练习——直线、平面平行的判定和性质

合集下载

线线、线面、面面平行练习题(含答案)

线线、线面、面面平行练习题(含答案)

DC A B B 1A1C 1直线、平面平行的判定及其性质 测试题A一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BD ≥+ B .()12MN AC BD ≤+C .()12MN AC BD =+ D .()12MN AC BD <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂ 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC .EPDCBA参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥ 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. SS AABBCCα α ββ(1)(2)DD如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面. 11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .OF ABCDP E。

直线、平面平行的判定和性质

直线、平面平行的判定和性质
又∵平面 ABEF∩平面 BCE=BE,
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.

直线与平面平行的判定及其性质 测试题(答案)

直线与平面平行的判定及其性质 测试题(答案)

直线与平面平行的判定和性质年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共26题,题分合计130分)1.直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件. A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要2.已知l 、m 、n 为两两垂直且异面的三条直线,过l 作平面α与m 垂直,则直线n 与平面α的关系是A.n //αB.n //α或n ⊂αC.n ⊂α或n 不平行于αD.n ⊂α3.能保证直线a 与平面α平行的条件是A.b a b a //,,αα⊂⊄B.b a b //,α⊂C.c a b a c b //////,,,αα⊂D.b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =4.如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行5.如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A.相交B.α//bC.α⊂bD.α//b 或α⊂b6.下列命题正确的个数是(1)若直线l 上有无数个点不在平面α内,则l ∥α(2)若直线l 与平面α平行,则l 与平面α内的任意一直线平行(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行 (4)若一直线a 和平面α内一直线b 平行,则a ∥α A.0个 B.1个 C.2个 D.3个7.若直线a ⊥b ,且a ∥平面α,则直线b 与平面α的位置关系是A.b ⊂αB.b ∥αC.b ⊂α或b ∥αD.b 与α相交或b ∥α或b ⊂α都有可能8.已知α、β是两个不同的平面,在下列条件中,可判断平面α与平面β平行的是A.α、β都垂直于平面γB.a 、b 是α内两条直线,且a ∥β,b ∥βC.α内不共线的三个点到β的距离相等D.a 、b 为异面直线,且a ∥α,b ∥α,a ∥β,b ∥β9.下列命题正确的个数是①若直线l 上有无数个点不在平面α内,则l ∥α②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行 ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点 A.0个 B.1个 C.2个 D.3个10.b 是平面α外的一条直线,下列条件中可得出b ∥α是A.b 与α内的一条直线不相交B.b 与α内的两条直线不相交C.b 与α内的无数条直线不相交D.b 与α内的所有直线不相交11.已知直线l 1、l 2,平面α,l 1∥l 2,l 1∥α,则l 2与α的位置关系是A.l 2∥αB.l 2⊂αC.l 2∥α或l 2⊂αD.l 2与α相交12.已知两条相交直线a 、b ,a ∥平面α,则b 与α的位置关系A.b ∥αB.b 与α相交C.b ⊂αD.b ∥α或b 与α相交13.下列命题中正确的是①过一点,一定存在和两条异面直线都平行的平面②垂直于同一条直线的一条直线和一个平面平行③若两条直线没有公共点,则过其中一条直线一定有一个平面与另一条直线平行 A.① B.③ C.①③ D.①②③14.a、b为平面M外的两条直线,在a∥M的前提下,a∥b是b∥M的A.充要条件B.充分条件C.必要条件D.以上情况都不15.α和β是两个不重合的平面,在下列条件中可判定平面α与β平行的是A.α、β都垂直于平面γB.α内不共线的三点到β的距离相等C.l,m是α平面内的直线,且l∥β,m∥βD.l、m是两条异面直线且l∥α,m∥α,m∥β,l∥β16.在空间中,下述命题正确的A.若直线a∥平面M,直线b⊥直线a,则直线b⊥平面MB.若平面M∥平面N,则平面M内任意一条直线a∥平面NC.若平面M与平面N的交线为a,平面M内的直线b⊥直线a,则直线b⊥平面ND.若平面N内的两条直线都平行于平面M,则平面N∥平面M17.设直线a在平面M内,则直线M平行于平面N是直线a平行于平面N的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件18.