西安交大核反应堆热工分析复习详细

合集下载

核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案4

核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案4

3-1.某裂变堆,快中子增殖因数1.05,逃脱共振俘获概率0.9,慢化不泄漏概率0.952,扩散不泄漏概率0.94,有效裂变中子数1.335,热中子利用系数0.882,试计算其有效增殖因数和无限介质增殖因数。

解:无限介质增殖因数: 1.1127k pf εη∞==不泄漏概率:0.9520.940.89488s d Λ=ΛΛ=×=有效增殖因数:0.9957eff k k ∞=Λ=3-2.H 和O 在1000eV 到1eV 能量范围内的散射截面近似为常数,分别为20b 和38b 。

计算H 2O 的ξ以及在H 2O 中中子从1000eV 慢化到1eV 所需的平均碰撞次数。

解:不难得出,H2O 的散射截面与平均对数能降应有下述关系:σH2O ∙ξH2O =2σH ∙ξH +σO ∙ξO即:(2σH +σO )∙ξH2O =2σH ∙ξH +σO ∙ξOξH2O =(2σH ∙ξH +σO ∙ξO )/(2σH +σO )查附录3,可知平均对数能降:ξH =1.000,ξO =0.120,代入计算得:ξH2O =(2×20×1.000+38×0.120)/(2×20+38)=0.571可得平均碰撞次数:Nc =ln(E 2/E 1)/ξH2O =ln(1000/1)/0.571=12.09≈12.13-3.在讨论中子热化时,认为热中子源项Q(E)是从某给定分界能E c 以上能区的中子,经过弹性散射慢化而来的。

设慢化能谱服从Ф(E)=Ф/E 分布,试求在氢介质内每秒每单位体积内由E c 以上能区,(1)散射到能量E (E<E c )的单位能量间隔内之中子数Q(E);(2)散射到能量区间ΔE g =E g-1-E g 内的中子数Q g 。

解:(1)由题意可知:()(')(')(')'cE s Q E E E f E E dE φ∞=Σ→∫对于氢介质而言,一次碰撞就足以使中子越过中能区,可以认为宏观截面为常数:/()(')(')'cE s E a Q E E f E E dE φ=Σ→∫在质心系下,利用各向同性散射函数:。

核反应堆热工分析试题(西安交大)

核反应堆热工分析试题(西安交大)
4. 简述单通道模型反应堆热工设计的一般步骤和方法。
5. 试导出α ,x 与 S 的关系式

1 vf 1 x 1 S v x g
式中,α 为空泡份额,x 为含汽量,S为滑速比。
三、 (20 分)何谓积分热导率,并以棒状燃料元件为例,推倒出积分热导率的表 达式为: t0 qv 2 tu k u dt 4 ru 其中,tu 是燃料芯块的表面温度, t0 是燃料芯块的中心温度,qv 是体积释热率。 四、计算题(20 分) 某压力壳型轻水堆的棒束燃料组件为纵向流过的水所冷却,冷却水的平均温 度为 300℃,平均流速为 4 米/秒,燃料元件的平均热流量为 1430KW/米 2,工作 压力为 14.7MPa,栅格为正方形(如图 1 所示),燃料元件直径为 10 毫米,包壳厚度 为 0.5 毫米,燃料芯块外径为 8.8 毫米,栅距为 13 毫米。求: (1) 平均放热系数及元件外表面的平均温度。 (2) 包壳内表面温度和燃料中心温度。 已 知 : Nu 0.0306 Re 0.8 Pr 0.4 , 在 该 压 力 下 , k f 0.565W / m. C ,
C , ku 3.5W / m . C ,间 f 0.1226 10 6 m 2 / s, Pr 0.864 , kc 13.0W / m .
C ), 隙等效传热系数为 hg 5678W /(m 2 . 燃料和包壳的热导率随温度的变化可忽
略。
图1
第 1
页 第 页
西安交通大学考试题


