集合的表示方法

合集下载

集合的表示与分类

集合的表示与分类

集合的表示与分类一、引言集合是数学中的基本概念之一,它在各个学科和日常生活中都有着广泛的应用。

准确地表示和分类集合是我们研究和理解集合的重要基础。

本文将介绍集合的表示方法和分类方式。

二、集合的表示方法1. 列举法列举法是最直观、最简单的表示集合的方法。

通过将集合中的元素逐个罗列出来,用花括号{}括起来表示集合。

例如,集合A={1,2,3,4,5}表示A是包含元素1、2、3、4、5的集合。

2. 描述法描述法是通过给出集合中的元素满足的特定条件来表示集合。

一般形式为{元素 | 元素满足的条件}。

例如,集合B={x | x是正整数且x<10}表示B是包含所有小于10的正整数的集合。

3. 通用集合符号除了列举法和描述法外,通用集合符号也是表示集合的常用方法。

常见的通用集合符号有:- 空集符号:∅,表示一个不包含任何元素的集合。

- 元素属于符号:∈,表示一个元素属于某个集合。

- 元素不属于符号:∉,表示一个元素不属于某个集合。

- 子集符号:⊆,表示一个集合是另一个集合的子集。

- 真子集符号:⊂,表示一个集合是另一个集合的真子集。

三、集合的分类方式1. 有限集与无限集根据元素的个数,集合可以分为有限集和无限集。

有限集是元素个数有限的集合,例如{1,2,3,4,5};无限集是元素个数无限的集合,例如正整数集合。

2. 空集与非空集根据元素的存在情况,集合可以分为空集和非空集。

空集是不包含任何元素的集合,用符号∅表示;非空集是至少包含一个元素的集合。

3. 包含集与被包含集根据集合之间的包含关系,集合可以分为包含集和被包含集。

如果集合A中的每个元素都是集合B中的元素,则可以称集合B是集合A 的包含集,集合A是集合B的被包含集。

4. 相等集与不相等集根据集合之间的相等关系,集合可以分为相等集和不相等集。

如果两个集合中的元素完全相同,则这两个集合相等;否则,这两个集合不相等。

四、结论本文介绍了集合的表示方法和分类方式。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单 1.列举法将集合中的元素____,写在____表示集合的方法. 2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法: ①文学语言形式:直线y=x 上所有的点构成的集合; ②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合: (1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合; (5)直角坐标系内第三象限的点组成的集合. [解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z xN x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单1.列举法将集合中的元素____,写在____表示集合的方法.2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法:①文学语言形式:直线y=x 上所有的点构成的集合;②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合:(1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合;(5)直角坐标系内第三象限的点组成的集合.[解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z x N x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

集合的使用方法

集合的使用方法

集合的使用方法
集合,是数学中的一个基本概念,可以用来描述几个元素的总体,一般表示为一个大括号内部用逗号分隔开的元素列表。

比如说,
{1,2,3,4,5}就是一个由5个数字构成的集合。

使用集合的方法包括:
1. 列出集合中的元素,用逗号隔开,并用大括号括起来表示。

2. 记号:如果一个元素x属于一个集合A,我们用符号x∈A表示。

如果一个元素y不属于集合A,我们用符号y∉A表示。

3. 集合的大小:一个集合中的元素个数叫做集合的大小。

比如说,{1,2,3,4,5}这个集合的大小就是5。

4. 集合的运算:常见的集合运算包括并集、交集、差集、对称差等。

a. 并集:两个集合A和B的并集是一个集合,其中的元素都属于A或B,用符号A∪B表示。

b. 交集:两个集合A和B的交集是一个集合,其中的元素都同时属于A和B,用符号A∩B表示。

c. 差集:两个集合A和B的差集是一个集合,其中的元素属于A 但不属于B,用符号A-B表示。

d. 对称差:两个集合A和B的对称差是一个集合,其中的元素要么属于A但不属于B,要么属于B但不属于A,用符号A△B表示。

以上就是集合的基本用法。

在实际应用中,集合常被用于数据的分类、运算和处理等方面。

集合的表示方法

集合的表示方法

1.1.2集合的表示方法学习目标:1、掌握集合的表示方法,集合的表示方法(字母表示、列举法、描述法、文氏图共4种)2、用列举法、描述法表示一个集合.知识要点:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.(5)能不能表示无限集?(只能表示存在规律的集合){0,2,4,6,8,}A n =3、特征性质描述法:在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:{x ∈I | p (x ) }例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.① {(,)x y y =中的元素是点。