设a、b是平面α外的任意两条直线,则"a、b长相等"是"a、b在平面α内的射影长相等"的A.既不充分也不必要条件B.充分必要条件C.必要但不充分条件D.充分但不必要条件19.如果平面α和直线l满足l和α内两条平行直线垂直,则A.l αB.l∥αC.l与α相交D.以上都不对20.如果一条直线和一个平面平行,为了使夹在它们之间的两条线段的长相等,以下结论正确的是A.其充分条件是这两条线段平行B.其必要条件是这两条线段平行C.其充要条件是这两条线段平行D.其必要条件是这两条线段平行21.直线a∥平面α,平面α内有n条直线交于一点,那么这几条直线中与直线a平行的A.至少有一条B.至多有一条C.有且只有一条D.不可能有22.若直线m平面α,则“平面α∥平面β”是“直线m∥平面β”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件23.平行于同一个平面的两条直线的位置关系是A.平行B.相交C.异面D.平行或相交或异面24.下列四个命题中假命题的个数是①两条直线都和同一个平面平行,则这两条直线平行②两条直线没有公共点,则这两条直线平行③两条直线都和第三条直线垂直,则这两条直线平行④一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行A.4B.3C.2D.125.如果一条直线和一个平面平行,为了使夹在它们之间的两条线段的长相等,以下结论正确的是A.其充分条件是这两条线段平行B.其必要条件是这两条线段平行C.其充要条件是这两条线段平行D.其必要条件是这两条线段平行26.直线与平面平行的充要条件是这条直线与平面内的A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交二、填空题(共6题,题分合计25分)1.如图,空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 上的点.且32==CD CG CB CF ,若BD =6 cm ,梯形EFGH 的面积为28 cm 2,则平行线EH 与FG 间的距离为_______.2.一条直线与平面α相交于点A ,在平面α内不过A 点的直线与这条直线所成角的最大值为_________.3.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与过点A 、E 、C 的平面的位置关系是__________.4.几何体ABCD -A 1B 1C 1D 1是棱长为A 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =31a ,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =___________.5.如果两条直线a 与b 互相平行,且a ∥平面α,那么b 与α的位置关系是 .6.直线a ∥平面α,直线b 、c 都在α 内且a ∥b ∥c ,若a 到b , c 的距离分别为d 1、d 2,且d 1>d 2,则直线a 到α 的距离d 的取值范围是___________.三、解答题(共12题,题分合计112分)1.求证:若直线l与平面α有一个公共点,且l平行于α内的一条直线,则l α..2.如图,P是△ABC所在平面外一点,M∈PB,试过AM作一平面平行于BC,并说明画法的理论依据Array3.设AB、CD为夹在两个平行平面α、β之间线段,且直线AB、CD为异面直线,М、P分别为AB、CD的中点,求证:MP ∥α.4.ABCD-A1B1C1D1是棱长为a的正方体,(1)画出过A、C、B1的平面与下底面的交线l;(2)求l与直线AC的距离.5.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.6.平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.7.设a、b是异面直线,自AB的中点O作平面α与a、b分别平行,M、N分别是a、b上的任意两点,MN与α交于点P,求证:P是MN的中点.8.求证:如果一条直线和两个相交的平面都平行,那么这条直线和它们的交线平行.9.α∩β=c,α∩γ=b,β∩γ=a,若直线a∥直线b,你能得到什么结论?10.如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.11.如图,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.求证:MN∥平面AA1B1B.12.如图,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.(1)求证:EFGH是矩形.(2)点E在什么位置时,EFGH的面积最大.直线与平面平行的判定和性质答案一、选择题(共26题,合计130分)1.答案:A2.答案:A3.答案:A4.答案:B5.答案:D6.答案:A7.答案:D8.答案:B9.答案:B10.答案:D11.答案:C12.答案:D13.答案:B14.答案:B15.答案:D16.答案:B17.答案:A18.答案:A19.答案:D20.答案:A21.答案:B22.答案:A23.答案:D24.答案:A25.答案:A26.答案:C二、填空题(共6题,合计25分)1.答案:8 cm2.答案:90°3.答案:BD1∥平面AEC4.答案:a2 325.答案:b∥α或b α6.答案:) ,0(2 d三、解答题(共12题,合计112分)1.答案:见注释2.答案:见注释3.答案:见注释4.答案:. 26 a5.答案:见注释6.答案:见注释7.答案:见注释8.答案:见注释9.答案:见注释10.答案:见注释11.答案:见注释12.答案:(1)见注释(2)E为BD的中点时。