成绩
2008 年 3 月 7 日
ห้องสมุดไป่ตู้


核反应堆热工分析 能动学院 考 试 日 期
专业班号 姓 名

核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案3

核反应堆物理分析 (谢仲生 吴宏春 张少泓 著) 西安交大、原子能出版社 课后答案3

2-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。

试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。

解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U bσσσ===由289页附录3查得,0.0253eV 时:()0.00027ba O σ=以c 5表示富集铀内U-235与U 的核子数之比,表示富集度,则有:ε555235235238(1)c c c ε=+−151(10.9874(1))0.0246c ε−=+−=22M(UO )()N UO 所以,(N (8)N U =()2N O =22()()a f UO UO Σ=Σ2-2.和0.398,解:由18由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m −−Σ=Σ=,()238.03,M U =33()19.0510/U kg m ρ=×可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ−==×则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ−Σ=×=×=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m −Σ=Σ+Σ+Σ=P35,第6题1171721111PV V 3.210P 2101.2510m3.2105 3.210φφ−−−=Σ×××===×Σ××××Q P35,第12题每秒钟发出的热量:69100010 3.125100.32PTE Jη×===×运:'N =m =6吨2-3.为使铀的η=1.7,试求铀中U-235富集度应为多少(E=0.0253eV)。

西安交大核反应堆热工分析复习详细

西安交大核反应堆热工分析复习详细

第一部分 名词解释第二章 堆的热源及其分布1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。

第三章 堆的传热过程2、积分热导率:把u κ对温度t 的积分()dt t u ⎰κ作为一个整体看待,称之为积分热导率。

3、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。

4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。

5、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。

6、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。

7、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。

8、沸腾曲线:壁面过热度(s w sat t t t -=∆)和热流密度q 的关系曲线通常称为沸腾曲线。

9、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。

10、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。

Critical heat flux11、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。

Departure from nuclear boiling 12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。

达到沸腾临界时的热流密度称为临界热流密度。

13、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升;14、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。

