证明不等式的方法.doc第二稿修稿
证明不等式的几种方法

证明不等式的几种方法淮安市吴承恩中学 严永飞 223200摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特.关键词:不等式,公式法,构建模型法前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题.例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥23 分析 如果先通分再去分母,则不等式将变得很复杂.令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC .欲证不等式可化为 C B A +2+A C B +2+BA C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ),而当b >0时, a 2/b ≥b a 22λλ-.(*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1).令λ=21时,C B A +2+AC B +2+ B A C +2≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.)例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n ny y +1+n n z z +1=1 求证:n x x +1+n y y +1+n zz +1≤n n 12-证明 令P x n =+11, Q y n =+11, R z n=+11 由于n n x x +1+n ny y +1+n n z z +1=n n x x +-+111+n n yy +-+111+n n z z +-+111 =R Q P -+-+-111 =1所以2=++R Q P由于()1-++n R Q P =()1-++n R Q P ()n n n Rz Qy Px ++≥()n Rz Qy Px ++ 故 Rz Qy Px ++≤()nn R Q P /1-++即 n x x +1+n y y +1+n z z +1≤n n 12- 这里用到定理:(∑=m i i a 1)n-1 ∑=m i ni i x a 1 ≥ (∑=m i i i x a 1)n注 利用倒数变换不等式,可以使要证的不等式变得相对简单,使我们能够更好的去观察不等式,与我们熟悉的不等式相联系,从而达到解题的目的. 2 建立概率模型证明不等式从表面上看概率与证明不等式没有太大关系,但在做题过程中可以发现题目中的细枝末节,运用发散思维,可以使两者建立联系.例 3 证明:1--A a A +)2)(1()1)((-----A A a A a A +…+a a A a A )1()1(12)(+-⋅- <aA (+∈Z a A ,且 a A >)分析:仔细观察不等式,发现其中有阶乘的形式,因而我们可以试着去建立概率模型去证明不等式.证明:建立A 个球其中a 个黑球的模型,不放回的摸球,直到摸到黑球为止.第一次摸到黑球的概率是Aa ,第二次摸到黑球的概率是A a A -·1-A a ,…,第1+-a A 次摸到黑球的概率是A a A -·11---A a A ·…a a ,而最多到第1+-a A 次一定会摸到黑球,设i E ={第i 次摸到黑球},则{黑球在第1次到第1+-a A 次中取到}为一必然事件,其概率为1.即 P(1E )+P(E 12E )+…+P(E 12E …a A E -1+-a A E )=1所以有A a +A a A -·1-A a +…+A a A -·11---A a A ·…a a =1 两边同乘a A ,得1+1--A a A +)2)(1()1)((-----A A a A a A +…+a a A a A )1()1(12)(+-⋅- =a A 即 1--A a A +)2)(1()1)((-----A A a A a A +…+a a A a A )1()1(12)(+-⋅- <aA 注:建立概率模型证明不等式,新颖独特,但只要我们在学好各类知识点的基础上,开动脑筋,广泛联系,一定能够触碰出思维的火花.3 灵活运用重要不等式解题重要不等式是中学数学证明不等式的重要方法,但不能拘泥与我们所记忆的内容,对它们的变形也要熟悉,达到灵活应用.