线性规划举例
线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划应用举例

线性规划应用举例- 4 -
(b) min z = ( x11 + x 21 + x31 + x 41 + x51 ) + 3( x12 + x 22 + x32 + x 42 ) + 4 x33 + 5.5 x 24
x11 + x12 ≤ 200 ⎧ ⎪ x21 + x22 + x24 ≤ 1.1x11 ⎪ ⎪ x31 + x32 + x33 ≤ 1.1x21 + 1.25 x12 ⎪ x41 + x42 ≤ 1.1x31 + 1.25 x22 ⎪ ⎪ x51 ≤ 1.1x41 + 1.25 x32 s.t.⎨ x ⎪ xi 2 ≤ 30, i = 1,2,3,4 ⎪ x33 ≤ 80, x24 ≤ 100 ⎪ ⎪ 1.1x + 1.25 x + 1.4 x +1.55 x ≥ 330 51 42 33 24 ⎪ ⎪ x ≥ 0 , i = 1 , 2 , 3 , 4 , 5 , j = 1 , 2 , 3,4 ij ⎩
7、某市有3个造纸厂I,II,III,它们供给3个印刷厂所需的纸张。各造纸厂的产量、各印刷 厂印刷的能力,各印刷厂和各造纸厂之间的单位运价均列于下表中。假定在1,2和3印刷厂 印刷单位纸张的利润分别为12元,16元和11元,如果造纸厂与印刷厂属于同一个主管单位, 试确定使总效益最大的纸张分配计划。 印刷厂 造纸厂 A1 A2 A3 印刷厂需要量 B1 3 4 8 15 B2 10 11 11 25 B3 2 8 4 20 造纸厂产量 20 30 20
2、一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员 充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安 排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少? 时间 星期日 星期一 星期二 星期三 星期四 星期五 星期六 所需售货员人数 28 15 24 25 19 31 28
八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。
线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品:产品A和产品B。
每个产品的生产需要消耗不同的资源,且每个产品的利润也不同。
公司希望通过线性规划来确定生产计划,以最大化利润。
产品A需要消耗3个单位的资源1和4个单位的资源2,每个单位的产品A的利润为5。
产品B需要消耗6个单位的资源1和2个单位的资源2,每个单位的产品B的利润为8。
公司拥有的资源1和资源2的总量分别为30和20。
二、数学模型设x为生产产品A的数量,y为生产产品B的数量。
目标是最大化利润,即最大化5x + 8y。
约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0。
三、线性规划求解使用线性规划求解器求解上述问题。
输入目标函数和约束条件后,求解器将自动计算出最优解。
给定目标函数为:5x + 8y约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0求解结果如下:最大利润为:120生产产品A的数量为:5生产产品B的数量为:3四、解释结果根据求解结果,最大利润为120,生产5个产品A和3个产品B可以实现最大利润。
同时,根据约束条件,生产数量不能为负数,因此生产数量均为非负数。
五、敏感性分析敏感性分析用于确定目标函数系数的变化对最优解的影响程度。
在本例中,我们将分别增加产品A和产品B的利润,观察最优解的变化情况。
1. 增加产品A的利润:假设每个单位的产品A的利润增加1,即每个单位的产品A的利润为6。
重新求解线性规划问题,得到最大利润为130,生产产品A的数量为6,生产产品B的数量为2。
可以看出,增加产品A的利润对最优解有正向影响,最大利润和产品A的数量均增加。
2. 增加产品B的利润:假设每个单位的产品B的利润增加1,即每个单位的产品B的利润为9。
重新求解线性规划问题,得到最大利润为135,生产产品A的数量为4,生产产品B的数量为4。
可以看出,增加产品B的利润对最优解有正向影响,最大利润和产品B的数量均增加。
第五节 线性规划建模举例

第五节线性规划建模举例线性规划是一种操作研究的数学方法,广泛应用于商业、经济、工程领域中的优化问题。
线性规划建模是将实际问题描述为线性规划模型的过程。
本节将介绍几个线性规划建模的典型例子。
例1:混合饲料配方问题某饲料厂要生产一种混合饲料,需包括以下六种饲料成分:大豆粉、面粉、玉米、鱼粉、鸡粉、牛粉,并且要求这种混合饲料包含不少于25%的蛋白质和不多于15%的纤维素。
每吨饲料的生产成本和含量如下:| 饲料成分 | 成本(元/吨) | 蛋白质含量(%) | 纤维素含量(%) || -------- | ------------- | -------------- | -------------- || 大豆粉 | 200 | 45 | 10 || 面粉 | 100 | 10 | 2 || 玉米 | 150 | 8 | 5 || 鱼粉 | 300 | 60 | 0 || 鸡粉 | 280 | 50 | 2 || 牛粉 | 320 | 70 | 5 |问如何使得生产的混合饲料成本最小,同时满足蛋白质含量不少于25%和纤维素含量不超过15%的要求。
自变量:混合饲料中每种成分的含量。
目标函数:最小化混合饲料的成本。
约束条件:1. 蛋白质含量不少于25%:0.45×x1 + 0.1×x2 + 0.08×x3 + 0.6×x4 + 0.5×x5 + 0.7×x6 ≥ 0.25。
