陕西省咸阳市实验中学2020-2021学年高二上学期第三次月考数学(理)试题

合集下载

陕西省咸阳市实验中学2020-2021学年高二上学期第一次月考数学(理)试卷Word版含答案

陕西省咸阳市实验中学2020-2021学年高二上学期第一次月考数学(理)试卷Word版含答案

数学〔理科〕试题一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.数列1,3,6,10,⋅⋅⋅的一个通项公式是( )A .21n a n n =-+.21n a n =- C .(1)2n n n a +=D .(1)2n n n a -= 2.在ABC ∆中,角,,A B C 成等差数列,那么角B 的大小为 〔 〕A .B .C .D .3.设11a b >>>-,那么以下不等式中恒成立的是 ()A .2a b > B. 2a b < C.11a b < D .11a b> 4.设22221,4a x y x y b =+-++=-,那么实数,a b 的大小关系 ( )A .a b <B .a b >C .a b =D .与,x y 取值有关5.数列{}n a 中,112,1,n n a a a n N ++=+=∈,那么10a =( )A .18B .19C .20D .216.在ABC∆中,假设()()3a b c c b a bc+++-=,那么角A =( )A .B .C .D .7.等比数列{}n a 的各项均为正数,且569a a =,那么3132310log log log a a a ++⋅⋅⋅+=( )A .12B .10C .31log 5+D .32log 5+8.等差数列{}n a 的前10项和为30,前30项和为210,那么前20项和为( )A .100B .120C .390D .5409.函数2,0()21,0x x f x x x ⎧≤=⎨->⎩,那么不等式()1f x ≥的解集是 ()A .(,1)-∞-B .(,0)[1,)-∞+∞C .[1,)+∞D .(,1][1,)-∞-+∞2和8之间插入n 个正数,使这2n +数成等比数列,那么该数列的公比是 ( )A .12nB .14nC .1+14n D .1+12n11.在ABC ∆中,假设cos cos cos a b cA B C==,那么ABC ∆是( ) A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形12.假设两个等差数列{},{}n n a b 的前n 项和分别为,n n S T ,且212n n S n T n +=+,那么77a b =( ) A .95 B .53C .2D .3117二、填空题(此题共4小题,每题5分,共20分).13.在ABC ∆中,30,1A a ==,那么_____.sin sin b cB C+=+14.等比数列,22,33,a a a ++⋅⋅⋅的第4项为_______.210x ax ++≥对任意1(0,]2x ∈恒成立,那么实数a 的最小值为_____.16.在一个数列中,如果每一项与它的后一项的积为同一个常数,那么这个数列称为等积数列,这个常数称为该数列的公积.数列{}n a 是等积数列,且12a =-,公积为5,那么这个数列的前2020项的和为.三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤) 17.(本小题10分) 在ABC ∆中, 角,,A B C 的对边分别是,,,a b c 求证:222a b c =+2cos bc A -.18. (本小题12分)关于x 的不等式20ax bx c ++>解集为{1x x -<解关于x 不等式20cx bx a ++<19.(本小题12分)如图,在圆内接四边形ABCD 中,2,AB =6,4BC CD AD ===,求四边形ABCD 的面积.20.(本小题12分) 数列{}n a 满足12311112482n n a a a a +++⋅⋅⋅+={}n a 的通项公式和前n 项和为n S .21.(本小题12分) 在ABC ∆中, 角,,A B C 的对边分别是,,,a b c ABC ∆的面积为23sin a A. (1)求sin sin B C ; (2)假设13,cos cos 6a B C ==,求a b c ++. 22.(本小题12分) 数列{}n a 的前n 项和为1,n n S a λ=+其中0λ≠.(1)证明:数列{}n a 是等比数列; (2)假设53132S =,求λ. 理科数学参考答案一、选择题CDABB CBADC BA二、填空题13.2 ; 14.272-; 15.52-; 16.4545-. 三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤) 17.(本小题10分)证明:法1;222()a BC AC AB ==- 即222a b c =+2cos bc A -………………10分法2:建立如下图的坐标系,那么(,0)C b ,(cos ,sin )B c A c A ,因此即222a b c =+2cos bc A -………………10分 18. (本小题12分)解法1:依题意知,1-和2是方程20ax bx c ++=两根,易得012212a a b b a a c ac a ⎧⎪<<⎧⎪⎪⎪-+=-⇒=-⎨⎨⎪⎪=-⎩⎪-⨯=⎪⎩………………5分于是不等式20cx bx a ++<,即220(0)ax ax a a --+<< 整理得2210(21)(1)0x x x x +-<⇔-+< 解得 {112x x ⎫-<<⎬⎭………………12分 解法2:2212(2)(1)02020x x x x x x x -<<⇔-+<⇔--<⇔-++> 与20ax bx c ++>同解,易得112(0)a a b c-==< 即,2(0)b a c a a =-=-<, 于是不等式20cx bx a ++<,即220(0)ax ax a a --+<< 以下同解法1,略 ………………12分19. (本小题12分)解:如图,连接BD ,根据余弦定理,在ABD ∆中,222222cos 42242cos BD AD AB AD AB A A =+-⋅=+-⋅⋅⋅ 在CBD ∆中,222222cos 64264cos BD CD CB CD CB A C =+-⋅=+-⋅⋅⋅5248cos C =-………………6分 ∴2016cos A -5248cos C =-注意到180A C +=,得cos cos C A =-,解得1cos 2A =-所以sin sin A C ==xb于是1142642222ABCD ABD CBD S S S ∆∆=+=⨯⨯⨯+⨯⨯⨯=………………12分20. (本小题12分)解: (1) 当1n =时,1172a =,解得114a =; 当2n ≥时,12311111112524822n n n n a a a a a n --+++⋅⋅⋅++=+ 两式相减得112(2)22n n n na n a +=≥⇔= 综上得114,12,2n n n a n +=⎧=⎨≥⎩………………6分〔2〕显然1114S a ==;当2n ≥时,3134122(21)14222142621n n n n S -++-=+++⋅⋅⋅+=+=+-综上得226n n S +=+………………12分21. (本小题12分)解: (1)依题意,21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =,即2sin sin 3B C =………………6分(2)由题设及(1)得11cos cos sin sin cos()22B C B C B c -=-⇔+=- 可得120,60B C A +==由题设得21sin 23sin a bc A A=,即8bc =由余弦定理得2229()39b c bc b c bc +-=⇔+-=,得b c +=所以3a b c ++=+12分 22. (本小题12分)(1)证明:当1n =时,111,a a λ=+得111,1,01a a λλ=≠≠-; 当2n ≥时,由1,n n S a λ=+及-1-11,n n S a λ=+得1n n n a a a λλ-=- 即1(1)n n a a λλ--=,由11,0a λ≠≠,知0n a ≠,所以1(2)1n n a n a λλ-=≥- 因此,数列{}n a 是首项为11λ-,公比为1λλ-的等比数列11()11n n a λλλ-=--………………6分 (2)解:由(1)得1()1n n S λλ=--,由53132S = 得5311()132λλ-=-,解得=1λ-………………12分。

