发酵液中蔗糖的检测方法

合集下载

糖发酵实验的实验报告

糖发酵实验的实验报告

一、实验目的1. 了解糖发酵的原理及其在微生物鉴定中的应用。

2. 掌握通过糖发酵实验鉴别不同微生物的方法。

3. 熟悉糖发酵培养基的配制和操作步骤。

二、实验原理糖发酵实验是一种常用的微生物生化实验,通过观察微生物对糖类的分解能力,可以鉴别不同种类的微生物。

实验原理如下:1. 糖类分解:微生物在代谢过程中,利用糖类作为碳源和能源。

不同的微生物具有不同的酶系统,能够分解不同类型的糖类。

2. 产酸产气:微生物分解糖类时,会产生有机酸和气体。

有机酸会导致培养基pH 值下降,而气体则会在倒置的小试管中形成气泡。

3. 指示剂变化:在糖发酵培养基中加入指示剂(如溴甲酚紫),当pH值下降至指示剂变色范围时,颜色会由黄色变为紫色。

三、实验材料与仪器1. 材料:糖发酵培养基(葡萄糖、乳糖、麦芽糖、蔗糖等)、指示剂(溴甲酚紫)、无菌试管、无菌移液管、无菌棉塞、培养箱、酒精灯、镊子等。

2. 仪器:显微镜、电子天平、移液器、无菌操作台等。

四、实验方法1. 糖发酵培养基的配制:- 称取葡萄糖、乳糖、麦芽糖、蔗糖等糖类,按照一定比例溶解于蒸馏水中。

- 加入蛋白胨、氯化钠等营养物质,调整pH值至中性。

- 分装于无菌试管中,121℃高压灭菌15分钟。

2. 接种与培养:- 将待测微生物接种于糖发酵培养基中。

- 将接种后的试管放入培养箱中,37℃培养24小时。

3. 观察与记录:- 观察培养基中是否出现气泡,并记录气泡的数量和大小。

- 观察指示剂的颜色变化,记录颜色变化的时间。

- 根据观察结果,判断微生物对糖类的分解能力。

五、实验结果与分析1. 实验结果:- 大肠杆菌:葡萄糖、乳糖、麦芽糖发酵产酸产气,蔗糖发酵不产气。

- 伤寒杆菌:葡萄糖发酵产酸不产气,乳糖发酵不产气。

- 普通变形杆菌:葡萄糖、麦芽糖发酵产酸产气,乳糖发酵不产气。

2. 结果分析:- 通过糖发酵实验,可以区分大肠杆菌、伤寒杆菌和普通变形杆菌。

- 大肠杆菌能分解葡萄糖、乳糖、麦芽糖,产生有机酸和气体;伤寒杆菌只能分解葡萄糖,产生有机酸;普通变形杆菌能分解葡萄糖、麦芽糖,产生有机酸和气体。

发酵现象实验报告

发酵现象实验报告

发酵现象实验报告探究酵母菌在无氧条件下发酵作用产生二氧化碳和酒精。

试验仪器及用品:1.试验仪器:带胶塞和胶管的锥形瓶、小气球、Y形管、大烧杯、温度计、试管、比色板、小烧杯、玻璃棒。

2.试验用品: 白糖〔100g〕、一小包干酵母〔约30g〕、澄清的石灰水、酒精、橙色的重铬酸钾溶液。

〔检测酒精的试剂。

0.5ml的浓硫酸溶有0.1g重铬酸钾,体积分数为95%—97%,在酸性条件下与酒精发生化学反应由橙色变为灰绿色〕试验装置及说明:澄清的石灰水可以检测气体中有二氧化碳,重铬酸钾溶液遇到酒精由橙色变为灰绿色。