15、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。

核反应堆热工分析

核反应堆热工分析

核反应堆热工分析核反应堆热工分析是指对核反应堆的热力学和动力学性质进行评估和分析。

在核反应堆的设计和操作过程中,热工分析是至关重要的一步。

核反应堆是利用核反应的原理来产生大量能量的一种设备。

核反应堆通常用于发电、生产同位素、研究等领域。

核反应堆的基本工作原理是将一些放射性物质放入到反应堆中,在核反应的过程中释放出大量的热能,以此来驱动涡轮机发电。

核反应堆的热工分析主要关注的是反应堆内的热力学和动力学特性。

在核反应堆中,核燃料的裂变会产生大量的热,这些热需要通过反应堆内的冷却剂来传递到发电设备。

因此,热工分析的主要任务是评估反应堆中热量的产生和传递,以便在设计和操作过程中避免过热或过冷的问题。

核反应堆的热工分析可以通过多种方法进行,其中最常见的方法是数值模拟。

数值模拟是指使用计算机模拟反应堆内复杂的热力学和动力学过程,以便更好地理解反应堆内的热传递和热力学行为。

在数值模拟中,需要考虑的因素包括反应堆内燃料的构成和排布、冷却剂的流动和热传递、反应堆的几何形状等。

另外,通过实验来验证和修正数值模拟模型也是非常重要的一项工作。

实验可以获得反应堆内的温度、压力、流速等关键参数,以进一步改进数值模拟模型。

同时,在实际操作中对反应堆进行连续监测和评估也是必不可少的。

核反应堆热工分析的结果可以帮助反应堆设计师和操作员更好地了解反应堆内的热力学行为,并且可以预测反应堆在不同工作条件下的热传递行为。

这些分析结果可以用于优化反应堆的设计,提高反应堆的效率和安全性。

总之,核反应堆热工分析是核反应堆设计和操作中不可或缺的一步。

通过热工分析可以更好地了解反应堆内的热力学和动力学行为,预测反应堆在不同工作条件下的性能,提高反应堆的效率和安全性。

除了数值模拟和实验外,还有一些重要的因素需要考虑,这些因素包括:1. 燃料特性燃料的特性直接影响反应堆内的核反应过程,从而影响热传递效率。

例如,燃料的粒度和密度会影响其热传递特性,而燃料的化学成分和裂变产物的特性也会影响其热放射。

核反应堆热工分析要点

核反应堆热工分析要点

《核反应堆热工分析》期末复习要点第二章堆的热源及其分布1、裂变能的近似分配(16页)2、了解堆芯功率的分布及其影响因素(17页4个公式中的参数物理意义及变化影响)3、影响功率分布的因素(19页——21页的黑体标题,内容了解)4、停堆后的功率(25页)5、剩余裂变功率的衰减(25页——26页)6、衰变功率的衰减(27页)第三章堆的传热过程1、导热的概念(30页)2、记忆热传导微分方程(30页公式3-1)3、公式3-3和公式3-12的推导(31页、33页)4、Dittus-Boelter公式;沸腾曲线(34页;37页)5、产生沸腾的下限公式(39页公式3-26)6、沸腾临界的定义以及快速烧毁和慢速烧毁(40页——41页)7、过渡沸腾传热的定义(41页)8、选择包壳材料要考虑的因素(48页,共7点)9、热静效应(51页)10、燃料芯块的肿胀含义(52页)11、积分热导率的定义,以及定义积分热导率的意义(58页)第四章堆内流体的流动过程及水力分析1、单相流体的流动压降组成(87页——92页的黑体标题,共4点)2、Darcy-Weisbach公式及各项参数意义(87页公式4-4)3、Blausius关系式及使用范围(88页)4、截面突然扩大或缩小时的局部压降计算公式(92页——93页,公式4-21和公式4-26)5、多相流的定义(99页)5、什么叫流型以及四种主要流型(99页——100页)6、静态含汽量、流动含汽量、平衡含汽量、空泡份额、滑速比定义式(101页——102页)7、公式4-49的推导(103页)8、自然循环的概念,影响自然循环的因素及解决办法(120页——123页)9、临界流的定义(123页)10、单相流体的临界流(124页)11、引起流动不稳定性的原因(133页)12、两相流不稳定性的分类和定义(133页——134页)13、流量漂移的特点(134页)14、水动力稳定性准则(136页公式4-176)第五章 堆芯稳态热工分析1、热工设计准则(144页——145页)2、热管和热点的定义(154页)3、热流密度核热点因子Nq F 的计算式(155页公式5-26)4、焓升热管因子NH F ∆的计算式(155页)5、降低热管因子和热点因子的途径(157页)6、只有流动交混因子EH F ∆的值小于1,其他都大于1(158页)7、W —3公式中的平衡含汽量e x 的范围以及3种修正(168页——170页)8、核反应堆热工参数的选择(174页——175页)9、蒸汽发生器中温差的最小值的取定及其范围(176页)10、图5-12的,e R N 的选择及其原因(179页)11、燃料元件的表面热流密度核DNBR 沿轴向变化示意图(179页)第六章 堆芯瞬态热工分析1、棒状元件的导热微分方程(202页公式6-2)2、四类电厂工况考虑反应堆的安全性(218页——219页)3、专设安全系统(220页,共3个)。

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料第一章1、在反应堆内中子与原子的相互作用方式主要有:势散射、直接相互作用和复合核的形成。

其中复合核的形成是中子和原子相互作用的最重要方式。

2、复合核的衰变分解的方式有:共振弹性散射、共振非弹性散射、辐射俘获和核裂变,可以概括为散射和吸收。

3、共振现象:但入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时,中子被靶核吸收而形成复合核的概率就显著增加,这种现象就叫作共振现象。

4、非弹性散射特点:只有当入射中子的动能高于靶核的第一激发态的能量时才能使靶核激发,也就是说,只有入射中子的能量高于某一数值时才能发生非弹性散射,由此可知,非弹性散射具有阈能的特点。

5、弹性散射特点:它可以分为共振弹性散射和势散射两种,区别在于前者经过复合核的形成过程,后者则没有。

在热中子反应堆内,对中子从高能慢化到低能的过程起主要作用的是弹性散射。

6、易裂变同位素:一些核素,如233U 、235U 、239Pu 和241Pu 等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的可能性较大,通常把它们称为易裂变同位素。

7、可裂变同位素:同位素232Th 、238U 和240Pu 等只有在能量高于某一阈值的中子作用下才发生裂变,通常把它们称为可裂变同位素。

8、中子束强度I :在单位时间内,通过垂直于中子飞行方向的单位面积的中子数量,记为I 。

9、单位体积中的原子核数N :计算公式为AN N ρ0=0N :阿伏加德罗常数,取值为6.0221367*1023/molρ:材料密度A :该元素的原子量10、微观截面σ:微观截面是表示平均一个给定能量的入射中子与一个靶核发生作用的概率大小的一种度量,通常用“巴恩”(b )作为单位,1b=10-28m 2。

