集合的表示方法

合集下载

集合的三种表示法

集合的三种表示法

集合的三种表示法:
1.列举法:列举法就是将集合的元素逐一列举出来的方式。

例如,光学中的三原色可以
用集合{红,绿,蓝}表示;由四个字母a, b, c, d组成的集合A可用A={a,b,c,d}表示,如此等等。

列举法还包括尽管集合的元素无法- -一列举,但可以将它们的变化规律表示出来的情况。

2.描述法:描述法的形式为{代表元素|满足的性质}。

设集合S是由具有某种性质P的元
素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合: S={x|P(x)}。

图像法,图像法,又称韦恩图法、韦氏图法,是一种利用二维平面.上的点集表示集合的方法。

一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。

3.符号法:有些集合可以用一些特殊符号表示,如: N: :非负整数集合或自然数集合
{0,1,2,3,.、Z:整数集合.-1,01,. Q:有理数集合、Q+: 正有理数集合、Q-: 负有理数集合、R:实数集合(包括有理数和无理数)。

1.1.2集合的表示方法

1.1.2集合的表示方法

x
像这样, 将集合元素满足的特征性质或者条件用形式 写出来 表示集合的方法,叫做描述法. 其中,大括号内竖线左边的 是集合的代表元素, 竖线右边的 是集合的元素 满足的特征性质或者条件.
例2 . 用描述法表示下列集合: (1)大于2的整数组成的集合; (2)不等式 x 2 3 的解集; (3)所有直角三角形组成的集合. 解: (1) a a 2, 且 a Z (2)x (3)
(5)在直角坐标系中,由第一象限所 有点组成的.
解:(1)小于5的有理数组成的集合为:x
(2) x 1 2 不等式 的解集为:
பைடு நூலகம்
x 5, 且 x Q
x
x 1, 且 x R 或写成
x
x 1
x x 2 n , n N (3)所有的正偶数组成的集合为:
§1.1.2 集合的表示方法
一、复习引入:
1.集合的概念
某些确定的对象组成一个整体。 2.集合中元素有那些性质? 确定性、互异性、无序性 3.空集、有限集和无 限集的概念 不含任何元素的集合叫做空集,含有有限个元素的集 合叫做有限集,含有无限个元素的集合叫做无限集。
一.集合的表示法
集合的表示方法,常用的有列举法和描述法。
A 与 b A 也可已写成: b A 有限集、无限集、空集( ) :
集合与元素的关系:a 有限集:元素个数是有限个的集合。 无限集:元素个数有无限个的集合。 空集 ( ) : 没有任何元素的集合。 集合的常用表示: 列举法 与 描述法
列举法: 将集合中的元素一一列举出来, 用一个大括号括起来表示集合的方法。


( x, y ) x 0, y 0 (5)第一象限所有点组成的集合为 :

