF 三等分CAB ∠.解析 如图,作BM 、FN 与AC 垂直,垂足为M 、N ,于是由AB BF ∥知1122FN BM AC AF ===,于是30FAC ∠=︒.又45CAB ∠=︒,于是15BAF ∠=︒,15FAE CAE ∠=∠=︒,AE 、AF 三等分CAB ∠. ADBCMNFE。
初中数学竞赛专题复习第二篇平面几何第17章几何不等式与极值问题试题新人教版

第17章 几何不等式与极值问题一个凸行边形的内角中,恰好有4个钝角,求n 的最大值.解析考虑这个凸行边形的n 个外角,有4n -个角90︒≥,故有()490360n -⨯︒<︒(严格小于是由于4个钝角的外角和大于0︒),因此8n <,n 的最大值是7.易构造这样的例子。
如果恰好有k 个钝角,则n 的最大值是3k +.在ABC △中,AB AC >,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. 解析 易知AB AC PB PC +>+,又2222AB AC BD CD -=- 22PB PC =-,故有AB AC PB PC -<-.评注 读者不妨考虑AD 是角平分线与中线的情况.17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值.解析 易知ABO BCOADO DCO S S BO S DO S ==△△△△,故36ABO CDO ADO BCO S S S S ⋅=⋅=△△△△.从而12ABO CDO S S +=△△≥,且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27.已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+; (2)求()()22BC h AB AC ++-. 解析()()22BC h AB AC +-+222222BC h BC h AB AC AB AC =++⋅---⋅,由条件,知242ABC BC h S AB AC ⋅==⋅△,且222AB AC BC +=, 于是()()22236BC h AB AC h +-+==.注意:这同时解决了(1)和(2).设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值. 解析设 BF x=,()4DE y x ==-,则()()()117101077022ABF ADE ECF S S S x y x y xy ++=++--=+⎡⎤⎣⎦△△△。
八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。
初中数学竞赛应对技巧(含学习方法技巧、例题示范教学方法)

初中数学竞赛应对技巧数学竞赛是检验学生数学综合素质的有效手段,对于提高学生的数学思维能力、解决问题能力具有重要的促进作用。
初中数学竞赛更是培养学生数学兴趣、挖掘数学潜能的重要途径。
为了帮助学生在初中数学竞赛中取得优异成绩,本文将从以下几个方面介绍应对初中数学竞赛的技巧。
一、了解竞赛特点,明确考查方向初中数学竞赛主要考查学生的数学基础知识、逻辑思维能力、空间想象能力和创新意识。
在竞赛中,学生需要熟练掌握以下几个方面的内容:1.初中数学基础知识,如代数、几何、概率等;2.数学逻辑思维,如归纳总结、推理证明等;3.空间想象能力,如立体几何、平面几何等;4.数学创新意识,如数学建模、数学探究等。
了解竞赛特点,有助于学生在备考过程中有的放矢,有针对性地进行复习。
二、培养良好的数学思维习惯1.细心阅读题目,理解题目要求,避免因粗心大意导致失分;2.分析题目,找出已知条件和求解目标,理清解题思路;3.运用合适的解题方法,注重数学公式、定理的灵活运用;4.检查答案,确保解题过程完整、逻辑清晰。
三、提高解题速度和准确性1.强化训练,提高解题熟练度;2.做好时间规划,合理分配解题时间,避免因时间不足导致题目无法完成;3.培养题目分析能力,快速找出解题关键点;4.注重基础,提高基本运算速度和准确性。
四、积极参加模拟竞赛,提高应试能力1.参加学校组织的模拟竞赛,熟悉竞赛环境和流程;2.分析模拟竞赛中的错误,总结经验教训,及时调整学习方法;3.参加各类数学竞赛培训班,提高专业指导;4.与同学交流学习心得,相互借鉴,共同进步。
五、注重创新能力培养1.参与数学课题研究,锻炼数学探究能力;2.多做创新性数学题,培养数学建模能力;3.参加数学竞赛研讨会,拓宽视野,激发创新思维;4.注重数学与实际生活的联系,培养解决实际问题的能力。
总之,要想在初中数学竞赛中取得好成绩,学生需要扎实的数学基础、良好的数学思维习惯、较高的解题速度和准确性以及创新能力的培养。
初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。
浅谈数学竞赛中平面几何解题的小技巧

浅谈数学竞赛中平面几何解题的小技巧作者:李昊然来源:《卷宗》2017年第31期摘要:当前,全国高中各学科联合竞赛已成为普遍现象,它不仅能发挥的学生们的特长,也是各类高校自主招生的一个参考依据。
对于那些学有余力的理科学生来说,积极参与数、理、化、生的全国联合竞赛更是他们展现能力的一个舞台。
笔者作为数学竞赛的参与者,从平面几何学习和竞赛中总结一些个人心得,以期对后来的参与者得到一些帮助,并希望与大家共同学习和交流。
关键词:全国高中;数学;联合竞赛;平面几何在平面几何中,有着一个非常重要的定理,梅涅劳斯定理,即(一种基本形式)。
这个定理在平面几何中用处之广不必多说,许多同学把其当作一个非常基础的定理,因为通过它可以推导出帕斯卡定理等。
但是梅氏定理真的是那么基本吗?我看并不是这样,梅氏定理也可以通过共边定理来证明。
证明如下:,即即这样说明了一个什么问题呢?即用梅涅劳斯定理证明的题目均可以使用共边定理来进行证明,有时只是解答复杂的问题,但是一定可以做出,而共边定理的本质即是三角形的面积比例,这应该算是一个非常基本的定理,下面我举一例子加以说明。
例一:(如图二)P为⊙O外一点,PA、PB分别切⊙O于A、B,C为⊙O上一点,过C作⊙O切线,分别交PA、PB于E、F,OC交AB于L,LP交EF于D,证明D为EF的中点。
(1991年四川队题)证明:=∴DE=DF #由此可以发现这道题可以用共边定理一口气解决。
但是对于竞赛,许多同学感到困惑,这个是怎么想到的呢?难道是天分吗?不对,这其中是有小技巧的。
从题目中,我们可以得到:A、B是圆上的两任意点,这两个点是没有任何限制的,因此可以理解为初始点,记做“0”,而P点是过B、C两切线的交点,只要BC位置确定,P点即确定,其中P与AB的关系为∠PBO=∠PAO=90°,即PB=PA,∴P由初始点确定,P也记做“0”级。
C为任意点,∴C记做“0”级,L由CO,AB确定,∵C、O、A、B均为初始点,∴L为“1”级,E、F由PB与PA和C点确定,∴E、F为“1”级,而D点由PL、EF确定,∴将D点记做“2”级,题目即证:DE=DF,不难发现,D为本题中最复杂的点,而题目正是要证明这东西的相关性质,利用共边定理,从D点出发一步一步还原,消去点D,当还原到基本点时,结果必定可以约掉,若约不掉,则题目有问题,下面举一例子加以说明。