例 4 设n S = ∑=n k k11 ,求证:n (1+n )n 1-n < n S < n -(1-n )n -11+n (2>n )证明 由均值不等式得,当2>n 时n 1(n S +n )= n 1[(1+1)+ (1+21)+ (1+31)+…+ (1+n1)] > (2·23·34…n n 1+)n 1 =(1+n )n 1 即 n (1+n )n1-n < n S另一方面, 11-n ( n -n S )= 11-n [(1-1)+ (1-21)+ (1-31)+…+ (1-n1)] >(21·32·…·nn 1-)11-n = n -11+n 即 n S < n -(1-n )n -11+n 所以 n (1+n )n 1-n < n S < n -(1-n )n -11+n (2>n )例 5 求证:(1+1)(1+31)(1+51)…(1+121-n ) >12+n 分析:仔细观察不等式发现有12,34,56,… , 122-n n 联想到高中数学竞赛中有一个重要不等式---“糖水不等式”:b a <mb m a ++ (0,0><<m b a ). 针对此题可以逆用为 a b >ma mb ++ (0,0><<m b a ),进一步逼近目标. 证明:由于a b >ma mb ++ (0,0><<m b a )则 (1+1)(1+31)(1+51)…(1+121-n ) =12×34×56×78… ×122-n n >1112++×1314++×1516++×1718++… ×11212+-+n n =23×45×67×89×…×nn 212+ =21×43×65×87×…×nn 212-×(2n+1) 所以 (12×34×56×78… ×122-n n )2 >2n+1 即 (1+1)(1+31)(1+51)…(1+121-n ) >12+n 注 掌握重要不等式是解题的关键.实践证明,复杂的不等式大多数都是由重要不等式整和、加工而成.因而一方面要掌握重要不等式,另一方面对它们的一些简单变形也要熟悉.4 构造向量证明不等式向量的乘法公式是向量的重要公式之一,通过对三角函数性质的熟悉,可以把公式中的等式形式变化成不等式形式,构造向量模型证明不等式.例 6 设c b a ,,∈R + ,试证2b a +2c b +2a c ≥a 1+b 1+c 1 证明:构造向量:→P =(b a , c b , a c ) , →Q =(a 1,b 1,c1) 由→P 2·→Q 2≥(→P ·→Q )2得(2b a +2c b +2a c )(a 1+b 1+c 1)≥(b a ×a 1+c b ×b 1+a c ×c 1)2 即 2b a +2cb +2ac ≥a 1+b 1+c 1 (当且仅当c b a ==时,等号成立) 例 7 已知d c b a ,,,∈R + ,且1=+++d c b a求证:14+a + 14+b +14+c +14+d ≤42证明:构造向量: →P =(14+a ,14+b ,14+c ,14+d ) , →Q =(1,1,1,1) ,由→P ·→Q ≤ →P ·→Q 得 14+a +14+b +14+c +14+d ≤14141414+++++++d c b a ·1111+++ =)(44d c b a ++++·4=42当且仅当→P =→Q 即4/1====d c b a 时,等号成立.推广:若 +∈R x x x n ,,,21 ,且121=+++n x x x ,则 11+nx +12+nx +…+1+n nx ≤n2 (+∈N n ) 分析:构造向量: →P =(11+nx ,12+nx ,...,1+n nx ) →Q =(1,1, (1)证明方法类似上题.注 以上两例可以看出构造向量证明不等式问题方便、快捷,能否构造出合适的向量是解题的关键.这不仅要求我们熟练掌握向量的性质及公式,还要求我们广泛联系,学以致用.5 运用数学归纳法证明不等式很多题目表面上看特殊,但我们可以对题目进行归纳总结,使题目转化成另一个等价的命题,变成一类题目,便于我们证明和掌握.例 8 设数列{n x }满足1x =21,1+n x = n x +22nx n 证明:2007x <1004 分析 1004=212007+即命题可变为: 设数列{n x }满足n x =21 1+n x = n x +22nx n 证明:n x <21+n 证明 因为n =1时,显然 n x <21+n 成立, n =2时,2x =43<23显然也成立 所以仅对n ≥3时,用数学归纳法证明(1)当n =3时,3x =6457<213+成立 (2)假设k n =时,k x <21+k , 当 1+=k n 时,1+k x =k x +22k x k =22⎪⎭⎫ ⎝⎛+k k x k —42k因为 0<k x <21+k 所以 1+k x <(221k k k ++)2—42k =43+241k +k 21+2k =22+k —41+2421k k +=22+k —2242)1(kk --≤22+k 即 1+=k n 时成立由(1)(2)可知命题为真即当 n =2007时 2007x <1004例9.