实验中学高二数学上学期第三次月考试题理含解析

实验中学高二数学上学期第三次月考试题理含解析
又 ,
所以 ,
所以 ,故选A.
8。若实数x、y满足 ,则 的取值范围是 ( )
A。 B。 C. D。
【答案】A
【解析】
由 满足的约束条件画出可行域,如图:
目标函数 表示区域内的动点 与定点 连线的斜率
由图可知 是 最小值,故 的取值范围是
故答案选
点睛:线性规划转化为几何意义, 转化为可行域内的点到点 连线的斜率,先画出可行域,然后计算出斜率范围.
∴∠A=60°.
在△ABC中,由正弦定理得sin B= ,
∵b2=ac,∠A=60°,
∴ = =sin 60°= .
19。解关于x的不等式ax2-(a+1)x+1〈0。
【答案】见解析
【解析】
【分析】
将不等式化为(ax-1)(x-1)<0,再对 的取值范围讨论,分类解不等式.
【详解】原不等式可化为(ax-1)(x-1)<0
16。设 为正数, ,则 的最大值是___________
【答案】
【解析】
【分析】
根据柯西不等式直接求最值.
【详解】
当且仅当 时取等号
,即 的最大值是
故答案为:
【点睛】本题考查利用柯西不等式求最值,考查基本分析求解能力,属基础题.
三、解答题(本大题共6小题,共70分.)
17.已知等差数列{an}中,a1=1,a3=﹣3.
(II)由(I)可知an=3﹣2n,
所以Sn= =2n﹣n2,
进而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7为所求.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