满足条件的二元方程的解集,是成对出现的。

② {x y = {y y = {y 表示单元素集合,方程的解。

4、维恩(Venn)图(文氏图):用一条封闭的曲线的内部来表示一个集合.学习中应注意的问题:①注意a 与{}a 的区别,②注意Φ与{0}的区别, {0}是含有0一个元素的集合。

集合的表示方法

集合的表示方法

重难点:集合的表示方法
集合的表示方法:
(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.用列举法表示
集合时,元素之间用逗号隔开.
例如:所有小于5的自然数组成的集合是{}4,3,2,1,0.
(2)描述法:把集合中元素的共同性质描述出来,写在大括号内表示集合的方法.它的一般形式是:{}p x x A 满足条件=.
例如:比-5大的实数组成的集合可表示为{}R x x x ∈->,5
有些集合既可以用列举法表示,也可以用描述法表示.
例如:所有小于5的自然数的集合,列举法可表示为{}4,3,2,1,0,描述法可表示为{}N x x x ∈<,5.
(3)Venn 图示法:用封闭曲线所围成的图形表示集合的方法.
历年真题:
1. (2015)用列举法表示“大于3且小于10的奇数的全体”构成的集合是()
A. ∅
B.{}9,7,5
C.{}8,6,4
D.{}9,8,7,6,5,4
2.(2016)用列举法表示“大于2且小于9的偶数的全体”构成的集合是()
A. ∅
B.{}8,6,4
C.{}7,5,3
D.{}8,7,6,5,4,3
3.(2017)用列举法表示“方程0652=+-x x 的所有解”构成的集合是()
A. {}2
B.∅
C.{}3
D.{}3,2。

集合的表示方法

集合的表示方法
优点 列举法 元素清晰明了 描述法 元素特征直观明确 缺点 需要一一列举 需要找出元素特征
例题

4.用适当的方法表示下列集合 (1)一年中有31天的月份构成的集合A (2)方程 -x=0的解集B (3)使分式 有意义的x的集合C (4)被3除余1的自然数组成的集合D (5)-2与4之间奇数的集合E (6)非负数的集合F (7)不大于0.5且大于-1的实数集合G (8)在平面直角坐标系内,坐标轴上到原点的距离 等于1的点的坐标组成的集合H
描述法
问:小于5的实数所组成的集合B中有哪些元素?
描述法——写出集合中元素所 共同具有的特征.
A={x | x满足的性质}.
例如:1.小于5的实数所组成的集合 2.使x-7<3的解的集合(解集)
归纳
集合的两种表示方法:
பைடு நூலகம்
1.列举法:元素一一列举 1.描述法:无法一一列举,描述其特征性质 各自的优缺点:
列举法
学校为了丰富学生的课余生活开设了5个兴趣小组:
足球、摄影、围棋、民乐、书法
如果用M来表示这五个兴趣小组的集合,并将 兴趣小组一一列出来,写在大括号内,
M={足球,摄影,围棋,民乐,书法}
列举法——把集合中的元素一一列举出来,并且 写在大括号内的表示集合的方法。
例如:24的所有正因数构成的集合
课堂练习
1.1(2)1、2、3
作业
习题册P2
习题1.1(2)A组/1、2、3、4、5

1.1.2集合的表示方法

1.1.2集合的表示方法

(x, y) x 0, y 0
例如,所有偶数组成的集合(偶 数集)用列举法表示成:
{…-6,-4,-2,0,2,4,6,…} 用描述法表示成: {n︱n=2m,m∈Z}

简洁地表示成: {2m︱m∈Z}
思考:所有的奇数组成的集合 (偶数集)用列举法表示成?

用描述法表示成?
课后作业: 第8页习题A,B组题
在不发生误解的情况下,可以采用省略的写法.

例如,小于100的自然数集可以表示为: 0, 1, 2, , 99
例1 学校的商店进了两批货,第一批有毛巾、洗衣 粉、饮用纯净水、果汁饮料和面包,共计5个品种.
第二批有饮用纯净水、果汁饮料、膨化食品及牙膏,
共计4个品种.试用列举法分别写出两批进货品种所
M x A P( x) .


