集合的三种表示方法

合集下载

集合的三种表示法

集合的三种表示法

集合的三种表示法:
1.列举法:列举法就是将集合的元素逐一列举出来的方式。

例如,光学中的三原色可以
用集合{红,绿,蓝}表示;由四个字母a, b, c, d组成的集合A可用A={a,b,c,d}表示,如此等等。

列举法还包括尽管集合的元素无法- -一列举,但可以将它们的变化规律表示出来的情况。

2.描述法:描述法的形式为{代表元素|满足的性质}。

设集合S是由具有某种性质P的元
素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合: S={x|P(x)}。

图像法,图像法,又称韦恩图法、韦氏图法,是一种利用二维平面.上的点集表示集合的方法。

一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。

3.符号法:有些集合可以用一些特殊符号表示,如: N: :非负整数集合或自然数集合
{0,1,2,3,.、Z:整数集合.-1,01,. Q:有理数集合、Q+: 正有理数集合、Q-: 负有理数集合、R:实数集合(包括有理数和无理数)。

1.集合及其表示

1.集合及其表示

集合及其表示知识要点1.集合概念(1)我们常常把能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。

集合中的各个对象叫做这个结合的元素。

集合常用大写字母A ,B ,C ……表示,集合中的元素用小写字母a b c ⋅⋅⋅、、表示。

例如:a 是集合A 中元素,记作a A ∈,a 不是A 中元素,记作a A ∉,分别读作“a 属于A ”,“a 不属于A ”。

(2)集合的分类:有限集、无限集和空集。

空集记作∅。

(3)特殊集合的表示:自然数:N ;不包括零的自然数:N *;整数:Z ;有理数:Q ;实数:R 。

2.集合的表示法(1)列举法:将集合中的元素一一列举出来(列举时不考虑元素的顺序)并且写在大括号内,这种表示集合的方法叫列举法。

(补充:比较适合个数较少的有限集)(2)描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所具有的共同特性,即{}A x x P =∈,这中表示集合的方法叫做描述法。

(3)图示法:用图形围成的区域来表示集合的方法叫做集合的图示法,通常用圆及圆内部表示集合。

3.集合元素的性质:确定性、互异性、无序性。

4.集合之间的关系(1)子集及子集相关定义:对于两个集合A 和B ,如果A 中任何一个元素都属于B ,那么集合A 叫做集合B 的子集。

记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”。

我们规定∅是任何集合的子集。

对于集合A 、B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A B 或B A ,读作“A 真包含于B ”或“B 真包含A ”。

(2)相等的集合:两个集合A 、B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A=B 。

精选例题例1、 用适当的符号;;;;≠≠∈⊂∉=⊃填空. 3.14_______;Q {}0______0; ________;N ∅________;Z N +* 0________∅ 2;Q________;Q π {}2_______;-偶数 {}{}1________-奇数0.3_______;Q {}1________;质数{}{}21,_______21,x x k k Z t t k k Z =-∈=+∈ {}2_______20,;x x x R ∅+=∈{}{}24,_________,y y x x R z z x x R =∈=∈ 例2、用适当的方法表示下列集合:(1) 关于x 的不等式||5x <的整数的解集;(2) 所有奇数构成的集合;(3) 方程0)2)(1(22=---x x x 的解的集合;(4) 直角坐标平面上所有第三象限的点;(5) 函数3y x =- 的所有函数值组成的集合。

湖南省中职学校数学学业水平考试知识点总结

湖南省中职学校数学学业水平考试知识点总结

湖南省中职学校数学学业水平考试知识点总结第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(Vens 图)。

注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑φ是否满足题意)(2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合 (2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:B C A C B A C U U U =)( B C A C B A C U U U =)(第二章 不等式1.如何解一元二次不等式(或<0(a 0))①把所有前的系数都变成正的(不用是1,但是得是正的)②令解方程(ab x ac b 2,42∆±-=-=∆求根:)③画数轴,在数轴上从小到大依次标出所有根④画出抛物线,根据图像按照“大于取两边,小于取中间”得到不等式的解。

注:看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根2.充要条件(小范围推大范围)条件p 结论q 充分条件条件p 结论q 必要条件3.区间与集合互化(小括号无等号、数轴上是空心点大括号有等号,数轴上是实心点)4.含绝对值的不等式(第三章函数1.函数的定义域的求法:①f(x)是整式时,定义域是全体实数。