2. 纤维素含量不超过15%:0.1×x1 + 0.02×x2 + 0.05×x3 + 0×x4 + 0.02×x5 + 0.05×x6 ≤ 0.15。
3. 非负性:x1, x2, x3, x4, x5, x6 ≥ 0。
其中,x1,x2,x3,x4,x5,x6 分别表示大豆粉、面粉、玉米、鱼粉、鸡粉和牛粉的含量,单位为吨。
线性规划经典例题

线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。
产品A的利润为200元/件,产品B的利润为300元/件。
每天的生产量不能超过100件。
工厂希翼最大化每天的利润。
【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。
根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。
【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。
由于生产时间和产量限制,工厂无法达到每天生产更多的产品。
【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。
这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。
【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。
为了得到准确的结果,需要根据具体情况进行调整和求解。
线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
线性规划经典例题

线性规划经典例题1. 问题描述假设我们有一个农场,种植两种作物:小麦和大豆。
农场有一定的土地和资源限制,我们需要确定如何分配这些资源,以最大化农场的利润。
我们知道每亩小麦的利润为1000元,每亩大豆的利润为2000元。
同时,我们还知道种植每亩小麦需要2个单位的肥料和3个单位的水,而种植每亩大豆需要4个单位的肥料和2个单位的水。
农场总共有100个单位的肥料和90个单位的水可用。
我们需要确定种植多少亩小麦和多少亩大豆,以最大化利润。
2. 数学建模为了解决这个问题,我们可以使用线性规划来建立数学模型。
假设我们种植x 亩小麦和y亩大豆,则我们的目标是最大化利润,即最大化目标函数Z = 1000x + 2000y。
同时,我们需要满足资源限制,即种植小麦和大豆所需的肥料和水不能超过总量。
因此,我们有以下约束条件:2x + 4y ≤ 100(肥料限制)3x + 2y ≤ 90(水限制)x ≥ 0,y ≥ 0(非负性约束)3. 求解方法我们可以使用线性规划的求解方法来找到最优解。
常见的方法有图形法、单纯形法和内点法等。
在这个例题中,我们使用单纯形法求解。
4. 求解过程首先,我们将约束条件转化为标准形式。
将不等式约束转化为等式,并引入松弛变量,得到以下等式约束:2x + 4y + s1 = 1003x + 2y + s2 = 90其中,s1和s2为松弛变量。
接下来,我们构建初始单纯形表格:基变量 | x | y | s1 | s2 | b |--------------------------------------s1 | 2 | 4 | 1 | 0 | 100 |s2 | 3 | 2 | 0 | 1 | 90 |--------------------------------------Z | -1000| -2000| 0 | 0 | 0 |其中,Z表示目标函数的系数,初始解为0。
我们选择最负的目标函数系数对应的列作为进入变量,即选择-2000对应的y列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲:阳永生
投资的收益和风险
一、问题提出
市场上有 n 种资产 s i (i=1,2,…,n)可以选择,现用数额为 M 的相当大的资金作一个 时期的投资.这 n 种资产在这一时期内购买 s i 的平均收益率为 ri ,风险损失率为 qi ,投资越分 散,总的风险越小,总体风险可用投资的 s i 中最大的一个风险来度量. 购买 s i 时要付交易费 (费率 pi ),当购买额不超过给定值 ui 时,交易费按购买 ui 计算.另 外,假定同期银行存款利率是 r0 ,既无交易费又无风险.( r0 =5%)已知 n=4 时相关数据如下:
由于a是任意给定的风险度,到底怎样给定没有一个准则,不同的投 资者有不同的风险度.我们从a=0开始,以步长△a=0.0.1-a)>1 c=[-0.05 -0.27 -0.19 -0.185 -0.185]; Aeq=[1 1.01 1.02 1.045 1.065]; beq=[1]; A=[0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0 0.026]; b=[a;a;a;a]; vlb=[0,0,0,0,0];vub=[]; [x,val]=linprog(c,A,b,Aeq,beq,vlb,vub); a x=x' Q=-val plot(a,Q,'.'),axis([0 0.1 0 0.5]),hold on a=a+0.001; end xlabel('a'),ylabel('Q')
n i 0
约束条件
(1 p ) x =M,
i 0 i i
n
xi≥0
i= 0,1,2,…,n
四、模型1的求解
模型 1 为: minf = (-0.05, -0.27, -0.19, -0.185, -0.185) (x0 x0 + 1.01x1 + 1.02x2 +1.045x3 +1.065x4 =1 0.025x1 ≤a 0.015x2 ≤a s.t. 0.055x3 ≤a 0.026x4≤a xi ≥0 (i = 0,1,…,4) x1 x2 x3 x4 )T