直线、平面平行的判定与性质

直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.

直线、平面平行的判定及其性质练习

直线、平面平行的判定及其性质练习

直线、平面平行的判定及其性质一、选择题:1.平面α与平面β平行的条件可以是( )A .α内有无穷多条直线都与β平行B .直线a ∥α,a ∥β且a ⊄α,a ⊄βC .直线a ⊂α,b ⊂β且α∥β,b ∥αD .α内任何中直线都与β平行2.下列命题中,错误的是( )A .平行于同一条直线的两个平面平行B .平行于同一个平面的两个平面平行C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交3.下列命题中,正确的是个数是( )①若两个不同平面不相交,那么它们平行 ②若一个平面内无数条直线都平行于另一个平面,则这两个平面平行 ③空间的两个相等的角所在的平面也平行。

A .0个B .1个C .2个D .3个4.下列结论中正确的是( )①α∥β,β∥γ,则α∥γ ②过平面外一条直线有且只有一个平面与已知平面平行③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行 ④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交A .①②③B .②③④C .①③④D .①②③④5.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A .平行B .相交C .相交或平行D .以上答案都不对二、填空题:6.一条直线和一个平面平行,过此直线和这个平面平行的平面有________个。

7.已知平面α、β和直线a 、b 、c ,且a ∥b ∥c ,a ⊂α,b 、c ⊂β,则α与β的关系是______________。

三、解答题:8.如图,正方体ABCD-A 1B 1C 1D 1中 ,M 、N 、E 、F 分别是棱A 1B 、A 1D 1、B 1C 1、C 1D 1的中点。

求证:平面AMN ∥平面EFDB 。

9.如图,A 、B 、C 为不在同一条直线上的三点,AA ′∥BB ′∥CC ′,且AA ′=BB ′=CC ′.求证:平面ABC ∥平面C B A '''。

直线平面平行的判定与性质 练习题

直线平面平行的判定与性质 练习题

直线、平面平行的判定与性质1.(2019·西安模拟)设α,β是两个平面,直线a ⊂α,则“a ∥β”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 依题意,由a ⊂α,a ∥β不能推出α∥β,此时平面α与β可能相交;反过来,由α∥β,a ⊂α,可得a ∥β.综上所述,“a ∥β”是“α∥β”的必要不充分条件,选B.2.(2019·四川名校联考)如图,正方体ABCD ­A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 由题可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,B Q =23BB 1,连接M Q ,NP ,P Q ,则M Q 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故M Q 綊NP ,所以四边形M Q PN 是平行四边形,则MN ∥Q P ,Q P ⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C ,则MN ∥平面BB 1C 1C ,故选B.3.(2019·枣庄诊断)如图,直三棱柱ABC ­A ′B ′C ′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 分别是边AA ′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 内部运动,并且始终有MP ∥平面ACC ′A ′,则动点P 的轨迹长度为( )A .2B .2πC .2 3D .4解析:选D 连接MF ,FH ,MH ,因为M ,F ,H 分别为BC ,AB ,A ′B ′的中点,所以MF ∥平面AA ′C ′C ,FH ∥平面AA ′C ′C ,所以平面MFH ∥平面AA ′C ′C ,所以M 与线段FH 上任意一点的连线都平行于平面AA ′C ′C ,所以点P 的运动轨迹是线段FH ,其长度为4,故选D.4.(2019·成都模拟)已知直线a ,b 和平面α,下列说法中正确的是( ) A .若a ∥α,b ⊂α,则a ∥b B .若a ⊥α,b ⊂α,则a ⊥bC.若a,b与α所成的角相等,则a∥bD.若a∥α,b∥α,则a∥b解析:选B 对于A,若a∥α,b⊂α,则a∥b或a与b异面,故A错;对于B,利用线面垂直的性质,可知若a⊥α,b⊂α,则a⊥b,故B正确;对于C,若a,b与α所成的角相等,则a与b相交、平行或异面,故C错;对于D,由a∥α,b∥α,则a,b之间的位置关系可以是相交、平行或异面,故D错.5.