试验操作:1.将〔100ml〕40℃温水倒入锥形瓶,再用汤匙将一大勺糖及适量干酵母加进来,搅拌匀称后,将锥形瓶放在大烧杯中水浴保温温度保持在30—40 ℃左右。

〔先让酵母菌进行有氧呼吸,是酵母菌快速繁殖,并把葡萄糖分解成二氧化碳和水。

〕2. 观测到酵母菌培育液有气泡产生,塞上橡胶塞〔这样做既可以避开气体散失,影响后面试验效果,也为酒精的产生提供保障〕。

过一段时间后就可看到干瘪的气球渐渐膨胀起来了。

〔酵母菌的无氧呼吸〕3.将夹子打开,挤压气球,使瓶内产生的气体缓缓通过胶管导入试管内的澄清石灰水中,石灰水变浑浊了(检测气体中有二氧化碳。

原理:二氧化碳遇石灰水,石灰水变浑浊)。

4.将重铬酸钾试剂分别滴在比色板的凹槽内,并分别标注1号、2号〔作对比〕、3号。

在3号试剂上滴1滴酒精,在1号试剂上滴1滴酵母菌发酵液。

发觉1号和3号都由橙色变成了灰绿色。

试验创新点及意义:通过上述试验,让我们对酵母菌“发酵现象”所需要的原料、条件及产生的物质都有了较直观的感受,比较简单理解课本上阐述的“酵母菌可以把葡萄糖转化为酒精和二氧化碳”等有关内容,而且印象深刻。

使我们养成很好的节省意识。

试验现象:1. 闻到了发酵后非常的甜酒的芳香气味。

2. 详见【试验操作4】3. 澄清的石灰水变浑浊发酵现象试验报告范文2一、试验目的〔1〕掌控摇床发酵法制备糖化酶的工艺流程及操作方法〔2〕了解利用黑曲霉菌菌种发酵时的生长条件及考前须知〔3〕娴熟掌控试验过程中的无菌操作和培育条件的选择二、试验仪器及试剂菌种:黑曲霉仪器:锥形瓶〔500ml)、移液管、恒温水浴锅、秒表、50mL比色管、牛皮纸、纱布〔8层〕、pH计。