集合的描述

集合的描述

集合的描述集合是数学中的一个基本概念,它是由一些特定元素组成的整体。

在集合论中,集合用大写字母表示,元素用小写字母表示。

一个元素是否属于一个集合,可以用符号∈表示,不属于则用符号∉表示。

集合的描述有多种形式。

一种常见的描述方法是列举法,即将集合中的元素一一列举出来。

例如,集合A={1,2,3,4,5}表示集合A由元素1、2、3、4、5组成。

这种描述方法适用于元素个数较少的集合。

另一种描述方法是陈述法,即通过一定的条件来描述集合中的元素。

例如,集合B={x|x是正整数,且x<10}表示集合B中的元素是满足条件"x是正整数,且x小于10"的数。

这种描述方法适用于元素个数较多的集合。

在集合中,元素的顺序是无关紧要的,也就是说集合中的元素是无序的。

同一个集合中的元素是互不相同的,即集合中不会出现重复的元素。

集合的运算包括并集、交集、差集和补集。

并集是指将两个集合中的所有元素合并在一起构成的集合。

交集是指两个集合中共有的元素构成的集合。

差集是指一个集合中去掉另一个集合中共有的元素后剩下的元素构成的集合。

补集是指在某个全集中,不属于给定集合的所有元素构成的集合。

集合的大小可以用基数来表示,即集合中元素的个数。

如果集合A 的基数为n,可以用符号|A|=n来表示。

集合还有一些特殊的类型,如空集和全集。

空集是不包含任何元素的集合,用符号∅表示。

全集是包含所有可能元素的集合,一般用符号U表示。

集合论在数学和其他领域有着广泛的应用。

在数学中,集合论是构建整个数学体系的基础。

在计算机科学中,集合论是构建数据结构和算法的基础。

在统计学和概率论中,集合论是描述随机事件和概率的基础。

在人工智能和机器学习中,集合论是描述数据和特征的基础。

集合是数学中非常重要的概念,它可以用来描述和处理各种各样的问题。

通过对集合的描述和运算,我们可以更好地理解和解决现实世界中的问题。

无论是在数学领域还是其他领域,集合论都有着重要的地位和作用。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单 1.列举法将集合中的元素____,写在____表示集合的方法. 2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法: ①文学语言形式:直线y=x 上所有的点构成的集合; ②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合: (1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合; (5)直角坐标系内第三象限的点组成的集合. [解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z xN x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

集合的使用方法

集合的使用方法

集合的使用方法
集合,是数学中的一个基本概念,可以用来描述几个元素的总体,一般表示为一个大括号内部用逗号分隔开的元素列表。

比如说,
{1,2,3,4,5}就是一个由5个数字构成的集合。

使用集合的方法包括:
1. 列出集合中的元素,用逗号隔开,并用大括号括起来表示。

2. 记号:如果一个元素x属于一个集合A,我们用符号x∈A表示。

如果一个元素y不属于集合A,我们用符号y∉A表示。

3. 集合的大小:一个集合中的元素个数叫做集合的大小。

比如说,{1,2,3,4,5}这个集合的大小就是5。

4. 集合的运算:常见的集合运算包括并集、交集、差集、对称差等。

a. 并集:两个集合A和B的并集是一个集合,其中的元素都属于A或B,用符号A∪B表示。

b. 交集:两个集合A和B的交集是一个集合,其中的元素都同时属于A和B,用符号A∩B表示。

c. 差集:两个集合A和B的差集是一个集合,其中的元素属于A 但不属于B,用符号A-B表示。

d. 对称差:两个集合A和B的对称差是一个集合,其中的元素要么属于A但不属于B,要么属于B但不属于A,用符号A△B表示。

以上就是集合的基本用法。

在实际应用中,集合常被用于数据的分类、运算和处理等方面。

集合的表示方法

集合的表示方法

重难点:集合的表示方法
集合的表示方法:
(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.用列举法表示
集合时,元素之间用逗号隔开.
例如:所有小于5的自然数组成的集合是{}4,3,2,1,0.
(2)描述法:把集合中元素的共同性质描述出来,写在大括号内表示集合的方法.它的一般形式是:{}p x x A 满足条件=.
例如:比-5大的实数组成的集合可表示为{}R x x x ∈->,5
有些集合既可以用列举法表示,也可以用描述法表示.
例如:所有小于5的自然数的集合,列举法可表示为{}4,3,2,1,0,描述法可表示为{}N x x x ∈<,5.
(3)Venn 图示法:用封闭曲线所围成的图形表示集合的方法.
历年真题:
1. (2015)用列举法表示“大于3且小于10的奇数的全体”构成的集合是()
A. ∅
B.{}9,7,5
C.{}8,6,4
D.{}9,8,7,6,5,4
2.(2016)用列举法表示“大于2且小于9的偶数的全体”构成的集合是()
A. ∅
B.{}8,6,4
C.{}7,5,3
D.{}8,7,6,5,4,3
3.(2017)用列举法表示“方程0652=+-x x 的所有解”构成的集合是()
A. {}2
B.∅
C.{}3
D.{}3,2。

