烯烃结构与命名
烯烃的结构与命名物性

第三章烯烃和炔烃第一部分:烯烃烯烃的结构和异构烯烃的命名烯烃的物理性质烯烃的化学性质烯烃的制法烯烃当中双键碳原子的sp2杂化C: 1s22s22p2sp2杂化1s22s12p12p y12p z1x烯烃当中双键碳原子的sp2杂化.一个s轨道、两个p轨道“杂化”形成三个等同的sp2杂化轨道。
sp2杂化轨道的形状与sp3杂化轨道类似。
三个sp2杂化轨道的对称轴在同一平面上,互成120°角,大头一瓣指向正三角形的三个角顶。
碳原子上另一个未杂化的pz 轨道垂直于sp2杂化轨道对称轴所在的平面。
乙烯中的两个碳原子各以一个sp 2轨道相结合,形成一个C-C σ键:剩余的两个sp 2轨道还与H 的轨道结合形成两个C-H σ键。
乙烯分子:只表示出σ键乙烯的结构每个双键碳原子剩下的2p轨道(各有一个电子)垂直于sp2杂化轨道所在的平面,两个p轨道平行重叠形成一种新的键,称为π键π键由两部分组成:一部分电子云在原子平面的上方,另一部分在下方。
构成π键的电子云称为π电子云。
C CH HH HC CHH HHππ烯烃分子中的π键分子中的六个原子(C、H)及五个σ键都处于同一平面键角(bond angles):H-C-H = 117.5°H-C-C = 121°键长(bond distances): C—H = 0.110 nmC=C = 0.134 nm乙烯的结构乙烯分子是一个平面分子分子中六个原子及所形成的五个 键都处在同一平面,每一个碳都是sp2杂化结构已为电子衍射和光谱研究所证实每一个碳都有一个半充满的p 轨道Each carbon has a half-filled p orbital两个p轨道平行重叠,形成 键乙烯中C-C之间,除了σ键之外,还多了一个π键,键能增强,所以C-C键短另外,乙烯中碳为sp 2杂化,轨道s成分大,核对电子云的束缚紧,键能增强,键距缩短。
也会导致C-H键变短乙烯乙烷乙烯中C-C 键键长比乙烷中C-C 键长略短的原因? 乙烯中C-H 键键长比乙烷中C-H 键长略短的原因?丙烯中C-C 单键的键长(0.150nm )比乙烷中C-C 键长(0.153nm )略短。
第二节 烯 烃

一、烯 烃 的 结 构
二、烯烃的命名
三、烯烃的同分异构-顺反异构 四、烯烃的化学性质
1. 加 成 反 应 2. 氧 化 反 应
五、二烯烃
烯烃
指由碳和氢两种元素组成的含有碳碳双 键的有机化合物。
sp2
CnH2n C
sp2
C
乙烯
特点:双键不能绕键轴自由旋转
乙烯分子中的碳原子是sp2 杂化, 碳碳双键其中一个是键,一个 是键,分子呈平面三角形构型。
问题2:若反应是分步进行的,H+和Br-哪一 个优先进攻双键,加成在碳原子上?
问题3:若与不对称的烯烃反应,优先进攻双键 的离子应加在哪个碳原子上呢?
与HX加成反应历程:
亲电中心
亲电加成反应
慢 决速
H C
H C
第一步: C=C
+ H+
C
碳正离子
X C
+
亲电试剂
H
第二步:
C
C
+
X-
快
影响因素: 1. HX的酸性 HI > HBr > HCl 2. 碳正离子的稳定性是反应速率的决定因素
烯丙基碳正离子
H H
C---C
CH2 H
+
P共轭体系 较稳定
空P轨道和键重叠形成П32大键
.. CH2=CH-Br
CH2
. CH2=CH-CH2
•- P超共轭: 由键和P轨道形成的 共轭体系。
+ CH3-CH-CH3
H CH3
H C C H H
-P超共轭 效应较弱!
C CH3 CH3
H H H •诱导效应将随着传递距离的增加而迅速减弱 下来,一般经过2~3个碳后就可忽略不计。
有机化学第4章 烯烃