11、核反应下标:s--散射;a--吸收;γ--辐射俘获;f--裂变;t--总核反应 12、靶内平行中子束强度:Nx e I x I σ-=0)(13、宏观截面∑:宏观截面是一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量,单位为m -1,公式为:σN =∑由几种元素组成的均匀混合物质的宏观截面x ∑:∑=∑ixi i x N σ14、富集度:某种元素在其同位素中的(原子)重量百分比。

核反应堆热工分析(热工部分)

核反应堆热工分析(热工部分)

影 响 功 率 分 布 的 因 素
燃料布置 控制棒 水隙及空泡
通常I区的燃料富集度是最低的,III区的燃料富集度最高
核科学与技术学院

2.堆芯功率的分布及其影响因素
控制棒一般均匀布置在高中子通量的区域,既提高 控制棒的效率,又有利于径向中子通量的展平
影 响 功 率 分 布 的 因 素
燃料布置 控制棒 水隙及空泡
核科学与技术学院

停堆后的功率
在反应堆停堆后,由于中子在很短一段时间内还会引起裂变,裂变产物的 衰变以及中子俘获产物的衰变还会持续很长时间,因而堆芯仍有一定的释 热率。这种现象称为停堆后的释热,与此相应的功率称为停堆后的剩余功 率。
核科学与技术学院

停堆后的功率
剩余中子引起的裂变 燃料棒内储存的显热
(r , z ) 0 J 0 (2.405
外推半径:R e
r z ) cos Re LRe
R R R 0.71tr 外推高度: LRe LR 2LR LR 1.42tr
堆芯的释热率分布
r z qv (r , z ) qv ,max J 0 (2.405 ) cos Re LRe

1.核裂变4% 裂变能的绝大部 分在燃料元件内 转换为热能,少 量在慢化剂内释 放 , 通 常 取 97.4% 在 燃 料 元 件内转换为热能
核科学与技术学院

1.核裂变产生能量及其分布
不同核素所释放出来的裂变能量是有差异的,一般认为取 E f 200 MeV
核科学与技术学院
反应堆热工水力学
堆内释热
核科学与技术学院
1 一
1.核反应堆热工分析的任务
安全:
稳定运行,能 适应瞬态稳态 变化,且保证 在一般事故工 况下堆芯不会 破坏,最严重 事故工况下也 要保证堆芯放 射性不泄漏
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 名词解释第二章 堆的热源及其分布1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。

第三章 堆的传热过程2、积分热导率:把u κ对温度t 的积分()dt t u ⎰κ作为一个整体看待,称之为积分热导率。

3、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。

4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。

5、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。

6、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。

7、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。

8、沸腾曲线:壁面过热度(s w sat t t t -=∆)和热流密度q 的关系曲线通常称为沸腾曲线。

9、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。

10、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。

Critical heat flux11、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。

Departure from nuclear boiling 12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。

达到沸腾临界时的热流密度称为临界热流密度。

13、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升;14、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。

15、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。

16、膜态沸腾:指加热面上形成稳定的蒸汽膜层,q 随着t ∆增加而增大。

对流动沸腾来说,膜态沸腾又分为反环状流和弥散流。

17、“长大”:多发生在低于350°C 的环境下,它会使燃料芯块变形,表面粗糙化,强度降低,以至破坏。

18、“肿胀”:大于400℃时,由裂变气体氪和氙在晶格中形成小气泡引起的,随着燃耗的增加,气泡的压力增加,结果就是得金属铀块肿胀起来。

肿胀是指材料因受辐照而发生体积增大的现象。

19、弥散体燃料:是用机械方法把燃料弥散在热导率高、高温稳定性好的基体金属中制成的材料。

20、输热过程:指当冷却剂流过堆芯时,将堆内裂变过程中所释放的热量带出堆外的过程。

21、易裂变核素:可以由任何能量的中子引起裂变的核素,如铀-235、铀-233、钚-239,只有铀-235是天然存在的,占0.714%;可裂变核素:能在快中子的轰击下引起裂变的核素,如钍-232,铀-238;可转换核素:能转化为易裂变核素的核素,如钍-232,铀-238可分别转化为铀-233和钚-239.第四章 堆内流体的流动过程及水力分析22、空泡份额:蒸汽的体积与汽液混合物总体积的比值。