陕西省咸阳市2020_2021学年高二数学下学期期末教学质量检测试题文含解析

某某省某某市2020-2021学年高二数学下学期期末教学质量检测试题文(含解析)一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.32.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<04.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.14.已知复数z=﹣4+2i,则|z|=.15.若复数,则共轭复数=.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;非长时间使用电子产长时间使用电子产品合计品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k020.已知椭圆(a>b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,则实数a等于()A.﹣3B.﹣2C.2D.3解:因为复数z=2a+1+(a﹣2)i(其中i是虚数单位)的实部与虚部相等,所以2a+1=a﹣2,则a=﹣3.故选:A.2.复数z=(3+4i)(1﹣i)(其中i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z=(3+4i)(1﹣i)=3﹣3i+4i﹣4i2=7+i,∴z在复平面内对应点的坐标为(7,1),位于第一象限.故选:A.3.命题“∀x∈R,e x﹣x+5≥0”的否定是()A.∀x∈R,lnx+x+5<0B.∃x∈R,e x﹣x+5≥0C.∀x∈R,e x﹣x+5>0D.∃x∈R,e x﹣x+5<0解:命题为全称命题,则命题的否定为∃x∈R,e x﹣x+5<0,故选:D.4.已知f(x)=e x cos x,且f(x)的导函数为f'(x),则f'(0)=()A.﹣1B.0C.1D.e解:因为f(x)=e x cos x,所以f'(x)=e x cos x﹣e x sin x,则f'(0)=e0cos0﹣e0sin0=1.故选:C.5.已知点A(﹣7,0),B(7,0),动点P满足|PA|+|PB|=16,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆解:由题可知,动点P是以A(﹣7,0),B(7,0),为焦点的椭圆,∵动点P满足|PA|+|PB|=16,∴2a=16,即a=8,c=7,∴b==,∴动点P的轨迹C的方程为:=1.故选:A.6.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解:在△ABC中,由sin A=⇔A=,或.∴“sin A=”是“A=”的必要非充分条件,故选:B.7.如图,某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.若元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为()A.0.196B.解:某系统使用A,B,C三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件A正常工作且B,C中至少有一个正常工作时系统即可正常工作.元件A,B,C正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为:P×[1﹣(1﹣0.9)(1﹣0.8)]=0.686.故选:C.8.执行如图所示的程序框图,输出的s值为()A.B.C.2D.解:模拟程序的运行,可得:k=0,S=1,满足条件i<4,执行循环体,k=1,S=2,满足条件i<4,执行循环体,k=2,S=,满足条件i<4,执行循环体,k=3,S=,满足条件i<4,执行循环体,k=4,S=,此时,不满足条件i<4,退出循环,输出S的值为.故选:D.9.已知函数f(x)的导函数为f'(x),且y=f'(x)的图像如图所示,则下列结论一定正确的是()A.f(a)=0B.f(x)没有极大值C.x=b时,f(x)有极大值D.x=c时,f(x)有极小值解:由图象可知,设y=f′(x)的图象在原点与(c,0)之间的交点为(d,0),由图象可知f′(a)=f′(d)=f′(c)=0,当x<a时,f′(x)<0,f(x)单调递减,当a<x<d时,f′(x)>0,f(x)单调递增,当d<x<c时,f′(x)<0,f(x)单调递减,当c<x时,f′(x)>0,f(x)单调递增,所以x=a是f(x)的极小值点,x=d是函数f(x)的极大值点,x=c是f(x)的极小值点,x=b不是f(x)的极值点,f(a)=0不一定成立,故选:D.10.已知命题p:∃x∈R,x﹣3>lnx,命题q:∀x∈R,x2>0,则()A.p∨q是假命题B.p∧q是真命题C.p∧(¬q)是真命题D.p∨(¬q)是假命题解:命题p:根据函数y=x﹣3和函数y=lnx的图象,如图所示:即存在实数t﹣3>lnt成立,故命题p为真命题,命题q:当x=0时,∀x∈R,x2>0故命题q不成立,故q为假命题,故p∨q为真命题,p∧q为假命题,p∧(¬q)为真命题,p∨(¬q)为真命题,故选:C.11.已知双曲线的左、右焦点分别为F1、F2,过F2作渐近线的垂线,垂足为P,O为坐标原点,且,则双曲线的离心率为()A.B.3C.D.解:如图,不妨取渐近线为y=,焦点F2到渐近线y=的距离为b,则tan∠PF2O==,∴,则e===.故选:A.12.若对于任意的0<x1<x2<a,都有,则a的最大值为()A.2e B.e C.1D.解:∵,∴<,据此可得函数f(x)=在定义域(0,a)上单调递增,其导函数:f′(x)==﹣≥0在(0,a)上恒成立,据此可得:0<x≤1,即实数a的最大值为1.