4.1.3 烯烃的异构和Z/E标记法
•构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象。 构造异构由于双键的位置不同引起同分异构现象 例1:丁烯有三个同分异构体 丁烯有三个同分异构体 (1) CH3-CH2-CH=CH2 1-丁烯 丁烯 (2) CH3-CH=CH-CH3 2-丁烯 丁烯 (3) CH3-C=CH2 2-甲基丙烯 异丁烯 甲基丙烯(异丁烯 甲基丙烯 异丁烯) CH3
HX=HCl,HBr,HI 烯烃 卤烷
加成反应历程 + 第一步: -C=C- + H X → -C-C- + X第一步 •生成碳正离子 H 生成碳正离子 第二步:碳正离子迅速与 结合生成卤烷. 第二步 碳正离子迅速与 X- 结合生成卤烷 -C-C- + X- → -C-C+ H HX
σ+ → σ-
4.2 烯烃的物理性质
自
学!!
4.3 烯烃的化学性质 •碳碳双键 碳碳双键 •断裂乙烷 断裂乙烷C-C σ 单键需要 单键需要347kJ/mol 断裂乙烷 •断裂双键需要 断裂双键需要611kJ/mol; 断裂双键需要 •说明碳碳 π 键断裂需要 说明碳碳 键断裂需要264kJ/mol •双键使烯烃有较大的活性 双键使烯烃有较大的活性. 双键使烯烃有较大的活性 • 烯烃的加成反应 --- 烯烃在起化学反应时往往 随着π 键的断裂又生成两个新的 σ 键,即在双键 即在双键 碳上各加一个原子或基团. 碳上各加一个原子或基团 >C=C< + Y-Z → -C-C(σ sp2) σ
4.1.1 烯烃的命名 命名规则(系统命名 命名规则 系统命名): 系统命名 • • • • (1)选择含碳碳双键的最长碳链为主链 母体 选择含碳碳双键的最长碳链为主链(母体 选择含碳碳双键的最长碳链为主链 母体); (2)碳链编号时 应从靠近双键的一端开始 碳链编号时,应从靠近双键的一端开始 碳链编号时 应从靠近双键的一端开始; (3)烯前要冠以官能团位置的数字 编号最小 烯前要冠以官能团位置的数字(编号最小 烯前要冠以官能团位置的数字 编号最小); (4)其它同烷烃的命名规则 其它同烷烃的命名规则. 其它同烷烃的命名规则 CH2﹦ –CH2CH3 C ︱ CH2CH2CH3
9.21有机化学第五章烯烃.

Br Br
C=C
+ Br2 CCl4
CC
红棕色
无色
烯烃加溴历程:
C=C
+
Br
Br
慢
烯烃
B+r
CC
Br
快
Br-
CC
Br
环状溴正离子
烯与卤素的加成反应是由Br+首先进攻的,
是亲电加成反应。
下列实验可以用来说明:
烯烃与卤素的加成反应,是由
亲电试剂首先进攻的分步反应。
实验一:
CH2=CH2 + Br2
结论:
C的稳定性决定了烯烃加成主要产物的 结构。
注意下列C的稳定性:
CH3
CH3 C+
CH3
3 £¡C+
CH3 CH3 C+H
2 £¡C+
CH3 C+H2
C+H3
1 £¡C+
C+H3
第一步加成的途径取决于生成碳正离子稳定 性。碳正离子的稳定性越大,也就越容易生成。
不同碳正离子的稳定性以如下次序减小:
CCl4 干燥
x (Br2不裉色)
CH2=CH2 + Br2
CCl4 微量水
CH2 CH2 (Br2裉色) Br Br
说明该反应是离子型反应。微量水可促使环状溴正
离子的形成。
实验二:
不同的取代乙烯与溴加成的相对反应速率:
CH2=CHBr 0.04
CH2=CH2 1.0
CH2=CHCH3 2.03
CH2=C(CH3)2 5.53
慢
Br
快
溴 离子
Br CH2 CH2 Br
第六章 烯烃