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MN Q不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以M Q∥CD,所以AB∥M Q .又AB⊄平面MN Q,M Q⊂平面MN Q,所以AB∥平面MN Q.同理可证选项C、D中均有AB∥平面MN Q.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接O Q,则O Q∥AB.因为O Q与平面MN Q有交点,所以AB与平面MN Q有交点,即AB与平面MN Q不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MN Q.故选A.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C 对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.7.如图所示,三棱柱ABC­A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形, ∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1.答案:18.已知正方体ABCD ­A 1B 1C 1D 1,下列结论中,正确的是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1; ③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D ,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④9.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF=MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:810.(2019·南宁毕业班摸底)如图,△ABC 中,AC =BC =22AB ,四边形ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ; (2)求几何体ADEBC 的体积.解:(1)证明:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别是EC ,BD 的中点, ∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA .又四边形ABED 为正方形,∴BE ∥AD ,BE =AD , ∴GM ∥NF 且GM =NF .∴四边形MNFG 为平行四边形.∴GF ∥MN ,又MN ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)连接CN ,∵AC =BC ,∴CN ⊥AB , 又平面ABED ⊥平面ABC ,CN ⊂平面ABC , ∴CN ⊥平面ABED .易知△ABC 是等腰直角三角形,∴CN =12AB =12,∵C ­ABED 是四棱锥,∴V C ­ABED =13S 四边形ABED ·CN =13×1×12=16.11.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,设DF 与GN 的交点为O , 则AE 必过DF 与GN 的交点O . 连接MO ,则MO 为△ABE 的中位线, 所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN . 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点, 所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD =2,PA ⊥平面ABCD ,E ,F 分别为AD ,PA 的中点,点Q 是BC上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PD Q ;(2)当BD ⊥F Q 时,求B QQ C的值.解:(1)证明:∵E ,Q 分别是AD ,BC 的中点, ∴ED =B Q ,ED ∥B Q ,∴四边形BED Q 是平行四边形, ∴BE ∥D Q.又BE ⊄平面PD Q ,D Q ⊂平面PD Q , ∴BE ∥平面PD Q ,又F 是PA 的中点,∴EF ∥PD , ∵EF ⊄平面PD Q ,PD ⊂平面PD Q , ∴EF ∥平面PD Q ,∵BE ∩EF =E ,BE ⊂平面BEF ,EF ⊂平面BEF , ∴平面BEF ∥平面PD Q. (2)如图,连接A Q ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD . ∵BD ⊥F Q ,PA ∩F Q =F ,PA ⊂平面PA Q ,F Q ⊂平面PA Q , ∴BD ⊥平面PA Q ,∵A Q ⊂平面PA Q ,∴A Q ⊥BD ,在矩形ABCD 中,由A Q ⊥BD 得△A Q B 与△DBA 相似, ∴AB 2=AD ×B Q , 又AB =1,AD =2, ∴B Q =12,Q C =32,∴B Q Q C =13.。

