线面平行垂直知识点

合集下载

四年级数学上册垂直与平行知识点

四年级数学上册垂直与平行知识点

四年级数学上册垂直与平行知识点
一、认识同一平面内两条直线的位置关系。

在同一平面内,两条直线的位置关系只有两种:相交和不相交。

二、平行线。

1. 定义:在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

2. 表示方法:直线 a 与直线 b 互相平行,记作 a∥b,读作 a 平行于 b。

三、垂线。

1. 定义:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

2. 表示方法:直线 a 与直线 b 互相垂直,记作 a⊥b,读作 a 垂直于 b。

四、点到直线的距离。

从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

五、画垂线的方法。

1. 过直线上一点画这条直线的垂线:把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线。

2. 过直线外一点画这条直线的垂线:把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是已知直线的垂线。

六、画平行线的方法。

1. 用直尺和三角尺画平行线:先将三角尺的一条直角边与已知直线重合,再将直尺与三角尺的另一条直角边重合,然后沿着直尺平移三角尺,当三角尺的直角边与已知点重合时,沿着这条直角边画直线,就是已知直线的平行线。

2. 用两个三角尺画平行线:先将一个三角尺的一条直角边与已知直线重合,再将另一个三角尺的一条直角边紧贴着第一个三角尺的另一条直角边,然后沿着第二个三角尺平移第一个三角尺,当第一个三角尺的直角边与已知点重合时,沿着这条直角边画直线,就是已知直线的平行线。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

平行线和垂直线知识点

平行线和垂直线知识点

平行线和垂直线知识点在几何学中,平行线和垂直线是两个基本的概念。

它们在直线和平面的研究中具有重要的意义。

本文将介绍平行线和垂直线的定义、性质以及它们之间的关系。

一、平行线的定义和性质平行线是指在同一个平面上永远不会相交的直线。

具体而言,对于两条直线l和m,如果它们在同一个平面上且不相交,我们可以说直线l与直线m是平行的,记作l ∥ m。

根据平行线的定义,我们可以得出以下性质:性质1:如果一条直线与两条平行线相交,那么它将分成两个相对应的锐角和两个相对应的钝角。

性质2:平行线具有传递性,即如果直线l与直线m平行,直线m 与直线n平行,那么直线l与直线n也平行。

性质3:如果两条平行线分别与第三条直线相交,那么相应的对应角是相等的。

性质4:如果两条直线分别与一组平行线相交,那么对应角是相等的。

二、垂直线的定义和性质垂直线是指两条直线形成的角度为90度的直线。

具体而言,对于两条直线l和m,如果它们相交且所成的角度为90度,我们可以说直线l与直线m是垂直的,记作l ⊥ m。

垂直线具有以下性质:性质1:一条直线与平面上的一条垂直线相交,则它与该垂直线所成的角度为90度。

性质2:如果两条直线互相垂直,那么它们是共面的。

三、平行线和垂直线的关系平行线和垂直线是两种不同的情况,但它们之间存在一些重要的关系。

性质1:如果两条平行线被一条横切线相交,那么所成的对应角是相等的。

性质2:如果两条直线互相垂直,那么它们的斜率乘积为-1。

性质3:如果一条直线与一组平行线相交,那么它所成的角度与这组平行线的对应角度相等。

性质4:如果两条直线互相垂直,那么它们的方向余弦的乘积为0。

以上是平行线和垂直线的一些基本定义和性质。

这些概念在几何学中占有重要地位,不仅在纸上的学习中有用,也在实际生活中的测量和建筑等领域有广泛的应用。

对于学习几何学的人来说,掌握这些知识点是必不可少的。

总结:通过本文的介绍,我们了解到平行线和垂直线的定义、性质以及它们之间的关系。

平行线与垂直线知识点总结

平行线与垂直线知识点总结

平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。

它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。

本文将对平行线和垂直线的定义、性质以及相关定理进行总结。

一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。

用符号“//”表示两条平行线。

2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。

- 平行线的斜率相等:两条平行线的斜率是相等的。

- 平行线具有传递性:若直线a//b,b//c,则a//c。

3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。

- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。

- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。

- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。

- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。

- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。

二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。

2. 性质:- 垂直线之间的角度为90度。

- 垂直线的斜率乘积为-1。

- 垂直线上的任意线段之间距离相等。

3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。

- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。

- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。

- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。

- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。

总结:平行线和垂直线是几何学中十分重要的概念。

平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。

我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。

线面平行垂直知识点

线面平行垂直知识点

立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;A∉α—点A不在平面α内;b)l⊂α—直线l在平面α内;c)a⊄α—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理4 平行于同一条直线的两条直线互相平行三、证题方法四、空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a ∥β④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b(线面垂直的性质定理)⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b(面面平行的性质公理)⑥中位线定理、平行四边形、比例线段……,α∩β=b,则a∥b.(线面平行的判定定理)③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.(线面平行的判定定理)③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理)③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b ∥β,则α∥β.(面面平行判定定理)推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.(面面垂直判定定理)七、空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,则a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面(一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结线面垂直线面平行点面面面的证明几何证明是高中数学中的重要组成部分,它不仅锻炼了学生的逻辑思维能力,还培养了严密的数学推理能力。