设0<a <1,定义1a =1+a ,1+n a =na 1+a ,求证:对一切自然数n 有n a >1 分析:若n a >1即1+n a >1,na 1+a >1,n a <a -11, 命题可变为:设0<a <1,定义1a =1+a ,1+n a = na 1+a 求证:对一切自然数n 有1<n a <a-11 证明 (1)1=n 显然成立 (2)假设k n =时成立,即1<k a <a -11,1—a <n a 1<1 当1+=k n 时,1+k a =a a k +1 即1+k a —a =ka 1 所以 a -1<1+k a —a <1 即1<1+k a <1+a因为 0<a <1 所以 0<1—2a <1所以 1<1+k a <1+a <a-11 即1+=k n 时成立, 由(1)(2)可知命题为真,即对一切自然数 n 有n a >1注 数学归纳法通常用于证明数列不等式,在使用数学归纳法之前要透过题目的表象,仔细理解其本质,归纳出论点,与相类似的题目联系,最终得到证明.6 逆用等比数列求和公式等比数列求和公式是中学数学的重要内容之一,把它与极限的思想紧密的联系在一起可以起到意想不到的效果,这种方法经历了一个从有限到无限再从无限到有限的过程.等比数列的求和公式为 1111-+++n q a q a a =qq a n --1)1(1(0<q <1) 无穷等比数列的求和公式为1111-+++n q a q a a +…=qa -11(0<q <1) 例 10 设任意实数y x ,满足x <1,y <1,求证:211x -+ 211y -≥xy -12 分析:从式子的结构联想到无穷递缩等比数列的求和公式,使211x -+ 211y-转化为无穷等比数列的各项和.211x -+ 211y -=( ++++8421x x x )+( ++++8421y y y ) =2+(22y x +)+(44y x +)+(88y x +)+…≥2+xy 2+222y x +442y x + (x)-12 总结 从以上问题的的探究过程中不难发现:遇到不等式证明的问题,我首先要做的就是反复观察题目,或者透过现象认识题目的本质,从而找到题目的突破口,或者观察不等式字母、数字的形态特征,与已知的重要不等式相联系、整合,达到解题的目的.这里所举的几种证明不等式的非常规方法看似巧妙,但如果你认真思考,广泛联系,学以致用,一定能使问题迎刃而解.。
高中数学 第二讲 证明不等式的基本方法 2.1 比较法课

2.1 比较法课堂导学三点剖析一,作差法证明不等式【例1】 (1)已知正数a,b,c成等比数列,求证:a2-b2+c2≥(a-b+c)2;(2)设a,b∈R,求证:a2+b2≥2(a-b-1).思路分析:证明不等式,通常可以看作是比较两式大小的问题.(1)证明:∵ac=b2,b>0,∴b=ac.∴a2-b2+c2-(a-b+c)2=a2-b2+c2-a2-b2-c2+2ab-2ac+2bc=2ab-2b2-2ac+2bc=2ab-4b2+2bca )2=2b(a-2b+c)=2b(c≥0.∴a2-b2+c2≥(a-b+c)2.(2)证明:∵a2+b2-2(a-b-1)=a2+b2-2a+2b+2=a2-2a+1+b2+2b+1=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1).温馨提示作差法证明不等式的步骤:作差—变形—判定符号—结论.这里变形的目的是能判断出差式的符号.为此有分解因式和配方两种变形方式,但是,不是每个问题都可用此两种变形方式.能分解因式确定符号的,配方就不能;不能分解因式的,往往能配方确定符号.各个击破类题演练1已知a,b是正数且a≠b,试探讨能否确定a3+b3与a2b+ab2的大小?解析:a3+b3-(a2b+ab2)=(a3-a2b)-(ab2-b3)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a+b)(a-b)2,∵a,b是正数,∴a+b>0.又∵a≠b,∴(a-b)2>0.∴(a+b)(a-b)2>0.∴a3+b3>a2b+ab2.变式提升1a,b,c满足怎样的条件能使a2b+b2c+c2a<ab2+bc2+ca2?