蔗糖水解反应速率常数的测定实验报告

蔗糖水解反应速率常数的测定实验报告

蔗糖水解反应速率常数的测定实验报告实验报告:蔗糖水解反应速率常数的测定摘要:本实验旨在测定蔗糖水解反应速率常数。

实验采用酵母发酵蔗糖的方法,通过观察产生的CO2气体的体积变化来确定反应速率。

实验数据经过处理后,通过线性回归法求得反应速率常数。

实验结果表明,在一定温度范围内,反应速率与蔗糖浓度呈线性关系。

此外,本实验也揭示了酵母酶活性受温度影响较大,随着温度升高,酵母酶活性增强,反应速率也加快。

引言:蔗糖水解反应是糖酵母发酵的过程,并伴随着CO2气体的产生。

通过研究蔗糖水解反应速率常数,可以了解各种因素对反应速率的影响,以及蔗糖酵母发酵的机理。

本实验将通过实验测定蔗糖水解反应速率常数,并分析温度对反应速率的影响。

实验方法:1.准备工作:-将实验室器材清洗干净。

-准备一定浓度的蔗糖溶液。

-调节酵母的浓度。

2.实验步骤:-在试管中加入一定量的蔗糖溶液和酵母溶液。

-用实验室标准气密管连接试管,并将气密管的一端浸入水中。

-观察并记录水面上升的气泡体积变化。

-按照一定时间间隔记录气泡体积,并记录温度。

3.数据处理:-根据每个时间间隔的气泡体积变化,计算反应速率。

-绘制反应速率与蔗糖浓度的关系图。

-运用线性回归法求得反应速率常数。

结果与讨论:实验数据还表明,随着温度的升高,反应速率也会加快。

这可以归因于酵母酶活性的增强,随温度升高,酵母酶的分子运动性增强,使得酵母酶与蔗糖分子碰撞的机会增加,从而提高了反应速率。

根据实验数据,使用线性回归法求得了蔗糖水解反应速率常数。

表1列出了不同温度下的反应速率常数及相关系数。

可以看出,随着温度的升高,反应速率常数增大,且相关系数也相对较高,说明获取的实验数据较为可靠。

结论:本实验通过酵母发酵蔗糖的方法,测定了蔗糖水解反应速率常数,并研究了温度对反应速率的影响。

实验结果表明,在一定温度范围内,反应速率与蔗糖浓度呈线性关系,同时反应速率随温度的升高而增加。

这一研究有助于深入理解蔗糖酵母发酵的机理,并对相关工业生产和食品加工有一定参考价值。

酵母蔗糖酶的提取方法

酵母蔗糖酶的提取方法

酵母蔗糖酶的提取方法酵母蔗糖酶是重要的糖分解酶,它可以被用来制造蔗糖、糖精、酒精、淀粉、葡萄糖以及蔗糖衍生物。

因此,它在化工、食品、制药行业中有着重要的应用价值。

本文介绍了从发酵酵母或发酵液中提取酵母蔗糖酶的方法。

一、原料准备首先,准备发酵酵母或发酵液。

发酵酵母可以使用乳酸乳杆菌培养基发酵培养,得到的酵母菌可以悬浮在一定的温度和 pH 下曝气发酵,以获得最大的效果。

发酵液可以采用蔗糖和氨基酸等制备,并需要调节合适的 pH温度,可以提高酶的活性。

二、提取酵母蔗糖酶1.发酵酵母或发酵液放入滤器,用中压过滤来滤出悬浮体;2.过滤得到的酵母蔗糖酶悬浮液中加入NaCl,来降低活性;3.溶液中的毛细管类蛋白分离出来,加入45%的乙醇萃取分离;4.溶液冷冻至冰点,冻干抽滤以获得纯化的蔗糖酶;5. 从冻干抽滤物中继续利用膜精制器以及离子交换柱等方式,将蔗糖酶高纯度分离出来;6.高纯度蔗糖酶经过适当稀释处理,可获得最终产品。

三、性能测试为了判定提取的酵母蔗糖酶的性能,需要进行一系列的性能测试,这些测试可以用来检测酶的活性、热稳定性、抗菌性以及稳定性等。

通过这些测试,可以确定提取的酵母蔗糖酶的性能,从而确保它能够满足采用的要求。

四、应用实践酵母蔗糖酶的提取方法在实际应用中几乎是必不可少的,它可以用来生产糖浆、糖精、酒精、淀粉、葡萄糖以及蔗糖衍生物等,常用于食品加工、精细化工、制药行业等。

此外,这种提取方法还可以应用于糖类合成、氨基酸修饰等方面,发挥着重要的作用。

综上所述,酵母蔗糖酶是一种重要的糖分解酶,用于生产糖类衍生物,它的提取方法包括发酵酵母或发酵液的原料准备、提取、性能测试以及应用实践等,是一项重要的工作。

只有抓住机会,把提取的酵母蔗糖酶用好,才能实现糖分解酶的高效利用。

糖发酵试验实验结果

糖发酵试验实验结果

糖发酵试验实验结果糖发酵试验是一种常见的实验方法,用于检测微生物对糖类物质的发酵能力。

通过观察和测量发酵过程中产生的各种物质和现象,可以得出结论并进一步研究微生物的代谢特性和生理功能。

以下是一项糖发酵试验的实验结果。

实验目的:通过糖发酵试验,检测不同糖类物质是否能被微生物发酵,进而判断微生物的代谢能力和特性。

实验材料:- 不同类型的糖溶液(如葡萄糖、果糖、麦芽糖等)- 微生物培养物(如酵母菌、乳酸菌等)- 培养基(如琼脂、蔗糖琼脂等)- 实验仪器(如试管、培养皿、培养瓶等)- 显微镜和显微镜玻片实验步骤:1. 准备培养基:将所需的培养基配制好,并均匀地倒入培养皿或培养瓶中,待其凝固。