故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.10X奖券中有4X“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一X奖券,甲先抽,乙后抽,则在甲中奖的条件下,乙没有中奖的概率为.解:∵10X奖券中有4X“中奖”奖券,甲先抽,并且中奖,∴此时还有9X奖券,其中3X为“中奖”奖券,∴在甲中奖的条件下,乙没有中奖的概率P=.故答案为:.14.已知复数z=﹣4+2i,则|z|=.解:∵复数z=﹣4+2i,∴.故答案为:.15.若复数,则共轭复数=3+i.解:∵=,∴.故答案为:3+i.16.椭圆的焦点为F1,F2,上顶点为A,若,则m=.解:由题意可得c=,b=m,又∵∠F1AF2=,可得∠F1AO=,可得tan∠F1AO==,解得m=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=x3﹣3x+1.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的单调区间.解:(1)f(x)=x3﹣3x+1,所以f(0)=1,又f'(x)=3x2﹣3,所以k=f'(0)=﹣3,故切线方3x+y﹣1=0.(2)f'(x)=3x2﹣3>0,则x>1或x<﹣1;f'(x)=3x2﹣3<0,则﹣1<x<1.故函数在(﹣∞,﹣1)和(1,+∞)上单调递增.在(﹣1,1)上单调递减.18.已知抛物线C:y2=2px(p>0)的焦点为F,准线方程为x=﹣2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线l:y=x﹣2与抛物线C交于A,B两点,求|AB|.解:(Ⅰ)∵抛物线C的准线方程为x=﹣2,∴,得p=4,故抛物线C的方程为y2=8x.(Ⅱ)显然直线l:y=x﹣2过焦点F(2,0),联立,消去y可得x2﹣12x+4=0,设A(x1,y1),B(x2,y2),则x1+x2=12,故|AB|=x1+x2+p=12+4=16.19.青少年近视问题已经成为我国面临的重要社会问题.对于这一问题,总书记连续作出重要指示,要求“全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某机构为了解使用电子产品对青少年视力的影响,随机抽取了200名青少年,调查他们每天使用电子产品的时间(单位:分钟),根据调查数据按(0,30],(30,60],(60,90],(90,120],(120,150],(150,180]分成6组,得到如下频数分布表:时间/分钟(0,30] (30,60] (60,90] (90,120] (120,150] (150,180] 频数12 38 72 46 22 10 记每天使用电子产品的时间超过60分钟为长时间使用电子产品.(Ⅰ)完成下面的列联表;长时间使用电子产品合计非长时间使用电子产品患近视人数100未患近视人数80 合计200 (Ⅱ)判断是否有99.9%的把握认为患近视与每天长时间使用电子产品有关.附:,其中n=a+b+c+d.P(K2≥k0)k0解:(Ⅰ)由表中数据完成的列联表如下:长时间使用电子产品合计非长时间使用电子产品患近视人数20 100 120未患近视人数30 50 80 合计50 150 200 (Ⅱ)由列联表中的数据可得,,所以有99.9%的把握认为患近视与每天长时间使用电子产品有关.20.已知椭圆(a >b>0)的中心是坐标原点O,左右焦点分别为F1、F2,设P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆左焦点且倾斜角为45°的直线l与椭圆C相交于A,B两点,求△AOB的面积.解:(Ⅰ)由题意P是椭圆C上一点,满足PF2⊥x 轴,,离心率为.知,,所以.(Ⅱ)过椭圆左焦点(﹣,0)且倾斜角为45°的直线l,可知,联立直线l和椭圆C,有,有,设A(x1,y1),B(x2,y2),x1+x2=,x1x2=,有,所以.21.中国是世界上沙漠化最严重的国家之一,沙漠化造成生态系统失衡,可耕地面积不断缩小,对中国工农业生产和人民生活带来严重影响.随着综合国力逐步增强,西北某地区大力兴建防风林带,引水拉沙,引洪淤地,开展了改造沙漠的巨大工程,该地区于2017年投入沙漠治理经费2亿元,从2018年到2020年连续3年每年增加沙漠治理经费1亿元,近4年投入的沙漠治理经费x(亿元)和沙漠治理面积y(万亩)的相关数据如表所示:年份2017 2018 2019 2020x 2 3 4 5y26 39 49 54 (Ⅰ)通过绘制散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(结果保留3位小数)(Ⅱ)建立y关于x的线性回归方程,并预测2025年该地区沙漠治理面积是否可突破100万亩.参考公式:相关系数,线性回归方程的斜率和截距的最小二乘法估计分别为,.参考数据:,,,,.解:(Ⅰ)由题意可得,,,,所以,由于y与x的相关系数近似为0.998,说明y与x的线性相关程度相当高,从而可以用线性回归模型拟合y与x的关系;(Ⅱ)因为,,所以,又,,则,故y关于x的线性回归方程为,当x=10时,,所以2025年该地区沙漠治理面积可突破100万亩.22.已知函数f(x)=e x﹣(k+1)lnx+2sinα.(Ⅰ)若函数f(x)在(0,+∞)上单调递增,某某数k的取值X围;(Ⅱ)当k=0时,证明:函数f(x)无零点.解:(Ⅰ),x>0,∵函数f(x)在(0,+∞)上单调递增,∴在(0,+∞)上恒成立,即k+1≤xe x在(0,+∞)上恒成立,∵函数y=xe x在(0,+∞)上单调递增,且y∈(0,+∞),∴k+1≤0,即k≤﹣1,故实数k的取值X围是(﹣∞,﹣1].(Ⅱ)证明:当k=0时,,x>0,易知f'(x)为增函数,且,f'(1)=e﹣1>0,∴存在,使得f'(m)=0,得,故m=﹣lnm,当x∈(0,m)时,f'(x)<0,f(x)单调递减,当x∈(m,+∞)时,f'(x)>0,f(x)单调递增,∴,∴函数f(x)无零点.。