解析:a2b+b2c+c2a-ab2-bc2-ca2=ab(a-b)-c(a2-b2)+c2(a-b)=ab(a-b)-(ac+bc)(a-b)+c2(a-b)=(a-b)(ab-ac-bc+c2)=(a-b)[a(b-c)-c(b-c)]=(a-b)(b-c)(a-c)<0,∴要使a 2b+b 2c+c 2a<ab 2+bc 2+ca 2,则a<b<c 或b<c<a 或c<a<b.温馨提示作差法证明是最基本的证明方法,变式越彻底,越有利于符号的判断.最后最好出现常数、平方、几个因式之积,再逐一论证各因式的符号,从而得出差式整体的符号.二、作商法证明不等式【例2】 已知a>b>c>0,求证:a 2a b 2b c 2c >a b+c b c+a c a+b .思路分析:证明这种含有幂指数乘积形式的不等式,往往通过作商与1比较大小较为容易.证明:∵a>b>c>0,∴a b+c b c+a c a+b >0. 作商b a a c c b c b a cb ac b a +++222=a 2a-b-c b 2b-c-a c 2c-a-b =a a-b a a-c b b-c b b-a c c-a c c-b =(c b c a b a c b c a b a ---)()()(.(*) ∵a>b>c>0,∴a -b>0,a-c>0,b-c>0,且1,1,1>>>c b c a b a . ∴(*)式大于1.从而a 2a b 2b c 2c >a b+c b c+a c a+b .温馨提示一般地,应用求商比较时,要注意两式均为正,若两式均为负时,可用同样的方法比较其绝对值的大小,即BA >1且B<0⇒A<B. 类题演练2已知a,b∈R +,求证:a a b b ≥a b b a .证明:a b ba b a b a =a a-b ·b b-a =(ba )a-b . ①当a>b>0时,b a >1,a-b>0, ∴(ba )a-b >1; ②当0<a<b 时,0<b a <1,a-b<0, ∴(ba )a-b >1; ③当a=b 时,b a =1,a-b=0,(ba )a-b =1. 总之,a a b b ≥a b b a.变式提升2 若a>b>0,求证: ba b a b a b a +->+-2222. 证明:(作商法) ∵ba b a b a b a b a ab b a b a b a b a b a b a ba b a b a b a +->+-∴>++=++=-+⨯+-=+-+-22222222222222222,121)(三、不等式在实际问题中的应用【例3】 甲、乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m≠n,问甲、乙两人谁先到达指定地点?思路分析:设从出发地点至指定地点的路程为s ,甲、乙两人走完这段路程所用的时间分别为t 1、t 2.要回答题中的问题,只要比较t 1、t 2的大小就可以了,谁用时较少谁就先到达指定地点.解:设从出发地点至指定地点的路程是s ,甲、乙两人走完这段路程所用的时间分别为t 1、t 2,依题意得n t m t 2211+=s,ns m s 22+=t 2, ∴t 1=nm s +2,t 2=mn n m s 2)(+, t 1-t 2=mm n m s n m s 2)(2+-+ =mnn m n m s mn n m n m mn s )(2)()(2])(4[22+--=++- ∵s、m 、n 都是正数,且m≠n,∴(m -n)2>0,(m+n)mn>0,即t 1-t 2<0.∴t 1<t 2.从而知甲比乙先到达指定地点.温馨提示实际应用题的特点往往是没有具体数据,给出的一点点数据也是字母.这就需要在求解问题时,设出必要的量,然后用代数式把实际问题表达成纯数学问题.这一过程叫数学建模.数学建模是解答实际应用题的关键.解实际应用问题的困难在于能否顺利地建模.建模的第一步设量是建模的关键.类题演练3有甲、乙两个粮食经销商,各自在同一处购了两次粮食(每次粮价不同).甲每次购粮m kg ,乙每次购m 元粮食.试问甲、乙两个粮食经销商的购粮平均价格哪一个更低?解析:设两次粮价分别为每千克a 元和b 元,甲两次购粮共花去(ma+mb)元,购得2m kg 的粮食,其平均粮价为22b a m mb ma +=+.乙两次购粮共花去2m 元,得到的粮食为(bm a m +)千克,故平均每千克粮价为ba b m a m m 1122+=+. ∵b a b a 1122+>+, ∴乙的平均价格更低一些.变式提升3本节情景导入问题.解析:设信鸽在无风中飞行的速度是V,风速是v(v<V),那么信鸽顶风的速度是V-v,顺风的速度是V+v.设两村间距离为s,那么信鸽在无风时飞行两村来回的时间为V s 2,有风时,飞行两村来回的时间为v V s ++222vV sV v V s -=-. ∴2222222122Vv V v V v V sV V s -=-=-÷<1. 又222222,02v V sV V s vV sV -<∴>- 答:信鸽在甲,乙两村之间飞行一个来回,无风时用的时间比有风时(顶风和顺风)用的时间少.温馨提示先设出必要的量,表达出要比较的两个时间,是数学建模的关键.要学会建模,需要先熟练地列出各种代数式.。