2. 准备试验物质:将不同类型的糖溶液加热至溶解,并冷却后备用。

3. 接种微生物:将培养物中的微生物均匀涂布在培养基表面上,以接种的方式引入微生物。

4. 加入糖溶液:在培养皿或培养瓶中,分别加入不同类型的糖溶液,使其均匀分布在培养基上。

5. 培养微生物:将培养皿或培养瓶放入恒温培养箱中,以适当的温度和时间培养微生物。

6. 观察结果:观察培养皿或培养瓶中微生物的生长情况、气泡的产生及颜色变化等现象,并记录下来。

实验结果:根据对糖发酵试验的观察和记录,可以得出以下实验结果:1. 葡萄糖发酵实验:在葡萄糖溶液中,酵母菌迅速开始发酵作用。

观察到培养皿中产生大量气泡,并伴随着酵母菌的生长。

在培养皿中的培养基上,可以观察到酵母菌的白色菌落。

此外,培养基的颜色可能会发生变化,由无色变为黄色或橙色。

2. 果糖发酵实验:与葡萄糖发酵实验相似,果糖溶液也能被酵母菌迅速发酵。

在培养皿中观察到的现象与葡萄糖发酵实验类似,包括气泡的产生、酵母菌的生长和培养基颜色的变化。

3. 麦芽糖发酵实验:相比于葡萄糖和果糖,麦芽糖的发酵速度较慢。

在培养皿中,可以观察到麦芽糖溶液发酵产生少量气泡,并且酵母菌的生长也较为缓慢。

培养基的颜色可能会有轻微的变化。

4. 其他糖类物质的发酵实验:除了葡萄糖、果糖和麦芽糖,还可以使用其他类型的糖溶液进行发酵实验。

糖发酵实验报告结果(3篇)

糖发酵实验报告结果(3篇)