陕西省咸阳市实验中学2024_2025学年高二英语上学期第二次月考试题含解析

陕西省咸阳市实验中学2024_2025学年高二英语上学期第二次月考试题含解析

陕西省咸阳市试验中学2024-2025学年高二英语上学期其次次月考试题(含解析)第I卷(共90分)第一部分:听力(共两节,满分30分)该部分分为第一、其次两节。

留意:回答听力部分时,请先将答案标在试卷上。

听力部分结束时,你将有两分钟的时间将你的答案转涂到客观题答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What are the speakers talking about?A. Having a birthday party.B. Doing some exercise.C. Getting Lydia a gift.2. What is the woman going to do?A. Help the man.B. Take a bus.C. Get a camera.3. What does the woman suggest the man do?A. T ell Kate to stop.B. Call Kate’s friends.C. Stay away from Kate.4. Where does the conversation probably take place?A. In a wine shop.B. In a supermarket.C. In a restaurant.5. What does the woman mean?A. Keep the window closed.B. Go out for fresh air.C. Turn on the fan.其次节听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)

陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)

2016-2017学年度第二学期高二期末检测数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.163. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点(,);④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A. 0B. 1C. 2D. 34. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数5. 过点O(1,0)作函数f(x)=e x的切线,则切线方程为()A. y=e2(x-1)B. y=e(x-1)C. y=e2(x-1)或y=e(x-1)D. y=x -16. 随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则等于()A. 3200B. 2700C. 1350D. 12007. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.8. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A. 双曲线的一支B. 抛物线的一部分C. 圆D. 椭圆9. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x +0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 30011. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A. B. 2 C. 1 D. 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A. (-∞,-2)B. (-∞,1)C. (-2,4)D. (1,+∞)第Ⅱ卷(非选择题)二、填空题(本大题共4小题.把答案直接填在题中的相应横线上.)13. 直线是曲线的一条切线,则实数的值为____________14. 连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.15. 已知,则的值等于________.16. 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤.)17. 在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18. 设正项数列的前项和为,且,(1)求,并猜想数列的通项公式(2)用数学归纳法证明你的猜想.19. 某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.20. 如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F 是PC的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小..21. 已知函数(a<0).(Ⅰ)当a=-3时,求f(x)的单调递减区间;(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;参考答案:1【答案】C2【答案】C3【答案】D4【答案】B5【答案】A6【答案】B7【答案】B8【答案】D9【答案】B10【答案】A11【答案】C12【答案】A13【答案】14【答案】15【答案】16【答案】17.解:(1)第3项的二项式系数为C=15,又T3=C (2)42=24·Cx,所以第3项的系数为24C=240.(2)T k+1=C (2)6-k k=(-1)k26-k Cx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18.解:(1)当时,,∴或(舍,).当时,,∴.当时,,∴.猜想:.(2)证明:①当时,显然成立.②假设时,成立,则当时,,即∴.由①、②可知,,.19.解:(Ⅰ)由茎叶图可得.(Ⅱ)由题可知X取值为0,1,2.,,,所以X的分布列为:所以.(Ⅲ)由茎叶图可得,甲班有4人及格,乙班有5人及格.设事件A=“从两班这20名同学中各抽取一人,已知有人及格”,事件B=“从两班这20名同学中各抽取一人,乙班同学不及格”.则.20解:(Ⅰ)连接BD,设AC∩BD=O,连结OE,∵四边形ABCD为矩形,∴O是BD的中点,∵点E是棱PD的中点,∴PB∥EO,又PB平面AEC,EO平面AEC,∴PB∥平面AEC.(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以、、的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.设由可得AP=AB,于是可令AP=AB=AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)设平面CAF的一个法向量为.由于,所以,解得x=-1,所以.因为y轴平面DAF,所以可设平面DAF的一个法向量为.由于,所以,解得z=-1,所以.故.所以二面角C—AF—D的大小为60°.点睛:立体几何是高中数学的重要内容之一,也历届高考必考的题型之一.本题考查是空间的直线与平面的平行问题和空间两个平面所成角的范围的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线PB与EO平行,再推证PB∥平面AEC即可.关于第二问中的二面角的余弦值的问题,解答时巧妙运用建构空间直角坐标系,探求两个平面的法向量,然后运用空间向量的数量积公式求出二面角的余弦值21.解(Ⅰ)∵a=-3,∴,故令f′(x)<0,解得-3<x<-2或x>0,即所求的单调递减区间为(-3,-2)和(0,+∞)(Ⅱ)∵(x>a)令f′(x)=0,得x=0或x=a+1(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点.即当-1<a<0对,f(x)有且仅有一个零点;(2)当a=-1时,,∵,∴f(x)在(a,+∞)单调递减,又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,故函数f(x)有且仅有一个零点;(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f (x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;综上所述,所求的范围是a<0.。

陕西省咸阳市实验中学高二数学下学期第一次月考试题 文

陕西省咸阳市实验中学高二数学下学期第一次月考试题 文

学习资料陕西省咸阳市实验中学2020—2021学年高二数学下学期第一次月考试题 文注意事项:1.试卷分第I 卷和第Ⅱ卷两部分,将答案填写在答题卡上,考试结束后只交答题卡和答案卷;2.答题前,考生务必将自己的姓名、准考证号,填写在本试题相应位置;3.全部答案在答题卡上完成,答在本试题上无效; 4。