符号规定: Si ——第 i 种投资项目,如股票,债券 ri,pi,qi ----分别为 Si 的平均收益率, 交易费率,风险损失率 ui ----Si 的交易定额 r0 -------同期银行利率 xi -------投资项目 Si 的资金 a -----投资风险度 Q ----总体收益 Δ Q ----总体收益的增量
三、模型的建立与分析
3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规 划模型: 目标函数 max
n
(r p ) x
i i i 0
n
i
minmax{qixi } 约束条件
(1 p )x =M
i 0 i i
xi≥0
i=0,1,…,n
三、模型的建立与分析
4. 模型简化:
a. 在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限 a, 使最大的一个风险 qixi/M≤a,可找到相应的投资方案. 这样把多目标规 划变成一个目标的线性规划. 模型 1 固定风险水平,优化收益 目标函数: 约束条件: Q=max
基本假设和符号规定
基本假设: 1. 投资数额 M 相当大,为了便于计算,假设 M=1; 2.总体风险用投资项目 s i 中最大的一个风险来度量; 3.n 种资产 s i 之间是相互独立的; 4.在投资的这一时期内, ri,pi,qi,r0 为定值,不受意外因素影响; 5.净收益和总体风险只受 ri,pi,qi 影响,不受其他因素干扰.
qi xi M
(r p ) x
i 1 i i
n 1
i
≤a
i i
(1 p )x
M,
xi≥ 0
i=0,1,…, n
三、模型的建立与分析
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的情况下寻找相应 的投资组合. 模型 2 固定盈利水平,极小化风险 目标函数: R= min{max{ qixi}} 约束条件:
返 回
(r
i 0
n
i
p i ) x i ≥k,
i i
(1 p )x
M
, xi≥ 0
i=0,1,…,n
c.投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意 的投资组合.因此对风险、收益赋予权重 s(0<s≤1),s 称为投资偏好系数. 模型 3 目标函数:min s{max{qixi}} -(1-s) (ri p i ) x i
计算结果:
a a a a a a = = = = = = 0.0030 0.0060 0.0080 0.0100 0.0200 0.0400 x x x x x x = = = = = = 0.4949 0.1200 0.2000 0.0545 0.1154 Q = 0.1266 0 0.2400 0.4000 0.1091 0.2212 Q = 0.2019 0.0000 0.3200 0.5333 0.1271 0.0000 Q = 0.2112 0 0.4000 0.5843 0 0 Q =0.2190 0 0.8000 0.1882 0 0 Q =0.2518 0.0000 0.9901 0.0000 0 0 Q =0.2673
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即 max{ qixi|i=1,2,…,n}
2.购买 Si 所付交易费是一个分段函数,即 pixi xi>ui 交易费 = piui xi≤ui 而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
五、 结果分析 1.风险大,收益也大.
2.当投资越分散时,投资者承担的风险越小,这与题意一致.即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资 .
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险.对于不同风险的承受能力,选择该风险水平下的最优投资组合. 4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快.在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和 收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合, 大约是a*=0.6%,Q*=20% ,所对应投资方案为: 风险度 收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212
si
S1 S2 S3 S4
ri (%)
28 21 23 25
qi (%)
2.5 1.5 5.5 2.6
pi (%)
1 2 4.5 6.5
ui (元)
103 198 52 40
试给该公司设计一种投资组合方案,即用给定的资金 M,有选择地购买若干种资产或存 银行生息,使净收益尽可能大,使总体风险尽可能小.
返 回
实验作业
某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10 万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千 克,工人150名,又由于其他条件所限甲饮料产量不超过800箱.问如何安排生产计划 ,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划.