H3C
2) 单分子消除反应,E1 ) 单分子消除反应, (CH3)3C―Cl + C2H5OH
υ = k [(CH3)3C-Cl]
(CH3)2C = CH2 单分子历程
E1反应与S 反应有相似的历程,都是通过形成碳正离子进行。 E1反应与SN1反应有相似的历程,都是通过形成碳正离子进行。 反应与
E1反应机理 E1反应机理
eg 1
CH3 CH3 C CH CH2 CH3
BrCH2 CH3
C
C
CH3 CH2CH3
3,3-二甲基3,3-二甲基-1-丁烯
反-2,3-二甲基-1-溴-2-戊烯 2,3-二甲基2,3-二甲基(E)- 2,3-二甲基-1-溴-2-戊烯
顺反:相同基团在双键同侧为顺式,反之为反式; 区 顺反:相同基团在双键同侧为顺式,反之为反式; 别 Z E:按“顺序规则”排序,较优基团在双键同侧为 , 顺序规则”排序,较优基团在双键同侧为Z, : 反之为E。 反之为 。
反应机理表明 *1 E2机理的反应遵循二级动力学。 机理的反应遵循二级动力学。 机理的反应遵循二级动力学 *2 卤代烷 反应必须在碱性条件下进行。 卤代烷E2反应必须在碱性条件下进行。 反应必须在碱性条件下进行 *3 两个消除基团必须处于反式共平面位置。 两个消除基团必须处于反式共平面位置。 *4 在E2反应中,不会有重排产物产生。 反应中, 反应中 不会有重排产物产生。
CH3CH2O─+ H-CH2CH2–Br
[CH3CH2O δ─…H…CH2–CH2…Br δ─] 过渡态
CH2 = CH2 + CH3CH2OH
E2反应的能线图与S 反应类似。 E2反应的能线图与SN2反应类似。 反应的能线图与
有机化学基础知识点烯烃的命名和结构

有机化学基础知识点烯烃的命名和结构烯烃是有机化合物中的一类重要结构,它们的命名和结构对于有机化学的学习和理解至关重要。
本文将介绍烯烃的常见命名方法和结构特点。
一、命名方法1. 简单烯烃的命名对于含有一个双键的烯烃,根据双键所处的碳原子位置不同,可以分为内烯烃和外烯烃。
内烯烃的命名方法为:取双键两侧的最长碳链作为主链,不包括双键碳原子,双键位置由数字表示,并在主链的前面加上“内”,表示双键在内部。
例如,1,3-内戊二烯。
外烯烃的命名方法为:取双键两侧的最长碳链作为主链,包括双键碳原子,双键位置由数字表示。
例如,3-戊烯。
2. 多烯烃的命名对于含有多个双键的烯烃,需要根据双键的位置和个数来进行命名。
双键位置相邻的烯烃,采用数字表示双键位置,不同双键之间用逗号隔开。
例如,1,3-丁二烯。
双键位置不相邻的烯烃,先找到离主链最近的双键,以该双键为起点,遇到其他双键时,按顺序编号。
例如,3,5-戊二烯。
二、结构特点烯烃由于含有双键,其结构特点与饱和烃有所不同。
1. 双键的存在使得烯烃能够发生加成反应,即通过在双键上添加其他原子或基团来形成新的化合物。
2. 双键的存在使得烯烃具有比饱和烃更高的反应活性,易于与其他物质发生反应。
3. 双键的存在决定了烯烃的空间构型,使得烯烃具有不同于饱和烃的立体异构体。
4. 烯烃由于双键的存在,存在平面结构和扭曲结构两种可能性。
平面结构下,双键处于同一平面上;扭曲结构下,双键处于不同的平面上。
三、实例分析以丁烯为例,它是最简单的内烯烃,由于双键在内部,根据命名规则,可称为1-丁烯。
其结构式为CH3-CH=CH2,其中,CH3表示甲基基团,CH=CH2表示双键。
再以戊二烯为例,它是一种多烯烃,由于有两个双键,分别位于第1碳和第3碳,根据命名规则,可称为1,3-戊二烯。
其结构式为CH2=CH-CH=CH2,其中,CH2=CH-表示第1碳和第2碳之间的双键,CH=CH2表示第3碳和第4碳之间的双键。
烯烃的结构和命名