本试卷共6页. 满分150分,考试时间120分钟.第I 卷 一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求.1.若0a b <<,那么下列不等式成立的是( ) A .2ab a -<-B .2ab b <C .11a b-<- D .11a b< 2.不等式121x -<的解集是 A .()0,1 B .()1,0- C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭3.对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( ) A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强 B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强 C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v 的线性相关性较强 D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强 4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 5.下面是“神舟七号”宇宙飞船从发射到返回的主要环节:①箭船分离;②出舱行走;③点火发射;④返回地球;⑤轨道舱和返回舱分离.图中正确的是( ) A .③→⑤→②→①→④ B .③→⑤→②→④→① C .③→①→②→⑤→④D .④→⑤→②→①→③6.利用反证法证明“若3a b c ++=,则a ,b ,c 中至少有一个数不小于1”正确的假设为( )A .a ,b ,c 中至多有一个数大于1B .a ,b ,c 中至多有一个数小于1C .a ,b ,c 中至少有一个数大于1D .a ,b ,c 都小于17.设x ,y ,z ∈R +,且x+y+z=6,则lg x+lg y+lg z 的取值范围是( ) A .(—∞,lg 6]B .(—∞,3lg 2]C .[lg 6,+∞)D .[3lg 2,+∞)8.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为( ) A .14B .25C .12D .359.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b 在平面α外,直线a 在平面α内,直线//b 平面α,则直线//b 直线a ”,结论显然是错误的,这是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误10.三角形的面积为()12S a b c r =++⋅,(,,a b c 为三角形的边长,r 为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )A .13V abc =(,,a b c 为底面边长) B .()123413V S S S S r =+++(1234,,,S S S S 分别为四面体四个面的面积,r 为四面体内切球的半径) C .13V Sh =(S 为底面面积,h 为四面体的高)D .()13V ab bc ac h =++(,,a b c 为底面边长,h 为四面体的高) 11.已知:221a b +=,221x y +=,则ax by +的取值范围是( ) A .[]0,2B .[]1,1-C .[]22-,D .[]0,112.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙可以知道其他两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.若复数z 满足()1234z i i +=-+(i 是虚数单位),则复数z 的实部是______。

实验中学高二数学下学期第二次月考试题理含解析

实验中学高二数学下学期第二次月考试题理含解析
10. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A. 144B。120C. 72D. 24
【答案】D
【解析】
试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有 种
考点:排列、组合及简单计数问题
11。若随机变量 ,则 最大时, 的值为( )
A. 1或2B. 2或3C. 3或4D。 5
【答案】D
【解析】
【分析】
由 ,两边取对数得,化简得 ,构造函数 ,然后作图可求得答案。
【详解】由 ,两边取对数得, ,然后化简得 ,
设 ,然后可以画出 的图像,如图,
明显地,当 ,且 时,只有阴影部分内的取值能成立,此时, 和 的取值在阴影部分,即 ,从图像观察可得, 的最大值是 ,没有最小值,但是 ,综上, 的范围为
【点睛】本题考查了根据函数过点和公切线求参数,求公切线,意在考查学生的计算能力和转化能力。
20。“石头、剪刀、布"是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势 次记为 次游戏,“石头”胜“剪刀”,“剪刀"胜“布”,“布”胜“石头";双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的。
4。从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 , 组成复数 ,其中虚数有( )
A。 30个B. 42个C. 36个D。 35个
【答案】C
【解析】
【详解】解:∵a,b互不相等且为虚数,
∴所有b只能从{1,2,3,4,5,6}中选一个有6种,
a从剩余的6个选一个有6种,
∴根据分步计数原理知虚数有6×6=36(个).

陕西省咸阳市实验中学2024-2025学年七年级上学期阶段性检测数学试卷(一)(含答案)

陕西省咸阳市实验中学2024-2025学年七年级上学期阶段性检测数学试卷(一)(含答案)

试卷类型:A咸阳市实验中学2024~2025学年度第一学期阶段性检测(一)七年级数学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题)。

全卷共4页,总分120分。

考试时间120分钟。

2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名、班级和准考证号,同时用铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )。