直线与平面平行的判定和性质练习

直线与平面平行的判定和性质练习

直线与平面平行的判定和性质(一)1.选择题(1)以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个(2)已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个(3)如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()(A)平行(B)相交(C)平行或相交(D)AB⊂α(4)已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l ()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交2.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ()(2)过平面外一点只能引一条直线与这个平面平行. ()(3)若两条直线都和第三条直线垂直,则这两条直线平行. ()(4)若两条直线都和第三条直线平行,则这两条直线平行. ()3.画图表示直线a,b与平面α的下列各位置关系(1)a⊂α(2)α∩a=A(3)a∥α(4)a⊄α,b⊂α且a∥b(5)a⊄α,b⊂α且a与b异面直线与平面平行的判定和性质(二)1.选择题(1)直线与平面平行的充要条件是()(A)直线与平面内的一条直线平行(B)直线与平面内的两条直线平行(C)直线与平面内的任意一条直线平行(D)直线与平面内的无数条直线平行(2)直线a∥平面α,点A∈α,则过点A且平行于直线a的直线()(A)只有一条,但不一定在平面α内(B)只有一条,且在平面α内(C)有无数条,但都不在平面α内(D)有无数条,且都在平面α内(3)若a⊄α,b⊄α,a∥α,条件甲是“a∥b”,条件乙是“b∥α”,则条件甲是条件乙的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(4)A、B是直线l外的两点,过A、B且和l平行的平面的个数是()(A)0个(B)1个(C)无数个(D)以上都有可能2.平面α与⊿ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面α3.空间四边形ABCD,E、F分别是AB、BC的中点,求证:EF∥平面ACD.4.经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B.5.试证过两异面直线a,b中的一条,且平行于另一条的平面有且只有一个.直线与平面平行的判定和性质(三)1.选择题(1)直线a,b异面直线,直线a和平面α平行,则直线b和平面α的位置关系是()(A )b ⊂α (B )b ∥α (C )b 与α相交 (D )以上都有可能(2)如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面( )(A )只有一个(B )恰有两个(C )或没有,或只有一个(D )有无数个2.判断下列命题的真假.(1)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交. ( ) (2)若直线l 与平面α不平行,则l 与α内任何一条直线都不平行.( )3.P 是长方体ABCD -A 1B 1C 1D 1中AC 面上的一点(1)画出经过P 、B 1、C 1的平面与长方体各侧面的交线; (2)画出经过P 、B 1、D 1的平面截长方体所得的截面; (3)以上各条与面的交线与平面A 1C 1是什么关系4.已知a ∥α,a ∥β,α∩β=l ,试判断a 与l 的位置关系,并证明之.5.过空间四边形ABCD 的边AB 、CD 、AD 的中点P 、Q 、R 的平面交BC 于S ,求证S 是BC 的中点.A 1B 1C 1D 1A BCDP。