1.2集合的表示法

1.2集合的表示法

1.2
(3)图示法
集合的表示方法
1,2,3,4
指南针,活字印刷术, 火药,造纸术
1.2
集合的表示方法
例1:由方程x2 -1=0的解的全体构成的集合, 可表示为
(1)列举法:{1,-1}。 (2)描述法:{x|x2 -1=0,x∈R} (3)图示法:如下
1,-1
1.2
集合的表示方法
有限集:含有有限个元素的集合,叫做有 限集。{1,2,3,4}
1.4.2
例1:
并集
已知:A={1,2,3,4},B={3,4,5,6, 7},求A∪B。 解:A∪B={1,2,3,4} ∪{3,4,5,6,7} ={1,2,3,4,5,6,7}
1.4.2
例2:
并集
已知N={自然数},Z={整数},求N∪Z。
解:N∪Z={自然数} ∪{整数}={整数}
1.4.1
复习
交集
1、交集的概念和表示方法 2、交集的性质
1.4.1
作业
1.4.1 课后作业
交集
1.4.2
并集
引入 观察下列集合A,B,C有怎样的关系? A={2,4,6},B={4,8,12}, C={2,4,6,8,12}
容易看出来,集合C中的元素是由集合A和 集合B中的元素合并在一起构成的
1.5 充分条件与必要条件
例如: (1)如果四边形ABCD是正方形,则这个 四边形的四条边相等。 我们可以把这个命题写为: p:四边形ABCD为正方形,q:四边形的 四条边相等。 那么:p是q的充分条件,q是p的必要条件。
1.5 充分条件与必要条件
(2)如果x-1=0,那么x2-1=0。 分析:由x-1=0推出x2-1=0是正确的。 我们可以把命题写成: p: x-1=0,q: x2-1=0 则有:p是q的充分条件,q是p的必要条 件。

(新教案)集合的表示方法

(新教案)集合的表示方法

教师活动学生活动设计意图元素的集合集合当然也可以用图示法表示。

例1:用适当的方法表示下列集合⑴由24与30的所有公约数组成的集合答:{1,2,3,4}⑵大于10的所有自然数组成的集合答:{x│x>10,x∈N}⑶所有正偶数组成的集合答:{x│x=2n,n∈N*}直角坐标系中,第二象限内的点构成的集合答:{(x,y)│x<0.y>0}抛物线y=x2上的所有点组成的集合{(x,y)│y=x2}(二)各种表示法的适用范围它们各有优点.用什么方法来表示集合,要具体问题具体分析.(l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:①列举法:;②描述法:;③图示法:如图1。

(2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:①描述法:;②图示法:如图2.(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:①集合中的元素是,它表示函数中自变量的取值范围,即;②集合中的元素是,它表示函数值。

的取值范围,即;③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;学生回答问题加深对概念的巩固和应用④集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合.实际上,这是四个完全不同的集合.列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.例2:把下列集合用另一种方法表示出来 1.{x │x 2-x-6=0}2.{y │y= x 2-x-6,x ∈R} 3.{(x,y)│y= x 2-x-6,x ∈R }4.{(x,y)│x+y=5,x ∈N*,y ∈N* } 分析:(1)-2,3(2)代表元素是y ,这个集合是当x 取任意实数时,二次函数y= x 2-x-6的所有函数值的集合。