3.请在答题卡上各题的指定区域内作答,否则作答无效。

4.作图时,先用铅笔作图,再用规定签字笔描黑。

5.考试结束,本试卷和答题卡一并交回。

第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.在数轴上表示的点与原点的距离为( )A.2B. C. D.02.下列各组数中,互为相反数的一组是( )A.5和 B.2和C.和D.和3.计算的结果是( )A.1B. C.5 D.4.有三个正方体木块,每一块的各面都写上不同的数字,三块的写法完全相同,现把它们摆放成如图所示的位置,请你判断数字4对面的数字是()A.6B.3C.2D.15.有理数,在数轴上的对应点的位置如图所示,则下列各式成立的是()A. B. C. D.6.下列各式计算正确的是( )A. B. C. D.7.将若干个相同的小正方体堆成如图所示的图形,若每个小正方体的棱长为,则这个图形的表面积为()2B 2-2-2±5-123-13-3-13()()32---1-5-a b 1a >-a b>-1b -<a b<33--=()33-+=33-=-()33--=aA. B. C. D.8.如图,数轴上、两点分别对应实数、,则下列结论正确的是()A.B. C. D.第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9.比较大小:______.(填“>”,“<”,“=”号)10.若比平均分高5分记作+5分,那么分表示______.11.在图中剪去1个小正方形,使得到的图形经过折叠能够围成一个正方体,则要剪去的正方形对应的数字是______.12.如图是某几何体从不同方向看所得图形,根据图中数据,求得该几何体的侧面积为______.(结果保留)13.,是绝对值最小的数,是最大的负整数,则______.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)请把下列各数填入相应的集合中:,,5.2,0,,,,2024,,整数集合:{ …};负分数集合:{ …}.15.(10分)计算下列各题:(1);(2);230a 240a 250a 260a A B a b 0a b +>0a b +<0a b ->0a b ->34-45-2-π5a =b c a b c +-=2-12-2311653-0.3-()3--()()1111---()()3227-++(3);(4).16.(5分)一个几何体是由大小相同的小立方块搭成,其中小正方形上的数字表示在该位置上的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.17.(5分)若,求的值.18.(5分)如图,用经过、、三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为,棱数为,求的值.19.(6分)若,互为相反数,,,互为倒数,求的值.20.(6分)请画出数轴,并在数轴上标出下列各数:0.5,,,,.并把它们用“>”连接起来.21.(6分)下表列出了国外几个城市与北京的时差.城市纽约巴黎东京芝加哥时差/h(1)如果现在北京的时间是17:00,那么现在的东京时间是几点?(2)小荣想在北京时间9:00给在巴黎的姑妈打电话,你认为合适吗?请说明理由;(3)王老师从北京乘坐早晨7:00的航班经过约到达纽约,那么王老师到达纽约时当地时间大约是几点?22.(6分)如图是一张铁片.(单位:米)(1)计算这张铁片的面积;(2)这张铁片能否做成一个无盖长方体盒子?若能,请计算它的体积;若不能,请说明理由.23.(6分)设表示取的整数部分,例如:,.()()()733510+-++-+-()()67128510⎛⎫---+-- ⎪⎝⎭202320240x y -++=x y +A B C m n m n +a b 5x =c d ()a b cd x --+-4-1132.5- 1.5-–137-1+–1420h []a a []2.32=[]55=(1)求的值;(2)令,求.24.(6分)近几年,全球的新能源汽车发展迅猛,尤其对于我国来说,新能源汽车产销量都大幅度增加.小明家新换了一辆新能源纯电汽车,他连续7天记录了每天行驶的路程(如表).以为标准,多于的记为“+”,不足的记为“”,刚好的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程+8+2+15(1)请求出小明家的新能源汽车这7天一共行驶了多少千米?(2)已知汽油车每行驶需用汽油5.5升,汽油价为8.2元/升,而新能源汽车每行驶耗电量为15度,每度电为0.56元,小明家换成新能源汽车后这7天的行驶费用比原来节省多少钱?25.(7分)有理数,,在数轴上的位置如图所示,且表示数的点、数的点与原点的距离相等.(1)用“>”,“<”或“=”填空:______0,______0,______0;(2)求的值.26.(8分)如图1,、两点在数轴上对应的数分别为和6.(1)直接写出、两点之间的距离______;(2)若在数轴上存在一点,使得到的距离是到的距离的3倍,求点表示的数;(3)如图2,现有动点、,若点从点出发,以每秒4个单位长度的速度沿数轴向右运动,同时点从点出发,以每秒2个单位长度的速度沿数轴向左运动,当点到达原点后立即以每秒3个单位长度的速度沿数轴向右运动,求:当到的距离是到的距离的4倍时的运动时间的值.图1图2咸阳市实验中学2024-2025学年第一学期阶段性检测(一)答案一、选择题(每小题3分,共24分)题号12345678答案AABBCDDC[][]12 3.675⎡⎤--+⎢⎥⎣⎦{}[]a a a =-[]312 2.4644⎧⎫⎧⎫-+⎨⎬⎨⎬⎩⎭⎩⎭40km 40km 40km -40km ()km 6-5-–511+100km 100km a b c a b a b +a c -b c -11b a -+-A B 16-A B P P B A P P Q P A Q B Q O P O Q O t二、填空题(每小题3分,共15分)9.10.比平均分低2分11.212.13.6或三、解答题(共81分)14.(5分)整数集合:负分数集合:15.(10分)(1,2小题各2分;3,4两小题各3分)(1)0;(2);(3);(4)16、(5分)(从正面看为3分,从左面看为2分)解:如图所示:17、(5分)【详解】解:由题意,得:,,,..18、(5分)【详解】解:由图可知,这个多面体的面数是7,即.又因为正方体有12条棱,被截去了3条棱,截面为三角形,所以增加了3条棱,故棱数不变,即.所以.19、(6分)或6解:由题知:,①当时原式>2π4-(){}2,0,3,2017---⋅⋅⋅15,,0.323⎧⎫---⋅⋅⋅⎨⎬⎩⎭5-4-1192-1-20230x -=20240y +=2023x ∴=2024y =-202320241x y ∴+=-=-19m n +=7m =12n =71219m n +=+=4-0a b +=5x =±1cd =5x =∴a b cd x=++-015=+-4=-②当时原式的值为或620、(6分)【详解】解:如图21、(6分)解:(1)现在的东京是18点(2)不合适,理由如下:当北京市9点时,巴黎是凌晨2点,姑妈正在休息,所以不合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.102B.101