证明不等式的基本方法

x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
基本不等式的20种证明方法

基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
高考数学 选修45 第二节证明不等式的基本方法、数学归纳法与不等式证明课件 理(1)

1.不等式的证明方法
(1)比较法
①作差比较法
知道a>b a-b>0,a<b a-b<0,因此欲证a>b,即证 _a-__b_>_0_.
②作商比较法
由a>b>0 a >1,因此当a>0,b>0时,欲证_a_>_b_,即证 a >1.
b
b
(2)综合法与分析法 ①综合法 从已知的基本不等式出发,利用不等式的基本性质导出欲证不 等式,这种证明方法称为综合法. 所谓综合法就是由“_因__”导“_果__”,从_题__设__条__件__出发,利 用_已__知__定__义__、__公__理__、__定__理__等逐步推进,证得_所__要__求__证__的__结__论_ 的方法.
(2)用数学归纳法证明“ 1+1+1++ 1 <n(n∈N*,n>1)”
23
2n-1
时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的
项数是______.
【解析】应增加的项数为(2k+1-1)-(2k-1)=2k+1-2k=2k.
答案:2k
热点考向 1 应用比较法证明不等式
【方法点睛】
(4)放缩法 所谓放缩法是证明不等式时,通过把不等式中的某些部分的值 _放__大__或_缩__小__,简化不等式,从而达到证明目的的方法.
【即时应用】
(1)设0<x<1,则 a 2x,b 1 x,c 1 中最大的一个是
1 x
_____.
(2)对实数a和x而言,不等式x3+13a2x>5ax2+9a3成立的充要条
比较法证明不等式的两种思路
证明不等式的常用技巧

证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
均值不等式的证明方法

均值不等式的证明方法第一篇:均值不等式的证明方法柯西证明均值不等式的方法 by zhangyuong(数学之家)本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。
一般的均值不等式我们通常考虑的是An≥Gn: 一些大家都知道的条件我就不写了x1+x2+ (x)n≥x1x2...xn我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:二维已证,四维时:a+b+c+d=(a+b)+(c+d)≥2ab+2cd≥4八维时:(a+b+c+d)+(e+f+g+h)≥4abcd+4efgh≥8abcdefghabcd=4abcd这样的步骤重复n次之后将会得到x1+x2+ (x2)n≥nx1x2...x2n令x1=x1,...,xn=xn;xn+1=xn+2= (x2)nx1+x2+ (x)n=A由这个不等式有nA+(2-n)Ann≥nx1x2..xnA2-nn=(x1x2..xn)2An1-n2n即得到x1+x2+ (x)n≥nx1x2...xn这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:例1:n若0<ai<1(i=1,2,...,n)证明∑i=111-ai≥n1-(a1a2...an)n例2:若ri≥1(i=1,2,...,n)证明∑i=11ri+1≥n1+(r1r2...rn)n这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法:给出例1的证明:当n=2时11-a1+11-a2≥⇔(1--a1-a2)≥2(1-a1)(1-a2)设p=a1+a2,q=⇔(1-q)(2-p)≥2(1-p+q)⇔p-2q+pq≥2q⇔p(1+q)≥2q(q+1)⇔p≥2q,而这是2元均值不等式因此11-a1≥+11-a22n+11-a3+11-a4≥+此过程进行下去n≥因此∑1-ai1-(a1a2...a2n)2n令an+1=an+2=...