集合的概念与表示方法

集合的概念与表示方法

集合的概念与表示方法集合是数学中一个基本概念,它是将具有共同特征的对象组合在一起形成的整体。

在实际生活中,我们经常会接触到各种各样的集合,比如家庭成员的集合、学生的集合、数字的集合等等。

本文将介绍集合的概念以及常见的表示方法。

一、集合的概念集合是由一些元素组成的整体,这些元素可以是任何事物,可以是数字、字母、符号或者其他对象。

集合中的元素没有顺序之分,每个元素只能出现一次。

集合可以用大括号{}括起来表示,元素之间用逗号隔开。

例如,集合{1, 2, 3, 4, 5}表示由数字1、2、3、4、5组成的集合。

集合的表示还可以使用描述法或特征法。

描述法是通过描述集合的元素属性或条件来表示集合。

例如,表示由奇数组成的集合可以写为{ x | x∈N, x是奇数 },其中符号“|”表示“属于”,“∈”表示“是集合”的元素,N表示自然数集。

特征法是通过列举出集合的元素来表示集合。

例如,表示由元音字母组成的集合可以写为{ a, e, i, o, u }。

二、集合的表示方法在数学中,常见的集合表示方法包括列表法、描述法、数学公式表示法等。

1. 列表法列表法是一种简单直观的表示方法,在其中直接列举出集合的元素。

例如,表示所有人的集合可以写为{ 张三, 李四, 王五 },表示由自然数组成的集合可以写为{ 1, 2, 3, ... }。

2. 描述法描述法是通过描述集合中元素的特征或满足的条件来表示集合。

例如,表示大于0且小于10的整数集合可以写为{ x | 0 < x < 10 },表示由英文字母组成的集合可以写为{ x | x 是英文字母 }。

3. 数学公式表示法数学公式表示法是一种更具抽象性的表示方法,可以用数学符号和公式来表示集合。

例如,表示由数字1和2组成的集合可以写为{ x ∈N | x ≤ 2 },表示由正整数构成的集合可以写为{ x ∈ Z+ | x > 0 }。

三、集合的运算在集合论中,还存在着一些常见的集合运算,包括并集、交集、补集和差集。

集合的使用方法

集合的使用方法

集合的使用方法
集合,是数学中的一个基本概念,可以用来描述几个元素的总体,一般表示为一个大括号内部用逗号分隔开的元素列表。

比如说,
{1,2,3,4,5}就是一个由5个数字构成的集合。

使用集合的方法包括:
1. 列出集合中的元素,用逗号隔开,并用大括号括起来表示。

2. 记号:如果一个元素x属于一个集合A,我们用符号x∈A表示。

如果一个元素y不属于集合A,我们用符号y∉A表示。

3. 集合的大小:一个集合中的元素个数叫做集合的大小。

比如说,{1,2,3,4,5}这个集合的大小就是5。

4. 集合的运算:常见的集合运算包括并集、交集、差集、对称差等。

a. 并集:两个集合A和B的并集是一个集合,其中的元素都属于A或B,用符号A∪B表示。

b. 交集:两个集合A和B的交集是一个集合,其中的元素都同时属于A和B,用符号A∩B表示。

c. 差集:两个集合A和B的差集是一个集合,其中的元素属于A 但不属于B,用符号A-B表示。

d. 对称差:两个集合A和B的对称差是一个集合,其中的元素要么属于A但不属于B,要么属于B但不属于A,用符号A△B表示。

以上就是集合的基本用法。

在实际应用中,集合常被用于数据的分类、运算和处理等方面。

集合的表示方法

集合的表示方法
集合的表示方法
• 集合的表示方法
(1)列举法
把集合的元素一一列举出来,并用花括号 “{ }”括起来表示集合的方法叫做列举法.
例1: “地球上的四大洋”组成的集合表示为: {太平洋,特征表示集合的方法称为 描述法.
• 具体方法:在花括号内先写上表示这个集合元素的 一般符号及取值(或变化)范围,再画一条竖线, 在竖线后写出这个集合中元素所具有的共同特征.
• 例2
• 课堂小结
1、集合的有关概念: (元素,集合,属于,不属于,有限集,无限集, 空集) 2、集合的两种表示方法: (列举法,描述法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3、这类题目一般用于填空题述法用的 较多)
课后练习

P7 1、2、4
(1)列举法:{-1,1}
(2)描述法:{x|x*x-1=0,x ∈R}。

3者区别
• 1、当集合的元素为有限个时,这3种方法都适用。 但当元素为无限个,只能用描述法了。注意即使 在有限个的情况,元素个数太多,最好也是用描 述法表示,这样可以节省解题时间。
• 2、文恩图与列举法类似,但这在这3种方法之中, 运用文恩图,更加形象直观。
• 举例:所有奇数的集合可表示为: E={x∈Z|x=2k+1,k ∈Z}
3、文恩图
• 含义:将集合的元素一一写入椭圆中的几何方法。 • 举例:“中国的直辖市”
上海,北京,重庆,天津
“young”中的字母
y,o,u,n,g
归纳总结
• 其实一个集合可用多个不同的表示方法
例如,由方程x*x-1=0所有的实数解构成的集 合,可以为下列形式。
1、列举法
• 含义:把集合中的元素一一列举出来,并用花括号
“{}”括起来表示集合的方法.
• 举例:(1)“地球上的四大洋”组成的集合可用
列举法表示为:A={太平洋,大西洋,印度洋,北 冰洋}。这里加以补充元素的无序性。即如果B={大 西洋,太平洋,北冰洋,印度洋},A,B集合里元素 完全相同,可说这两个集合相等。从这个例子中我 们也可以看出集合的无序性。
(2)“young中的字母”构成一个集合可用 列举法表示为:{ y,o,u,n,g}。
2、描述法
• 含义:用集合所含元素的共同特征表示集合的方
法。 • 具体方法:在花括号内先写上表示这个集合元素
的一般符号及取值(或变化)范围,再画一条竖 线,在竖线后写出这个集合中元素所具有的共同 特征。形如:{ x| p(x)}
集合的三种表示方法
——数科院08级1班姜璐璐 06080137
回顾上节
• 1、集合的含义: 一般地,一定范围内某些确定
的、不同的对象的全体构成一个集合。集合中的每 一个对象称之该集合的元素,简称元。
• 2、元素的3个特征: ① 确定性 ② 唯一性 ③ 无序性
集合的3种表示方法
1、列举法 2、描述法 3、文恩图
相关文档
最新文档