gfg U UU +=α23、含汽量(含汽率):静态含汽量s x = 汽液混合物内蒸汽的质量/汽液混合物的总质量 流动含汽量x = 蒸汽的质量流量/汽液混合物的总质量流量 平衡态含汽量fgfs e h h h x )(-=24、滑速比:f g V V S /=25、两相流流型:在受热通道中,汽水混合物的气相和液相同时流动,可以形成各种各样的形态,即所谓的流动结构,这些流动结构通常就称之为流型。

两相流流型主要有泡状流、弹状流、环状流、滴状流四种。

泡状流:液相是连续相,汽相以气泡的形式弥散在液相中,两相同时沿通道流动。

弹状流:它是柱状气泡和块状液团在通道的中心部分交替出现的流动。

环状流:液相在壁管上形成一个环形的连续流,而连续的汽相则在管道的中心部分流动,在液环中还弥散着气泡,在汽相中也夹带着液滴。

滴状流:通道内的流体变成许多细小的液滴悬浮在蒸汽主流中随着蒸汽流动。

26、均匀流模型:假设两相均匀混合,把两相流动看作为某一个具有假想物性的单相流动,该假想物性与每一个相的流体特性有关。

(两相流模型)27、分离流模型:假设两相完全分开,把两相流动看作为各相分开的单独的流动,并考虑相间的作用。

(4.2两相流体的流动压降) 28、摩擦倍增因子:29、自然循环:指在闭合回路内依靠热段(上行段)和冷段(下行段)中流体密度差所产生的驱动压头来实现的循环。

(4.3自然循环)地位:对反应堆系统来说,如果堆芯结构和管道系统设计得合理,就能够利用这种驱动压头推动冷却剂在一回路中循环,并带出堆内的热量。

30、临界流:当流体自系统中流出的速率不再受下游压力下降的影响时,这种流动就称为临界流或阻塞流。

(4.4冷却剂的喷放)重要性:破口处的临界流量决定了冷却剂丧失的速度和一回路卸压的速度,它的大小不仅直接影响到堆芯的冷却能力,而且还决定各种安全和应急系统开始工作的时间。

31、流动不稳定性:指在一个质量流密度、压降和空泡之间存在着耦合的两相系统中,流体受到一个微小的扰动后所产生的流量漂移或者以某一频率的恒定振幅或变振幅进行的流量振荡。

32、密度波不稳定性:由于流量、密度和压降之间相互关系的延迟和反馈效应。

(4.5) 第五章 堆芯稳态热工分析33、多项流:多种物相在同一个系统内一起流动(我们讨论汽水两相流)。

34、折合速度:指当两相混合物中的任一相作为单独流过整个管道截面时的速度。

35、DNBR :即临界热流密度比。

(5.1热工设计准则)DNBR=(利用专门公式计算得到的堆内某处的临界热流密度)/(该处的实际热流密度) DNBR (z )沿着冷却剂通道是变化的,其最小值就是最小DNBR 36、热管:热管是堆内具有最大焓升的冷却剂通道。

37、热点:热点是燃料元件上限制堆芯功率输出的局部点。

(5.3) 38、闭式通道:相邻通道的冷却剂之间不存在质量、动量和能量的交换,反之称为开式通道。

第六章 堆芯瞬态热工分析39、失流事故:当反应堆带功率运行时,如果主循环泵因动力电源故障或机械故障而被迫突然停止运行,致使冷却剂流量迅速减少时,就发生失流事故。

40、冷却剂丧失事故:一回路压力边界的任何地方发生破裂,或安全阀及卸压阀卡开等都会造成冷却剂流失,这种事故统称为冷却剂丧失事故,对于水冷反应堆,也叫失水事故。

第二部分 简答题 1、压水堆的热工设计准则有哪些?(第五章)答:1、燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。