本文针对高中数学中常见的线面垂直、线面平行以及点面、面面关系证明的知识点进行总结,以帮助学生更好地掌握几何证明的技巧和方法。

一、线面垂直的证明1.定义:如果一条直线与一个平面内的任意一条直线都垂直,则这条直线与该平面垂直。

2.判定定理:如果一条直线与一个平面内的两条相交直线垂直,则这条直线与该平面垂直。

3.证明方法:(1)利用垂直的定义,找出直线与平面内任意一条直线垂直的关系。

(2)利用判定定理,找出直线与平面内两条相交直线垂直的关系。

二、线面平行的证明1.定义:如果一条直线与一个平面内的任意一条直线都没有公共点,则这条直线与该平面平行。

2.判定定理:如果一条直线与一个平面内的两条平行直线都平行,则这条直线与该平面平行。

3.证明方法:(1)利用平行的定义,找出直线与平面内任意一条直线没有公共点的关系。

(2)利用判定定理,找出直线与平面内两条平行直线都平行的关系。

三、点面关系的证明1.定义:如果一点在一个平面内,则这个点与该平面有公共点。

2.判定定理:如果一点与一个平面内的任意一条直线都有且只有一个公共点,则这个点在该平面内。

3.证明方法:(1)利用定义,找出点与平面内任意一条直线有公共点的关系。

(2)利用判定定理,找出点与平面内任意一条直线有且只有一个公共点的关系。

四、面面关系的证明1.定义:如果两个平面有公共点,则这两个平面相交。

2.判定定理:如果两个平面内分别有两条相交直线互相平行,则这两个平面平行。

3.证明方法:(1)利用定义,找出两个平面有公共点的关系。

(2)利用判定定理,找出两个平面内分别有两条相交直线互相平行的关系。

通过以上对高中数学几何证明知识点的总结,相信同学们在解决相关问题时会更加得心应手。

高三几何垂直平行知识点

高三几何垂直平行知识点

高三几何垂直平行知识点高三阶段,几何学是数学学科中的一个重要部分,其中包括了垂直和平行的概念。

垂直和平行是几何学中最基本的关系之一,并且在解决几何问题时经常被使用。

以下是高三几何中的垂直和平行的相关知识点。

1. 平行线的定义与性质平行线是指在同一个平面上,永远不相交的两条直线。

平行线具有以下性质:- 平行线上的任意两点到另一条平行线的距离相等。

- 两条平行线之间的夹角为零。

- 平行线具有传递性,即如果一条直线与一条平行线相交,那么它与另一条平行线也相交。

2. 垂直线的定义与性质垂直线是指在同一个平面上,两条直线相交时,交点的两条相邻角度相等的直线。

垂直线具有以下性质:- 垂直线上的任意两点到另一条垂直线的距离相等。

- 两条垂直线之间的夹角为九十度,即形成直角。

- 垂直线与水平线相交时,形成九十度角。

- 垂直线具有传递性,即如果一条直线与一条垂直线相交,那么它与另一条垂直线也相交。

3. 垂直平分线垂直平分线是指将一条线段或角分成两个相等部分,并且与该线段或角垂直相交的线。

垂直平分线具有以下性质:- 垂直平分线的两边相等,并且与被分割的线段或角垂直相交。

- 垂直平分线将线段或角分成两个相等的部分。

4. 平行线与转角转角是指一条线段绕着一个端点旋转所形成的角度。

平行线与转角的相关性质包括:- 转角不会改变平行线的平行性质,即两条平行线的转角相等。

- 转角是平行线间的锐角或钝角。

5. 弦与切线弦是指圆上的两个点之间的线段,而切线是指与圆相切且仅相交于一个点的线段。

弦和切线与垂直平行的关系有:- 圆的直径是一个特殊的弦,它同时也是圆上的最长弦,且恰好与圆上的两个点连线垂直。

- 切线与弦相交于圆的边缘,且形成垂直的角度。

以上是高三几何中关于垂直和平行的一些基本知识点。

掌握这些概念和性质,能够帮助解决几何学中的许多问题。

在解题过程中,灵活运用这些知识,可以更加准确地得出答案,并提高解题效率。

希望这些知识点对你在高三几何学习中有所帮助。

线面平行知识点总结

线面平行知识点总结

线面平行知识点总结一、线面平行的定义1. 线面平行是指在三维空间中,两条直线或者一个直线与一个平面的关系。

如果两条直线在同一个平面上且不相交,则它们是线面平行的;如果一条直线与一个平面平行,则它们是线面平行的。

2. 线面平行的判断方法:- 根据定义,两条直线在同一个平面上且不相交即为线线平行,可以通过观察二维平面投影来进行判断;- 通过向量的性质来判断,如果两条直线在同一个平面上且它们的方向向量平行,则它们是线线平行的;- 对于线面平行,直线的方向向量与平面的法向量平行。