=a2n=(a1a2...an)n=Gn有∑i=1n11-ai11-ai+(2-n)n11-G≥nn2-nn=n1-(GG≥n1-Gn)n1-G即∑i=1例3:已知5n个实数ri,si,ti,ui,vi都>1(1≤i≤n),记R=T= nn∑r,Sii=1nn∑sii1nn∑t,Uii=1nn∑uii,V=1nn∑v,求证下述不等式成立:ii∏i=1(risitiuivi+1risitiuivi-1)≥(RSTUV+1RSTUV-1)n要证明这题,其实看样子很像上面柯西的归纳使用的形式其实由均值不等式,以及函数f(x)=ln因此e+1e-1xx是在R上单调递减RSTUV≥=(RSTUV+1RSTUV-1)≤n我们要证明:n∏(rstuvi=1iiiirisitiuivi+1i-1)≥证明以下引理:n∏(xi=1xi+1ix2+1x2-1n-1)≥n=2时,⇔(令A=x1+1x1-1)()≥2⇔A(x1x2+1+x1+x2)+(x1+x2+1+x1x2)-2A(x1x2+x1+x2+1)≥A(x1x2+1-x1-x2)+(1+x1x2-x1-x2)+2A(x1x2+1-x1-x2)⇔(A+1)(x1x2+1)≥2A(x1x2+1)显然成立2-nnn因此∏(i=1xi+1xi-1n)•(G+1G-1)2-nn≥(GGGGnnnn+1-12-n2n),G=n=(G+1G-1n)因此∏(i=1xi+1xi-1n)≥所以原题目也证毕了这种归纳法威力十分强大,用同样方法可以证明Jensen:f(x1)+f(x2)≥f(x1+x2),则四维:f(x1)+f(x2)+f(x3)+f(x4)≥2f(x1+x2)+2f(x3+x4)≥4f(x1+x2+x3+x4)一直进行n次有f(x1)+f(x2)+...+f(x2n)n≥f(x1+x2+ (x2)n),令x1=x1,...,xn=xn;xn+1=xn+2= (x2)nx1+x2+ (x)nn=A有f(x1)+...+f(xn)+(2-n)f(A)nn≥f(nA+(2-n)An)=f(A)所以得到f(x1)+f(x2)+...+f(xn)n≥f(x1+x2+ (x)n)所以基本上用Jensen证明的题目都可以用柯西的这个方法来证明而且有些时候这种归纳法比Jensen的限制更少其实从上面的看到,对于形式相同的不等式,都可以运用归纳法证明这也是一般来说能够运用归纳法的最基本条件第二篇:常用均值不等式及证明证明常用均值不等式及证明证明这四种平均数满足Hn≤Gn≤An≤QnΛ、ana1、a2、∈R+,当且仅当a1=a2=Λ=an时取“=”号仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,中学常用均值不等式的变形:(1)对实数a,b,有a2+b2≥2ab(当且仅当a=b时取“=”号),a,b>0>2ab(4)对实数a,b,有a(a-b)≥b(a-b)a2+b2≥2ab≥0(5)对非负实数a,b,有(8)对实数a,b,c,有a2+b2+c2≥ab+bc+aca+b+c≥abc(10)对实数a,b,c,有均值不等式的证明:方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。
证明不等式的八种方法

利用导数证明不等式的八种方法构造函数法---1研究其单调性2 极值、最值与0的关系 张红娟学习所得 2012.10.181、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明不等式的方法李婷婷德宏师专数学系09数(乙) 云南芒市 678400摘要: 在我们数学学科中,不等式是十分重要的内容,在初等数学和高等数学中都占有重要位置。
证明不等式则是不等式知识中的重要内容,如何证明不等式呢?在本文中,我分别从初等数学和高等数学中总结了一些证明不等式的方法。
在初等数学中,分别从作差法、构造法、函数法、逆推法、综合法、放缩法、数学归纳法、换元法、三角代换法、判别式法、分解法、作商法等等方法中探讨不等式的证明;在高等数学中,利用柯西不等式、均值不等式、中值定理来探讨。
证法因题而异,灵活多变,技巧性强。
通过学习这些证明方法,使我们进一步掌把握不等式证明,可以帮我们解决生活中的许多实际问题。