集合的表示方法

集合的表示方法
优点 列举法 元素清晰明了 描述法 元素特征直观明确 缺点 需要一一列举 需要找出元素特征
例题

4.用适当的方法表示下列集合 (1)一年中有31天的月份构成的集合A (2)方程 -x=0的解集B (3)使分式 有意义的x的集合C (4)被3除余1的自然数组成的集合D (5)-2与4之间奇数的集合E (6)非负数的集合F (7)不大于0.5且大于-1的实数集合G (8)在平面直角坐标系内,坐标轴上到原点的距离 等于1的点的坐标组成的集合H
描述法
问:小于5的实数所组成的集合B中有哪些元素?
描述法——写出集合中元素所 共同具有的特征.
A={x | x满足的性质}.
例如:1.小于5的实数所组成的集合 2.使x-7<3的解的集合(解集)
归纳
集合的两种表示方法:
பைடு நூலகம்
1.列举法:元素一一列举 1.描述法:无法一一列举,描述其特征性质 各自的优缺点:
列举法
学校为了丰富学生的课余生活开设了5个兴趣小组:
足球、摄影、围棋、民乐、书法
如果用M来表示这五个兴趣小组的集合,并将 兴趣小组一一列出来,写在大括号内,
M={足球,摄影,围棋,民乐,书法}
列举法——把集合中的元素一一列举出来,并且 写在大括号内的表示集合的方法。
例如:24的所有正因数构成的集合
课堂练习
1.1(2)1、2、3
作业
习题册P2
习题1.1(2)A组/1、2、3、4、5