第1篇一、实验目的1. 了解糖发酵的原理及其在微生物学研究中的应用。

2. 掌握糖发酵实验的操作方法及观察指标。

3. 通过糖发酵实验,鉴定不同微生物的糖代谢能力。

二、实验原理糖发酵实验是微生物学中常用的生化实验之一,用于检测微生物对糖类的代谢能力。

不同微生物具有不同的酶系,对糖类的分解能力各异。

在实验中,将微生物接种于含有糖类的培养基中,观察其在一定时间内对糖类的代谢情况,如产酸、产气、pH 变化等,从而判断微生物的糖代谢能力。

三、实验材料1. 菌种:大肠杆菌、枯草芽孢杆菌、酵母菌等。

2. 培养基:糖发酵培养基(葡萄糖、乳糖、蔗糖等)。

3. 仪器:培养箱、显微镜、移液器、试管、酒精灯等。

4. 试剂:无菌水、溴甲酚紫、无菌生理盐水等。

四、实验方法1. 菌种活化:将菌种从冷冻保存管中取出,接种于LB培养基中,37℃培养过夜。

2. 制备糖发酵培养基:将糖发酵培养基分装至试管中,每管加入1ml无菌水,混匀。

3. 接种:将活化好的菌种用无菌移液器吸取适量菌液,接种于糖发酵培养基中。

4. 培养与观察:将接种好的试管置于37℃培养箱中培养,每隔一定时间观察并记录实验结果。

五、实验结果1. 大肠杆菌(1)葡萄糖发酵:产酸产气,pH下降,溴甲酚紫由黄色变为紫色,产生气泡。

(2)乳糖发酵:产酸产气,pH下降,溴甲酚紫由黄色变为紫色,产生气泡。

2. 枯草芽孢杆菌(1)葡萄糖发酵:产酸,pH下降,溴甲酚紫由黄色变为紫色,无气泡。

(2)乳糖发酵:不发酵,pH无变化,溴甲酚紫颜色无变化。

3. 酵母菌(1)葡萄糖发酵:产酸,pH下降,溴甲酚紫由黄色变为紫色,无气泡。

(2)蔗糖发酵:产酸,pH下降,溴甲酚紫由黄色变为紫色,无气泡。

六、实验结论1. 大肠杆菌具有较强的糖代谢能力,能发酵葡萄糖和乳糖,产生酸和气体。

2. 枯草芽孢杆菌对葡萄糖发酵能力较弱,仅产酸不产气;对乳糖无发酵作用。

3. 酵母菌对葡萄糖和蔗糖发酵能力较弱,仅产酸不产气。

微生物的糖类发酵试验

微生物的糖类发酵试验

实验步骤
按照标准操作流程进行糖类发酵 试验,记录实验过程中的温度、 pH值、气体产生情况等数据。
实验结果
根据实验数据绘制发酵曲线, 记录不同时间点的糖消耗量、
气体产生量等数据。
实验数据记录
实验日期
XXXX年XX月XX日
实验材料
糖类、微生物菌种、培养基、 发酵管等
实验步骤
按照标准操作流程进行糖类发酵 试验,记录实验过程中的温度、 pH值、气体产生情况等数据。
微生物的糖类发酵试 验
目录
• 引言 • 微生物发酵基础知识 • 实验材料与方法 • 实验结果与分析 • 结论
目录
• 引言 • 微生物发酵基础知识 • 实验材料与方法 • 实验结果与分析 • 结论
01
引言
01
引言
主题简介
微生物的糖类发酵试验是一种生物化学实验,用于检测微生物对糖类的发酵能力。
异等,并讨论其对实验结果的影响。
探讨优化方案
02
根据实验结果探讨优化微生物糖类发酵的方案,如调整培养基
成分、控制发酵温度等。
实际应用前景
03
分析微生物糖类发酵在实际生产中的应用前景,为相关领域的
研究提供参考。
结果讨论
讨论实验误差
01
分析实验过程中可能存在的误差,如温度波动、培养基成分差
异等,并讨论其对实验结果的影响。
本实验的意义在于探究微生物的 代谢机制和发酵过程,有助于深 入了解微生物的生态和生理特性。
实验结果可为微生物资源的开发 利用提供理论依据,例如在食品 工业、生物能源和生物制药等领
域的应用。
本实验还可作为生物学和生物化 学教学的实验课程,帮助学生了 解微生物发酵的过程和原理,提

食品中蔗糖的测定方法

食品中蔗糖的测定方法

食品中蔗糖的测定方法酶-比色法食品中蔗糖的测定方法,一般采用盐酸水解法。

由于盐酸水解蔗糖过程中,还有其他糖类被水解为还原糖,导致测定结果偏高。

本标准采用的酶-比色法是在检索了近20年148篇国外文献的基础上,经过反复实验、验证而制定的。

由于酶法具有高度的专一性(β-果糖苷酶只能催化蔗糖转化为葡萄糖和果糖),灵敏度高,操作简便,因此测定结果准确。

蔗糖酶解后的产物-葡萄糖的测定方法,与GB/T 16285-96保持一致。

食品中蔗糖的测定方法GB/T 16286-96酶-比色法1 范围本标准规定了用酶-比色法测定食品中蔗糖的方法,适用于各类食品中蔗糖的测定。

本标准最低检出限量为0.04μg(蔗糖)/mL(试液)。

2 原理在β-果糖苷酶(β-FS)催化下,蔗糖被酶解为葡萄糖和果糖。

葡萄糖氧化酶(GOD)在有氧条件下,催化β-D-葡萄糖(葡萄糖水溶液状态)氧化,生成D -葡萄糖酸-δ-内酯和过氧化氢。

受过氧化物酶(POD)催化,过氧化氢与4 -氨基安替比林和苯酚生成红色醌亚胺。

在波长505nm处测定醌亚胺的吸光度,计算食品中蔗糖的含量。

β-FSC12H22O11+H2O ────> C6H12O6(G) +C6H12O6(F)GODC6H12O6(G) +O2────> C6H10O6+H2O2PODH2O2+C6H5OH +C11H13N3O ────> C6H5NO +H2O3 试剂3.1 组合试剂盒1号瓶:内含β-果糖苷酶(fructosidase)400U(活力单位)、柠檬酸、柠檬酸三钠;2号瓶:内含0.2mol/L 磷酸盐缓冲液(pH=7.6) 200mL,其中含4 -氨基安替比林0. 00154mol/L;3号瓶:内含0.022mol/L苯酚溶液200mL;4号瓶:内含葡萄糖氧化酶(glucose oxidase)800U(活力单位)、过氧化物酶(辣根,peroxidase)2000U(活力单位)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵液中蔗糖的检测方法
参考依据:GB/T16265--2008GB/T5009.8-----2008
第一法:酶水解(酶电极法)
蔗糖的测定方法,一般采用盐酸水解法。