关键字:不等式;数学归纳法;函数;单调性不等式的证明可分为推理性问题和探索性问题,推理性问题是指在特定条件下,阐释证明过程,解释内在规律,基本方法有比较法,分析法,综合法;探索性问题大多是与自然数有关的证明问题,常采用观察—归纳—猜想—证明的方法思路,以数学归纳法完成证明,不等式证明还有三种方法:换元法,构造法,放缩法。
不等式的证明没有固定的程序,证法因题而易,灵活多变,技巧性强。
其最基本的方法是应用定义及基本性质,并通过代数变换予于证明。
1不等式的基本性质1.1不等式的概念:表示不相等关系的式子。
实数集内的任意两个数b a ,总是可以比较大小的,如果b a -是正数,则b a >;如果b a -是零,则b a =;如果b a -是负数,则b a <。
反过来也对。
即有 a ≧b 0≥-⇔b a 这里符号⇔表示等价于。
这个定义虽然简单,实际它反映不等式的性质。
许多不等式的证明,是从这个定义出发。
首先,根据不等式的定义,容易证明下述不等式的简单性质,这些性质是证明其他不等式的基本工具。
1.2b a >a b <⇔(对称性)1.3若b a >,c b >,则c a >(传递性)1.4若b a >,则c b b a +>+(加法保序性)1.5若b a >,0>c ,则bc ac >(乘正数保序性)1.6若b a >,d c >,则.a c b d +>+若b a >,d c <,d b c a ->-.0>>b a ,0>>d c ,则bd ac >.1.7若b a >,0>ab ,则.11b a <1.8若0>>b a ,0>>c d ,则.d b c a >1.9若0>>b a ,.,N n n n n b a b a n >>∈,则1.10若0>>b a ,m ,.,N nm n m n m n m b ab a n --<>∈,则 1.11含绝对值的不等式 ()()()........4.3.0)2((1)1212222n n a a a a a b a b a b a a x a x a x a a x ba xb a a b x ax a a x a x ++≤++++≤±≤--≤≥⇔≥⇔>≥-≤≤--⇔≤+<<-⇔<⇔≤或1.12若,R ,∈b a 则().0,022≥-≥b a a1.13若,+∈R ,b a 则.2ab b a ≥+符号当且仅当b a =时成立。
由这个不等式还可以得到另一些常用的不等式:()().,2,,22222++∈≥+∈+≤⎪⎭⎫ ⎝⎛+≤R b a b a a b R y x y x y x xy1.14若,,,+∈R c b a 则.33abc c b a ≥++符号当且仅当c b a ==时成立。
2 证明不等式的基本方法和技巧2.1 比较法比较法是证明不等式的最基本,最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
2.1.1 作差法在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.[例子] 已知b a 、+∈R ,求证:a b b a b a b a ≥,等号当且仅只当b a =时成立。
[分析] 由于要证的不等式关于b a ,对称,且式子不复杂,比较的式子都由字母a ,b 组成,左右两式存在公因式a b b b ,可考虑用作差法来做,作差判断符号。
[证明] 设0>≥b a . (),0,0≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a从而原不等式得证。
显然上面的不等式当且仅()b a b a b a b a ==--时等号成立,故原不等式当且仅当a b =时成立等号。
[评价] 因为做差法是根据差值的符号来判断,所以在 比较差值的时候容易出错,一定要谨慎。
2.1.2 作商法在证题时,一般在a ,b 均为正数时,借助1>b a a 或1<b a 来判断其大小, 步骤一般为:作商——变形——判断(大于1或小于1).[例子]已知2>a ,求证:()()1log log 1+>-a a a a[分析] 先判断不等号两边是否是正数。
因为2>a ,所以,()()01log ,01log >+>-a a a a ,这时我们可考虑用作商法来比较大小,利用对数函数公式,通过变形化简即可判断了 。
[证明] 由原题得:()()()()()()()()1log 1log 11log 1log 11log log 1+⋅-=-+=+-a a a a a a a a a a a a 又因为 ()()()()()()()[][]14log 41log 21log 1log 1log 1log 22222=<-=⎥⎦⎤⎢⎣⎡++-≤+⋅-aa a a a a a a a a a a 所以原式>1,故命题得证。