集合的表示方法

集合的表示方法
, 用描述法表示为
(3) 小于 8 的素数组成的集合 ;
(4) 一次函数 = + 3 与 = −2 + 6 的图象的交点组成的集合 。
9. 用描述法表示下列集合:
(1) 函数 = −22 + 图象上的所有点组成的集合;
(2) 不等式 2 − 3 < 5 的解组成的集合;
讲义模板
C. { = 2, = 3}
第2页
共2页
D. (2, 3)
(3) 方程组 {
2 + = 8
− = 1
的解组成的集合;
(4) 15 的正约数组成的集合 .
8. 用列举法表示下列集合:
(1) 大于 1 且小于 6 的整数组成的集合 ;
(2) 方程 2 − 9 = 0 的实数根组成的集合 ;
讲义模板
第1页
共2页
D. {1, 2, 3, 4, 5}
D. = {2, 3} , = {(2, 3)}
15. 已知集合 = {4, }, = {2, }, 若 和 的元素相同, 则 + =
16. 将集合 { (, ) ∣ {
A. {2, 3}
+ = 5
2 3)}
取值范围;
(2) 已知集合 = { ∈ |2 − 2 + 3 = 0, ∈ } , 若 中元素恰有一个, 求 的取值
范围;
(3) 已知集合 = { ∈ |2 − 2 + 3 = 0, ∈ } , 若 中元素至少有一个, 求 的取
值范围。
四. 跟踪训练, 巩固双基
(1) 一个集合可以表示为 {, , , }
(
)
(2) 集合 { 5, 8} 和 {( 5, 8)} 表示同一个集合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习
下列说法: (1)集合{x∈N|x =x}用列举法表示为{-1,0,1}; (2)实数集可以表示为{x|x 为所有实数}或{R}; x+y=3 (3)方程组 x-y=-1 其中正确的有( A.3 个 C.1 个 ) B.2 个 D .0 个 的解集为{x=1,y=2}.
3
【分析】对于用描述法表示集合,一清楚符号“{x|x的属
它表示集合A是由集合I中具有性质p(x)的所有元素构成的.
这种表示集合的方法,叫做特征性质描述法,简称描述法.
大于3小于10的实数组成的集合可表示为:
{ x∈R 3< x<10 }
所有元素所共有 代表元素 的“特征性质”
注意:在不致发生误解时,x的取值集合可以省略不写. 例如,在实数集R中取值“∈R”常常省略不写,像上述 集合也可以写作{x|3<x<10}.
PA=PB
于是这个集合可以表示为
{点P∈平面 a |PA=PB}.
技巧点拨:使用描述法时,还应注意以下几点:
①写清集合中代表元素的符号,如实数或实数对或点的坐 标表示; ②说明该集合中元素具有的特征性质,如方程、不等式、 函数或几何图形等;
③描述法的语言形式主要有两种:文字语言和符号语言,
如表示直角坐标轴上的点的集合. 文字语言:{点P|P是直角坐标轴上的点}; 符号语言:{(x,y)|xy=0}.
练习:用描述法表示下列给定的集合: (1)不等式4x-5 < 3的解集.
{ x | x2 }
(2)二次函数y=x2-4的函数值组成的集合.
{ y | y 4 }
(3)反比例函数 y
{ x | x0 } (4)不等式 3x 4 2 x 的解集. 4 { x | x } 5
2 的自变量的值组成的集合. x
括起来表示集合的方法叫做列举法. 思考2 怎样用列举法来表示“由大于3小于
}”
10的整数组成的集合”? 解答:{4,5,6,7,8,9}.
列举法的优点与适应范围: (1)优点:可以明确集合中具体的元素 及元素的个数. (2)使用列举法必须注意:
①元素间用“,”分隔.
②集合中的元素必须满足三个特性. ③元素不能遗漏. ④适用范围: ⅰ.含有有限个元素且个数较少的集合.
1.1.2 集合的表示方法
学习目标
1、知识目标:使学生掌握常用的集合表示方法,能选择自 然语言、图形语言、集合语言(列举法或描述法)描述不 同的具体问题; 2、能力目标:提高学生运用数学语言的能力,感受集合语
言的意义和作用,学习从数学的角度认识世界;
3、情感目标:通过合作学习,培养学生的合作精神.
x+y=3 (3)方程组 x-y=-1
的解是有序实数对,而集合
{x=1,y=2}表示由两个等式组成的集合,方程组的解 x=1 集正确的表示应为{(1,2)}或{(x,y)| y=2 D. } .故选
拓展探究
集合{(x,y)|y = x 2 +1}与集合{y|y = x 2 +1}以及 {x|y = x 2 +1}是同一集合吗?
(2)这个集合的一个特征性质可以描述为
x>3,且x=2n,n∈N. 于是这个集合可以表示为 {x|x>3,且x=2n,n∈N}.
(3)设点P为线段AB的垂直平分线上任一 点,点P和线段AB都在平面 a 内,则这 个集合的特征性质可以描述为
在几何中, 通常用大写 字母表示点 (元素),用 小写字母表 示点的集合, 应注意区别.
数集、点集还是其他的类型.描述法多用于元素个数无
限的集合.
练习
3.用适当的方法表示下列集合:
y=x (1)二元二次方程组 2 y=x
的集合;
(2)大于 4 的全体奇数组成的集合; (3)A={(x,y)|x+y=3,x∈N,y∈N}; (4)一次函数 y=2x+1 图象上所有点组成的集合.
例3 用适当的方法表示下列集合: (1)比4大2的数; (2)方程x2+y2-4x+6y+13=0的解集; (3)不等式x-2>3的解的集合; (4)二次函数y=x2-1图象上所有点组成的集合.
分析:由题目可获取以下主要信息: ①已知4个集合; ②用适当的方法表示各个集合.对于(1),比4大2的数就
例2 用描述法表示下列集合: (1){-1,1}; (2)大于3的全体偶数构成的集合; (3)在平面 a 内,线段AB的垂直平分线. 分析:对于用描述法表示的集合,要从本质上去认识它, 看清集合的“代表元素”,判断出我们要研究的集合元 素所共有的“特征性质”.
解: (1) 这个集合的一个特征性质可以描述为绝对值等于 1的实数,即|x|=1于是这个集合可以表示为 {x||x|=1}.
解:他们是不同的集合. 集合 {(x,y)|y = x 2 +1} 是点集, 集合 {y|y = x 2 +1}与{x|y = x 2 +1} 是数集, 而集合 {y|y = x 2 +1}与{x|y = x 2 +1}的代表元素又是不一样的, 实际上前者可看成抛物线y = x 2 +1所有点的横坐标构成的集合, 后者是抛物线y = x 2 +1所有点的纵坐标组成的集合.
思考3
能不能用列举法表示“由大于3小于10的实数组成
的集合”? 解答:我们不能用列举法来表示大于3小于10的实数组成 的集合,因为这个集合的元素是列举不完的,而元素的排 列又不呈现明显的规律.
对于元素较多的集合或者根本就不能将元素一一列举的 集合用“描述法”来表示就显得简洁明了。
什么是描述法呢? 一般地,如果在集合I中,属于集合A的任意一个元素x都 具有性质p(x),而不属于集合A的元素都不具有性质p (x), 则性质p (x)叫做集合A的一个特征性质.于是,集合A可以 用它的特征性质p (x)描述为 {x∈I|p (x)}
}”已包含“所有”的意思,
因而大括号内的文字描述,不应该再用“全体”, “全部”,“所有”或“集”等词语.
例1 用列举法表示下列集合: (1)A={x∈N|0<x≤5 } ; (2)B={x |x2-5x+6 =0}. [分析]对于(1)集合A中“x∈N”且“0<x ≤5”共同限制了
集合元素的属性,而(2)中所求的也即是方程的解集,
是6,宜用列举法;对于(2),方程为二元二次方程,可将
方程左边因式分解后求解,宜用列举法;对于(3),不等 式的解有无数个,宜采用描述法;对于(4),所给二次函 数图象上的点有无数个,宜采用描述法.
解:(1)比4大2的数显然是6,故可表示为{6}. (2)方程x2+y2-4x+6y+13=0可化为 (x-2)2+(y+3)2=0,
解方程即得. 解:(1)A={1,2,3,4,5}; (2)B={2,3}.
练习:用列举法表示下列集合: (1)由x2-9=0方程的所有实数根组成的集合.
{3, 3}
(2)由小于8的所有素数组成的集合.
{2,3,5,7}
(3)一次函数y=x+3与y=-2x+6的图象的交点组成的集合.
{(1,4)}
x = 2 x = 2 , ∴方程的解集为{ y = -3 y = -3