C.100D.99
8.若实数x、y满足 ,则 的取值范围是 ( )
A. B. C. D.
9. 满足约束条件 ,若目标函数 最大值为12,则 的最小值为()
A.1B.2C.4D.
10.在R上定义运算:x*y=x(1-y).若不等式(x-a)*(x+a)<1对任意实数x恒成立,则()
(2)若 ,不等式 恒成立,求实数 的取值范围.
21.已知不等式 的解集为
(1)求实数 的值;
(2)若函数 在区间 上递增,求关于 的不等式 的解集.
22.某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角105°的方向,以9海里/时的速度向某小岛B靠拢,我海军舰艇立即以21海里/时的速度前去营救,恰在小岛B处追上渔船.
A.6B.7C.8D.9
5.在△ABC中,a、b、c分别是角A、B、C的对边,如果2b=a+c,B=30°,△ABC的面积是 ,则b=()
A.1+ B. C. D.2+
6.在 中,角 所对的边分 .若 ,则 ()
A.- B. C.-1D.1
7.若数列{xn}满足lgxn+1=1+lgxn(n∈N+),且x1+x2+x3+…+x100=100,则lg(x101+x102+…+x200)的值为( )
当直线 过点 时,在 轴上的截距最大,此时目标函数取得最大值,
又由 ,解得 ,
此时目标函数 取得最大值12,即 ,即 ,
则 ,
当且仅当 时,即 时等号成立,
所以 的最小值为4.
故选:C.
【点睛】
本题主要考查了线性规划问题和基本不等式求解函数的最值问题,其中解答中准确画出不等式组所表示的平面区域,求得 的关系式是解答的关键,着重考查数形结合思想,以及推理与运算能力.
×2=n2-12n=(n-6)2-36,所以当n=6时,Sn取最小值.
故选A
点评:本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力.
5.A
【分析】
由三角形面积得 ,由余弦定理结合已知条件可得 .
【详解】
由已知 , ,
所以 ,解得 .
故选:A.
【点睛】
本题考查三角形面积公式,考查余弦定理,解题方法是直接法,直接利用余弦定理列出 的方程即可求解.
A.-1<a<1B.0<a<2
C.- <a< D.- <a<
11.钝角三角形的三边为 , , ,其最大角不超过 ,则 的取值范围是( )
A. B. C. D.
12.已知函数 ,若任意的 ,存在 ,使得 ,则实数 的取值范围是()
A. B. C. D.
二、填空题
13.在△ABC中,若a= ,cosC= ,S△ABC= ,则b=________.
6.D
【解析】
试题分析:由 得
考点:正弦定理及同角间的三角函数关系
点评:正弦定理 可实现三角形边与角的互相转化,同角间三角函数关系
7.A
【解析】
由 ,得 ,
所以数列 是公比为 的等比数列,
又 ,
所以 ,
所以 ,故选A.
8.A
【解析】
由 满足的约束条件画出可行域,如图:
目标函数 表示区域内的动点 与定点 连线的了正弦定理的应用,以及特殊角的三角三角函数的应用,着重考查运算与求解能力.
3.B
【解析】
试题分析:由已知中a2+a<0,解不等式可能求出参数a的范围,进而根据实数的性质确定出a3,a2,-a,-的大小关系.解:因为a2+a<0,即a(a+1)<0,所以-1<a<0,根据不等式的性质可知-a>a2>-a3,故选B.
14.已知{an}为等差数列,Sn为{an}的前n项和,n∈N*,若a3=16,S20=20,则S10值为.
15.设点P(x,y)在函数y=4-2x的图象上运动,则9x+3y的最小值为________.
16.设 为正数, ,则 的最大值是___________
三、解答题
17.已知等差数列{an}中,a1=1,a3=﹣3.
A.30°或60°B.45°或60°
C.120°或60°D.30°或150°
3.a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是( )
A.a2>-a3>-aB.-a>a2>-a3
C.-a3>a2>-aD.a2>-a>-a3
4.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于( )
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.
18.在△ABC中,a,b,c分别是∠A、∠B、∠C的对边长,已知a,b,c成等比数列,且a2-c2=ac-bc.求∠A的大小及 的值.
19.解关于x的不等式ax2-(a+1)x+1<0.
20.设函数 .
(1)求不等式 的解集;
(1)试问舰艇应按照怎样的航向前进?
(2)求出舰艇靠近渔船所用的时间?
(参考数据: )
参考答案
1.D
【解析】
试题分析:由已知得 ,故选D.
考点:等差数列的性质.
2.D
【分析】
由正弦定理和题设条件,求得 ,进而求得角 的值,得到答案.
【详解】
在 中,因为 ,
由正弦定理可得 ,
又由 ,则 ,所以 ,
又因为 ,所以 或 .
陕西省咸阳市实验中学2020-2021学年高二上学期第三次月考数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在等差数列 中,若 ,则 的值等于()
A.45B.75C.300D.180
2.在 中,若 ,则角A为()
考点:不等式比较大小
点评:本题考查的知识点是不等式比较大小,其中解不等式求出参数a的范围是解答的关键
4.A
【解析】
分析:条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.
解答:解:设该数列的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,
所以Sn=-11n+
由图可知 是 的最小值,故 的取值范围是
故答案选
点睛:线性规划转化为几何意义, 转化为可行域内的点到点 连线的斜率,先画出可行域,然后计算出斜率范围。
9.C
【分析】
利用线性规划求得 ,从而 ,展开后利用基本不等式,即可求解.
【详解】
画出不等式组 所表示的平面区域,如图所示的阴影部分(包含边界),
由直线 ,可得 ,由 ,可得 ,
相关文档
最新文档