烯烃的结构和命名
烯烃是一类含有双键的碳氢化合物,它们的结构和命名与其他有机化合物有所不同。
烯烃的结构中有一个或多个双键,这些双键可以存在于碳链的中央或末端。
双键的存在使得烯烃分子不再是直线形分子,而是呈现出弯曲形态,这对烯烃分子的性质和反应起着重要作用。
在烯烃的命名中,需要确定双键的位置和数量。
双键的位置可以通过给碳原子编号来表示。
在编号中,双键所连接的两个碳原子应该得到最低的编号。
如果有多个双键,则需要在编号中用前缀“二”、“三”等来表示。
例如,乙烯是一种只含有一个双键的烯烃,其结构式为CH2=CH2,其中第一和第二碳原子分别被编号为1和2。
另一个例子是丙烯,它含有两个双键,结构式为CH2=CHCH3,这里第一和第二个碳原子被编号为1和2,第三个碳原子被编号为3。
除了直接给出分子式和结构式外,还有一些常用的化学名,例如乙烯、丙烯、丁烯等。
这些名字通常以“烯”结尾,其中“乙烯”指的是含有一个双键的烯烃,而“丙烯”指的是含有两个双键的烯烃。
烯烃是有机化学中一个重要的类别,它们具有丰富的化学性质和广泛的应用。
对于烯烃的结构和命名,了解清楚可以更好地理解和应用这些化合物。
- 1 -。
有机化学基础知识点烯烃的命名与结构

有机化学基础知识点烯烃的命名与结构烯烃是有机化合物中的一类,具有双键的特点。
它们的命名与结构在有机化学的学习中非常重要。
下面将介绍烯烃的命名与结构的基础知识点。
一、命名烯烃烯烃的命名通常遵循一定的规则,以确保命名的准确和标准化。
以下是常见的命名规则和案例:1. 无取代基的直链烯烃命名:直链烯烃的命名以“-烯”结尾,表示它是一个烯烃。
例如,乙烯、丙烯、戊烯等。
2. 取代基的直链烯烃命名:当直链烯烃存在取代基时,需先确定主链,然后给取代基编号,并在主链名称前加上取代基的名称和编号。
取代基的编号应尽量使得其编号的总和最小化。
例如,2-甲基丙烯、3-乙基己烯等。
3. 环状烯烃的命名:当烯烃为环状结构时,需要在名称中明确说明环状结构。
命名时使用希腊字母表示环的大小。
例如,环丁烯、环戊烯等。
4. 多烯烃的命名:对于具有多个双键的烯烃,需要在名称中指定所用双键的位置。
常用的表示方式是数字加冒号(:)表示相邻双键的位置。
例如,1,3-丁二烯、1,4-戊二烯等。
二、烯烃的结构烯烃的结构可以通过分子式和结构式来表示和描述。
1. 烯烃的分子式:烯烃的分子式通常用CnH2n表示,其中n为烯烃中碳原子的个数。
通过分子式,可以直观地了解烯烃中碳原子和氢原子的数量关系。
2. 烯烃的结构式:烯烃的结构式可以使用线段表示。
双键用两条线段连接两个碳原子,表示双键存在。
结构式可以帮助我们更清晰地认识烯烃分子的结构和化学性质。
三、烯烃的合成烯烃的合成方法多种多样,可通过化学反应或物理方法进行合成。
以下是几种常见的合成方法:1. 消除反应:消除反应是烯烃的主要合成方法之一。
通过消除反应,可以将合适的官能团(如卤素、醇等)从分子中去除,生成烯烃。
常见的消除反应有脱卤反应和脱醇反应等。
2. 加成反应:加成反应是一种在双键上引入新的原子或原团的反应。
通过加成反应,可以在烯烃的双键上引入新的官能团,形成新的化合物。
3. 氧化反应:氧化反应是指将烯烃中的碳-碳双键上的结构引入氧原子或氧官能团的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识拓展】烯烃-----烯烃结构与命名
(一)烯烃的同分异构现象
烯烃的通式: CnH2n。
烯烃的官能团:C=C
1.构造异构
2.顺反异构
(a)反-2-丁烯(b) 顺-2-丁烯
(二)烯烃的结构
1.碳的sp2杂化及乙烯的结构
碳原子的sp2杂化过程如下:
乙烯分子形成时,两个碳原子各以一个sp2杂化轨道沿键轴方向重叠形成一个C—Cσ键,并以剩余的两个sp2杂化轨道分别与两个氢原子的1s轨道沿键轴方向重叠形成四个等同的C—Hσ键,五个σ键都在同一平面内,因此乙烯为平面构型。
此外,每个碳原子上还有一个未参与杂化的p轨道,两个碳原子的p轨道相互平行,于是侧面重叠成键。
这种成键原子的p轨道侧面重叠形成的共价键叫做π键。
乙烯分子中的σ键和π键如图3-2所示。
乙烯分子的结构。