例如,不大于5的自然数组成的集合,用描述法表示 为x N Nhomakorabeax5

用描述法表示以下集合:

数轴上所有坐标不小于0,不大于2的点所组成
的集合.
⑵ 解
直角坐标平面第一象限内所有点组成的集合. 如图2-1所示

(1 ) x 0 x 2 (2 )


图 2-1
组成的集合.
解 则

A2 表示. 设第一、二批进货品种的集合分别用 A1、
A1 ={毛巾,洗衣粉,饮用纯净水,果汁饮料,面包},
A2 ={饮用纯净水,果汁饮料,膨化食品,牙膏}.
思考: 用列举法表示下列集合: (1)由1~20以内的所有质数 组成的集合; (2)方程x-5=0的所有解 组成的集合; (3)小于100的所有自然数 组成的集合。
集合的表示法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 写出不等式2x+3<15的所有自然数的解构成 的集合. 解 {0,1,2,3,4,5,6,7,8}.
动脑思考,探索新知
注意:
1.用列举法表示集合时,不必考虑元素的前后次序,要注 意不重不漏.例如,{1,2}与{2,1}表示同一个集合.
2.区分a与{a}:{a}表示一个集合,该集合只有一个元 素.a表示这个集合的一个元素.
用描述法表示的集合一般记为A={xU|p}.
巩固知识,典型例题
例2 用描述法表示下列集合: (1)不等式2x-1<x+6的解集; (2)小于4的全体有理数.
解 (1)A={xR|x<7}; (2)B={xQ|x<4}.
应用知识,强化练习
教材练习1.1.2
2. 用描述法表示下列各集合: (1)所有的直角三角形; (2)直线y=2x+1上的点; (3)不等式x2-5x<6的解集; (4)所有的正奇数.
这个集合中的元素无法一一列举出来,不能 用列举法表示.但这个集合中的元素都具有明显 的特征:都是实数且小于6.
我们可以表示成{xR|x<6}.
动脑思考,探索新知
大括号竖线左边x表示这个集合的任一元素, 并标出元素的取值范围U.在竖线的右边写出只有 集合内的元素x才具有的特征性质p.这种用集合的 特征性质表示集合的方法叫做描述法.
阅读 教材章节1.1.2 书写 练习册 第2、3、4题 实践 用列举法和描述法表示一些集合
再见
3.列举法适用情况:集合是有限集,元素不太多.集合是 有限集,元素较多,有一定的规律(或有规律的无限集), 可列出几个元素作为代表,其他元素用省略号代表.例如, 小于1000的正整数的全体构成的集合,可表示为{1,2, 3,…,999}.
巩固知识,典型例题
例1 用列举法表示下列集合: (1)方程x2-2x=0的解集; (2)大于1且小于9的所有偶数构成的集合;
1.1.2 集合的表示方法
创设情境,兴趣导入
试写出下列集合中的每一个元素: 1.不等式2x+3<15的所有自然数的解构成的集合; 2.8的所有正约数构成的集合;
解:1.集合中的元素有0,1,2,3,4,5; 2.集合中的元素有1,2,4,8.
动脑思考,探索新知
一般的,将集合的元素一一列举出来,并且放在 一个大括号内.这种表示集合的方法叫做列举法.
{(-1,0 ),(1,0 ),(0,-1 )}.
应用知识,强化练习 教材练习1.1.2
1. 用列举法表示下列各集合: (1)中国的首都; (2)方程x2-5x+6=0的解集;
(3)方程组 x y 1 的解集. x y 3
创设情景,兴趣导入
问题:不等式2x+3<15的所有实数解构成的集 合,这个集合的元素是什么?怎么表示?
[a,b]
闭区间 a
{x| a<x<b} (a,b) 开区间 a
{x| a≤x<b} {x| a<x≤b}
[a,b) 半开半闭 a 区间
(a,b]
a
b x
b x
bx
b x
动脑思考,探索新知
集合表示
{x|x≥a} {x| x≤b } {x| x>a } {x| x<b}
区间表示
[a,+∞) (-∞,b] (a用到区间的概念,它
是数学中常用的述语和符号. 一般的,a≤x≤b,a<x<b,a≤x<b, a<
x≤b,上述四种不等式可以对应实数x的四种 集合.这四种集合都可用区间的形式来表示,
实数a和b称为相应区间的端点.
集合表示
动脑思考,探索新知
区间表示
名称
数轴表示
{x|a≤x≤b}
数轴表示
a x
b x
a x
b x
应用知识,强化练习
教材练习1.1.2
3. 用区间的形式表示下列各集合: (1){x|-5≤x≤-2} ; (2){x |3≤x<8}; (3){x|x≥-1} ; (4){x |x<5}.
归纳小结,强化思想
列举法 集合的表示方法
描述法
区间的有关概念
继续探索,作业探究
(3)二次函数y= x2-1的图像与两坐标轴交点构成的集合.
解(3)二次函数y=x2-1的图像与x轴的交点是(-1,0 ),(1,
解0点解)构((,成故1与2)的解)y集解轴集{合2的方为,是交程{40点,x,2是6-2,(}2;08x,}=.-01得),x1=所以0,它x的2=图像2,与两坐标轴的交
相关文档
最新文档