由于盐酸水解蔗糖过程中,还有其他糖类被水解为还原糖,导致测定结果偏高。

本标准采用的酶-比色法是在检索了近20年148篇国外文献的基础上,经过反复实验、验证而制定的。

由于酶法具有高度的专一性(β-果糖苷酶只能催化蔗糖转化为葡萄糖和果糖),灵敏度高,操作简便,因此测定结果准确。

1范围
本标准规定了用酶电极法测定发酵液中蔗糖的方法,适用于各类发酵液中蔗糖的测定。

本标准最低检出限量为0.04μg(蔗糖)/mL(试液)。

2原理
在β-果糖苷酶(β-FS)催化下,蔗糖被酶解为葡萄糖和果糖。

葡萄糖氧化酶(GOD)在有氧条件下,催化β-D-葡萄糖(葡萄糖水溶液状态)氧化,生成D-葡萄糖酸-δ-内酯和过氧化氢。

通过电极检测过氧化氢的含量从而计算出葡萄糖含量。

仪器通过对已知浓度的标准品进行定标,标准品的电压值是衡量样本葡萄糖浓度的尺度。

未知浓度可与标准品的电压信号相比较而获得。

每次测定完毕后,系统缓冲液会自动清洗传感器电极,清洗完成后即可进行下一次测试。

β-FS
C12H22O11+H2O C6H12O6(G)+C6H12O6(F)
GOD
C6H12O6(G)+O2────>C6H10O6+H2O2
由上述反应公式可知,一分子蔗糖水解产生一分子葡萄糖和一分子果糖,检测出葡萄糖的含量即为蔗糖含量。

3试样的制备
3.1按发酵罐无菌操作取样大约10毫升,取5ml放入离心管,离心除去菌体。


3.2用微量移液管取1.00mL上述离心上清液置于试管中,加入1.0mLβ-果糖苷酶试剂溶液,摇匀,在36±1℃水浴锅中恒温20min。

3.3按照葡萄糖酶电极分析仪操作说明标定电极。

3.4取步骤3.2中的水解液500微升放入样品位,按照仪器操作说明进行测定。

第二法酸水解
1原理
样品经除去蛋白质后,其中蔗糖经盐酸水解转化为还原糖,蔗糖容易被酸水解,水解后产生等量的D-葡萄糖和D-
果糖,再按还原糖测定。

水解前后还原糖的差值为蔗糖含量。

样本中所含的葡萄糖在固化的葡萄糖氧化酶的催化下发生酶解反应,反应产物为葡萄糖酸和过氧化氢。

通过电极检测过氧化氢的含量从而计算出葡萄糖含量。

仪器通过对已知浓度的标准品进行定标,标准品的电压值是衡量样本葡萄糖浓度的尺度。

未知浓度可与标准品的电压信号相
比较而获得。

每次测定完毕后,系统缓冲液会自动清洗传感器电极,清洗完成后即可进行下一次测试。

2试剂
2.16N盐酸:量取50ml盐酸加水稀释至100ml。

2.2甲基红指示液:0.1%乙醇溶液。

2.320%氢氧化钠溶液。

其余试剂同GB5009.8-2008《食品中蔗糖的测定方法》第9章。

3仪器
葡萄糖传感器,水浴锅
4操作方法
4.1按发酵罐无菌操作取样大约30毫升发酵液,放入离心管,离心除去菌体。

4.2酸水解
吸取2份5ml按4.1制备的样品处理液,置于50ml容量瓶中,一份加0.5ml盐酸(50ml盐酸缓慢加入50ml冷水中所制得的溶液),在68~70℃水浴中加热15min,冷后加2滴甲基红指示液,用20%氢氧化钠溶液中和至中性,加水至刻度,混匀。

另一份直接加水稀释至50ml,
4.3按照葡萄糖传感器分析仪操作步骤标定仪器,分别取上述溶液500微升放入样品位,按照仪器检测步骤开始测样
5计算
样品中还原糖的含量,以葡萄糖计,按照公式2进行计算,
X=Ax n—————————————————————————————公式2
式中A为葡萄糖传感器葡萄糖读数,n为水解时试样的稀释倍数
试样中蔗糖含量的计算按照公式1进行技术
X=(R2-R1)x0.95—————————————————————————————公式1
式中:X--样品中蔗糖含量,%;
R2--水解处理后葡萄糖分析仪测量值,含量%;
R1--不经水解处理葡萄糖分析仪测量值,含量,%;
0.95--还原糖(以葡萄糖计)换算为蔗糖的系数。

相关文档
最新文档