2.2 综合法利用某些已经证明过的不等式(例如算术平均数和几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法就是综合法。
[例子]c b a ,,为互不相容的正数,且1=abc ,求证:111a b c++> [分析] 因为1=abc 且c b a ,,为互不相容的正数。
观察前后的式子联想起我们所学的均值定理a+b ≥2ab 。
把1换成abc 的形式带入式子,化简之后就得bc+ac+ba,再根据学过的均值定理来构造式子,变形化简可证。
[证明] 化简过程为:111222bc ac ac ab ab bc bc ac ba a b c +++++=++=++>=所以111a b c++>故命题得证。
这样的方法主要靠平时知识的积累和应用。
2.3放缩法是要证明不等式A<B 成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法。
放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。
常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。
[例子] 求证:2222111171234n ++++< [分析] 此题不等号左边为同分子异分母的n 个分数和,分母的结构特点是逐渐以一递增,可利用我们学过的式子)1(112-<n n n 来做,缩小分母,扩大不等号左边的式子。
[证明] 21111(1)1n n n n n <=--- 2222211111111151171()().1232231424n n n n ∴++++<++-++-=+-<- [评析]此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
2.4 数学归纳法对于含有)(N n n ∈的不等式,当n 取第一个值时不等式成立,如果使不等式在)(N n k n ∈=时成立的假设下,还能证明不等式在1+=k n 时也成立,那么肯定这个不等式对n 取第一个值以后的自然数都能成立.[例子]:证明不等式().1131...2111N n n n n ∈>++++++ [分析]:此题是含有n 的不等式,可分析n=1时,当n=k 时,当n=k+1时三种情况来讨论,若在假设下都成立,那么足以说明n 在定义内取任何值都使原式成立。
[证明] ().11213312111,11>=+++++=n n n n 当 (),2k n =假设当不等式成立1111... 1.12334k k k k ++++>++++ 要证当1+=k n 时不等式成立,即()()()11111112...1 1.12313233341313234k k k k k k k k k k ++++++->+>++++++++++2.5 换元法在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化. 主要有两种换元形式。
(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。
此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若122=+y x ,可设θθsin ,cos ==y x ;②若122≤+y x ,可设()10sin ,cos <<==r r y r x θθ;③对于含有的不等式,由于1≤x ,可设θcos =x ;④若xyz z y x =++,由C B A C B A tan tan tan tan tan tan =++知,可设C z B y A x tan ,tan ,tan ===其中π=++C B A 。
(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如0a >>>c b 等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。
如1=+b a ,可以用t b t a =-=,1进行换元。
[例1] 已知R y x ∈,且22221.2x y x xy y +≤+-≤求证[分析] 在式中有x 2y 2≤1不 等式,可联想到上面性质中的第②点:若122≤+y x ,可设()10sin ,cos <<==r r y r x θθ,化为三角函数来带入要证明的式子就较为简便。