}或{(2,-3)}.
(3)由x-2>3,得x>5.
故不等式的解集为{x|x>5}.
(4)“二次函数y=x2-1的图象上的点”用描述法 表示为{(x,y)|y=x2-1}.
规律总结:用什么方法表示集合,要具体问题具体分析: (1)列举法对于元素较少的集合可以一目了然,方便快 捷,但元素较多时就不太方便了. (2)用描述法表示集合,首先应弄清楚集合的类型,是
1、用列举法表示集合的注意事项及适用范围:适合有限 集,元素逐一列举在“{ }”内.
2、用描述法表示集合的注意事项及适应范围:适合无限
集,{x|x的特征性质}. 关注两方面:代表元素(是点还是数还是其他). 所有元素所共有的特征性质如何表示.
描述法的一般形式为: { x∈I|p(x)}
x为该集合 的代表元素
p(x)表示该集
合中的元素x
所具有的性质
使用描述法必须注意: ①写清该集合中元素的代表符号; ②准确说明该集合中元素的特征; ③应对代表元素与“或”;
⑤所有描述的内容都要写在“{ ⑥集合符号“{ }”内;
性}”表示的是所有具有某种属性的x的全体,而不是部分; 二从代表元素入手,弄清楚代表元素是什么. 解:(1)由x3=x,即x(x2-1)=0,得x=0或x=1或x=-1, 因为-1∉ N,故集合{x∈N|x3=x}用列举法表示为{0,1}.
(2)集合表示中的符号“{
}”已包含“所有”、“全体”
等含义,而符号“R” 表示所有的实数构成的集合,实数集 正确的表示应为{x|x为实数}或R.
ⅱ.有些集合的元素较多,元素的排列又呈现
一定的规律,在不致于发生误解的情况下,也可以列出 几个元素作为代表,其他元素用省略号表示. 例如:不大于100的自然数构成的集合可表示为 {0,1,2,3,„,100} ⅲ.无限集有时也可用上述的列举法表示. 例如:自然数集N可表示为{0,1,2,3,„,n,„}.
引入新课
前面我们学过,可以用自然语言
描述一个集合,也可以用一个 “{ }”来表示一个集合,元素
之间用逗号隔开,那表示一个集
合具体有哪些方法呢?这一节课 我们就来研究!
思考1
怎样表示“方程x2-5x=0 在实数内解的全体”
组成的集合C? 解答:可以这样表示:C={0,5}.
像这样把集合的元素一一列举出来,并用花括号“{
解:(1)列举法:{(0,0),(1,1)}; (2)描述法:{x|x=2k+1,k≥2,k∈N}; (3)列举法:因为 x∈N,y∈N,x+y=3, x=0 所以 y=3
相关文档
最新文档