直线与平面平行的判定和性质经典练习及详细答案

直线与平面平行的判定和性质经典练习及详细答案

平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又M是AD1的中点,
∴N是AE的中点.┄┄┄┄┄┄┄┄┄┄┄(10分) ∵△ABN≌△EDN,∴AB=DE. 即E是DC的中点. 综上所述,当E是DC的中点时,可使D1E∥平面 A1BD.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ ┄(12分)
6.在正方体ABCD-A1B1C1D1中,
棱长为1,M、N分别是面对角线AD1、BD上 的点,且AM=BN=x.
MN∥平面BCE.
[课堂笔记] 法一:过M作MP⊥BC,
过N作NQ⊥BE,P、Q为垂足(如图1), 连结PQ. ∵MP∥AB,NQ∥AB, ∴MP∥NQ. 又NQ= BN= CM=MP, ∴四边形MPQN是平行四边形.
∴MN∥PQ.又PQ⊂平面BCE,而MN⊄平面BCE,
∴MN∥平面BCE.
法二:过M作MG∥BC,交AB于G(如图2),连结NG.
线AB1,BC1上分别有两
点M,N.且B1M=C1N.求证MN∥平面 ABCD.
证明:法一:分别过M、N作MM′
⊥AB于M′,NN′⊥BC于N′,
连结M′N′. ∵BB1⊥平面ABCD, ∴BB1⊥AB,BB1⊥BC. ∴MM′∥BB1,NN′∥BB1. ∴MM′∥NN′,又B1M=C1N, ∴MM′=NN′.
故四边形MM′N′N是平行四边形, ∴MN∥M′N′, 又M′N′⊂平面ABCD,MN⊄平面ABCD, ∴MN∥平面ABCD.
法二:过M作MG∥AB交BB1于G,连接GN,则 , ∵B1M=C1N,B1A=C1B, ∴ ,∴NG∥B1C1∥BC.
又MNG∥平面ABCD,
∵α∥β,∴AC∥DE.
又P、N分别为AE、CD的中点, ∴PN∥DE.又PN⊄α,DE⊂α, ∴PN∥α. 又M、P分别为AB、AE的中点,
∴MP∥BE,且MP⊄α,BE⊂α,
∴MP∥α,又MP∩PN=P,∴平面MPN∥α. 又MN⊂平面MPN,∴MN∥α.
5. (2010· 济南模拟)(12分)如图,
(1)求证:MN∥平面CDD1C1
解:(1)证明:如右图所示,
过M作MR⊥AD,垂足为R,则 MR⊥平面ABCD,连结RN,则 RN⊥AD.过M、N分别作MQ⊥ D1D,NP⊥CD,垂足分别为Q、P,则MQ∥RD∥NP.
∵MD1=ND,
∴MQ RD NP, ∴MNPQ为平行四边形, ∴MN∥PQ,又MN⊄平面CDD1C1, ∴MN∥平面CDD1C1.
在直四棱柱ABCD-A1B1C1D1中,已
知DC=DD1=2AD=2AB,AD⊥DC, AB∥DC. (2)设E是DC上一点,试确定E的位置,使D1E∥平 面A1BD,并说明理由.
(2)连结AD1、AE,设AD1∩A1D= M,BD∩AE=N,连结MN, ∵平面AD1E∩平面A1BD=MN,
要使D1E∥平面A1BD,须使MN∥D1E,
证明:连结BC1,交B1C于点E,连结DE,则BC1与B1C互相 平分.
∴BE=C1E,又AD=BD, ∴DE为△ABC1的中位线,∴AC1∥DE. 又DE⊂平面CDB1,AC1⊄平面CDB1, ∴AC1∥平面CDB1
1.过三棱柱ABC—A1B1C1任意两条棱的中点作直线,其中
与平面ABB1A1平行的直线共有
条.
解析:各中点连线如图,只有面EFGH与面ABB1A1平行, 在四边形EFGH中有6条符合题意.
答案:6
2. 两个全等的正方形ABCD和ABEF 所在的平面相交于AB,M∈AC,
N∈FB,且AM=FN,求证:
∵MG∥BC,BC⊂平面BCE, MG⊄平面BCE, ∴MG∥平面BCE. 又∵AM=FN,AC=BF,


∴GN∥AF∥BE,同样可证明GN∥平面BCE. ∵MG∩NG=G, ∴平面MNG∥平面BCE.又MN⊂平面MNG, ∴MN∥平面BCE.
3.如图,正方体ABCD- A1B1C1D1中,侧面对角
7.在四面体ABCD中,M、N分别为△ACD和△BCD的重心, 则四面体的四个面中与MN平行的是 .
解析:如图所示,取CD中点E,连结
AE,BE,由于M、N分别是三角形的 重心,所以MN∥AB, ∴MN∥平面ABC,MN∥平面ABD. 答案:平面ABC,平面ABD
8.如图所示,在三棱柱ABC-A1B1C1中,D点为棱AB的中点. 求证:AC1∥平面CDB1.
又MN⊂平面MNG,∴MN∥平面ABCD.
4. 如图所示,两条异面直线BA、 DC与两平行平面α、β分别交于B、A 和D、C,M、N分别是AB、CD的中点. 求证:MN∥平面α.
[课堂笔记] 过A作AE∥CD交α于E, 取AE的中点P,
连结MP、PN、BE、ED.
∵AE∥CD,∴AE、CD确定平面 AEDC, 则平面AEDC∩α=DE,平面AEDC ∩β=AC,
相关文档
最新文档