3. 线面平行的特点:- 对于线线平行,它们在同一个平面上且不相交;- 对于线面平行,直线的方向向量与平面的法向量平行。

二、线面平行的应用1. 几何形状的判断- 在空间几何中,线面平行的概念常常用于判断几何形状的性质。

例如,在判断一个立方体的对角线是否在同一个平面上时,就可以利用线面平行的性质来进行推理。

2. 建模与设计- 在工程建模和设计中,线面平行的概念也有着重要的应用。

例如在建筑设计中,为了保证构件的安装与连接,需要考虑构件之间的线面平行关系,以确保各构件之间的准确配合。

三、线面平行的相关定理1. 平行线性质定理- 定理1:两条直线在同一个平面上且平行,则它们的方向向量成比例;- 定理2:如果一条直线与一个平面平行,则直线上的任意一点到平面的距离等于这个点到平面的法向量的点积的绝对值。

2. 平面平行性质定理- 定理1:如果两个平行的平面被交叉一条直线所截,则它们的法向量成比例;- 定理2:如果两个平面平行,那么它们的法向量成比例,且它们之间的距离是相等的。

3. 线面平行的性质定理- 定理1:如果一条直线与一个平面平行,则直线上的任意一点到平面的距离等于这个点到平面的法向量的点积的绝对值;- 定理2:如果一条直线与一个平面平行,并且与这个平面内的直线相交,则这两条直线的夹角等于直线的方向向量与平面的法向量的夹角。

四、线面平行的相关问题1. 直线在平面内的投影问题- 给定一个直线和一个平面,在平面上求直线的投影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M 、N 、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A ,B ,C ,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a) A ∈l —点A 在直线l 上;A ∉α—点A 不在平面α内; b) l ⊂α—直线l 在平面α内; c) a ⊄α—直线a 不在平面α内;d) l ∩m=A —直线l 与直线m 相交于A 点; e) α∩l=A —平面α与直线l 交于A 点; f) α∩β=l —平面α与平面β相交于直线l. 二、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 公理4 平行于同一条直线的两条直线互相平行 三、证题方法四、空间线面的位置关系共面 平行—没有公共点(1)直线与直线 相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面 直线不在平面内 平行—没有公共点(直线在平面外) 相交—有且只有一公共点 (3)平面与平面 相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.证题方法 间接证法 直接证法反证法同一法六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a ∥β④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b(线面垂直的性质定理)⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b(面面平行的性质公理)⑥中位线定理、平行四边形、比例线段……,α∩β=b,则a∥b.(线面平行的判定定理)③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a ∥b,则a∥α.(线面平行的判定定理)③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理)③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a ∥β,b∥β,则α∥β.(面面平行判定定理)推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.(面面垂直判定定理)七、空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,则a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面(一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4(a//b,b//c a//c)线面平行判定 αβαγβγ//,// ==⇒⎫⎬⎭a b a b面面平行判定1a b a b a //,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a b a b A a b ⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,//// 线面平行性质a ab a b////αβαβ⊂=⇒⎫⎬⎪⎭⎪ 面面平行性质1αβαβ////a a ⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:线线⊥线面⊥面面⊥三垂线定理、逆定理PA AO PO a a OA a PO a PO a AO⊥⊂⊥⇒⊥⊥⇒⊥ααα,为在内射影则线面垂直判定1 面面垂直判定a ba b O l a l b l ,,⊂=⊥⊥⇒⊥⎫⎬⎪⎭⎪ααaa ⊥⊂⇒⊥⎫⎬⎭αβαβ 线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:线线∥ 线面⊥面面∥线面垂直判定2 面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。

”5. 唯一性结论:(三)空间中的角与距离 1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90° (时,∥或)θαα=︒⊂0b b(3)二面角:二面角的平面角θ,0°≤θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角; (2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

3. 空间距离:将空间距离转化为两点间距离——构造三角形,解三角形,求该线段的长。

4. 点到面的距离,线线间距离、线面间距离、面面间距离都可转化为点到面的距离。

常用方法:三垂线法、垂面法、体积法、向量法等。

知识点归纳必须熟练掌握基本概念、基本定理,熟练进行符号、文字、图形语言之间的转化。

1、平面的基本性质----3个公理、3个推论3、掌握①⇔⇔线线平行线面平行面面平行平行关系平行关系定理名称定理内容图象符号表示(已知,求证)直线和平面平行判定定理性质定理平面判定定理和平面平行性质定理平行公理②⇔⇔线线垂直线面垂直面面垂直关系定理定理内容图象符号表示(已知,求证)线面垂直线面垂直定义:判定定理性质定理面面垂直面面垂直定义:判定定理性质定理射影长定理三垂线定理三垂线定理逆定理两异面直线垂直的定义:。

相关文档
最新文档