2、燃料元件外表面不允许发生沸腾临界。

3、必须保证正常运行工况下燃料元件和堆内构件能得到充分冷却;在事故工况下能提供足够的冷却剂以排出堆芯余热。

4、在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。

2、流动不稳定性对系统有哪些危害?(第四章)答:1、流量和压力振荡所引发的机械力会使部件产生有害的机械振动,而持续的机械振动会导致部件的疲劳损坏。

2、流动振荡会干扰控制系统。

在冷却剂同时兼作慢化剂的反应堆中,流动振荡引起反应堆特性的快速变化,使得这一问题变得更为突出。

3、流动振荡会使部件的局部热应力产生周期性变化,从而导致部件的热疲劳破坏。

4、流动振荡会使系统内的传热性能变坏,极大地降低系统的输热能力,并使临界热流密度大幅度下降,造成沸腾临界过早出现。

3、写出棒状燃料元件二氧化铀芯块的稳态和瞬态导热方程,并解释方程中各物理变量的物理意义。

(第三章) 答:稳态:0122=++uvq dr dt r drt d κ瞬态:τακ∂∂⋅=++tq drdt r drt d uv1122()p c ⋅=ρκα/为热扩散率(m2/s )4、压水堆燃料元件的传热,从芯块到冷却剂可以按照什么样的传热过程进行分析?各部分热阻都是什么?画出棒状燃料元件的轴向释热率分布、冷却剂的温度沿轴向的分布、包壳外表面沿轴向的分布、芯块中心温度沿轴向的分布。

答:导热->对流换热->输热;热阻暂略;作图见后5、大破口失水事故发生的事件序列有哪些?各个阶段有何特点? 答:四个阶段:喷放、再灌水、再淹没和长期冷却;特点暂略6、简述单通道模型反应堆热工设计的一般步骤和方法。

答:一、商定有关热工参数。

二、确定燃料元件参数。

三、根据热工设计准则中规定的内容进行有关的计算1、计算平均管冷却剂的质量流密度。

2、计算平均管冷却剂的比焓场。

3、计算平均管的各类压降。

4、计算热管的有效驱动压头和冷却剂的质量流密度。

5、计算热管的冷却剂焓场。

6、计算最小DNBR。

7、计算燃料元件的温度。

四、技术经济评价。

五、热工水力实验。

7、气液两相流的流量漂移静态不稳定性产生的原因是什么?画图分析。

答:压降特性曲线的斜率小于驱动压头特性曲线的斜率;图略8、适当选择核电厂反应堆热工参数以降低电能成本::提高冷却剂的工作压力;提高冷却剂的流量;适当选定堆冷一、提高动力循环热效率t却剂的工作温度。

二、提高堆芯的功率密度三、增加核燃料的燃耗深度四、减少核电厂的厂用电五、降低设备投资费用9、停堆后反应堆芯的热量来源:1、燃料棒内存储的显热2、剩余中子引起的裂变3、裂变产物的衰变及中子俘获产物的衰变10、影响管间脉动的主要因素:(1)压力:压力越高,蒸汽和水的比体积相差越小,局部压力升高等现象越不易发生,因而脉动的可能性也就越小。

(2)出口含汽量:出口含汽量越小,汽-水混合物体积的变化也越小,流动就越稳定。

(3)热流密度:热流密度越小,汽水混合物的体积由热流密度的波动而引起的变化也就越小,脉动的可能性也就越小。

(4)流速:进口流速越大,阻滞流体流动的蒸汽容积增大现象就越不易发生,因而可以减轻或避免管间脉动。

11、试导出α、x 与 S 的关系式: 推导如下:()⎪⎪⎭⎫ ⎝⎛∙-+=⇒∙-=-=-→-=-=⇒=-==⇒=-=⇒+=S v v xx Sv v xx V v xW V v W x V v W x V W x A V A W x V v xW V xW A V A xW A A A A A g l gl gg t l lt llt l l tl l l l t gg t gg t g g g g t gl lg g )1(11)1()1(11)1()3)(2()3(***)1()1(1)2(***)1(***11ααρρρραα有:12、在一垂直的均匀受热的圆管中,过冷水由进口向上流动,在出口处处于过热状态,叙述水在圆管中流动时所经历的两相流的流型,并简要介绍他们的特点。

相关文档
最新文档