四川省成都市八年级上学期数学期末试卷

合集下载

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷及答案解析

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷及答案解析

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题4分,共32分。

在每小题给出的四个选项中,1.(4分)下列各式:①,②,③,④,⑤中,最简二次根式有()A.1个B.2个C.3个D.4个2.(4分)在平面直角坐标系中,点A的坐标是(﹣2,3),点A关于y轴对称的点A'的坐标()A.(﹣2,﹣3)B.(2,﹣3)C.(3,﹣2)D.(2,3)3.(4分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()时间/小时78910人数3764A.8,8B.8,8.5C.9,8.5D.9,94.(4分)一次函数y=kx+b与y=x﹣2的图象如图所示,则关于x,y的方程组的解是()A.B.C.D.5.(4分)如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E,若∠A=23°,则∠CED =()A.57°B.63°C.67°D.73°6.(4分)如图,已知圆柱底面的周长为6m,圆柱高为3m,BC为底面圆的直径,一只蚂蚁在圆柱的表面上从点A爬到点C的最短距离为()m.A.B.C.D.7.(4分)《九章算术》是中国古代第一部数学专著,在其方程章中有一道题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱几何?”.题意大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50.如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各带了多少钱?若设甲带钱为x,乙带钱为y,则可列方程组()A.B.C.D.8.(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A.B.C.D.二、填空题:本大题共5个小题,每小题4分,共20分。

9.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的边长为.10.(4分)果农小明随机从甲、乙、丙三个品种的枇杷树中各选20棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.甲乙丙404039s2 2.3 2.7 2.311.(4分)如图,BD和CD是△ABC的角平分线,∠BDC=120°,则∠A=.12.(4分)在平面直角坐标系中,点O为坐标原点,点A(3,4),点B(0,5),直线y =kx+5恰好将△OAB平均分成面积相等的两部分,则k的值是.13.(4分)如图,在直角坐标系中,长方形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(﹣2,4),将矩形沿对角线AC翻折,B点落在D点的位置,那么点D的坐标为.三、解答题:本大题共5个小题,共48分。

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。

四川省成都市八年级(上)期末数学试卷(含解析)

四川省成都市八年级(上)期末数学试卷(含解析)

四川省成都市成华区八年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分)1.下列各数中,为无理数的是()A.B.C.D.2.关于的叙述正确的是()A.在数轴上不存在表示的点B.=C.与最接近的整数是2D.=3.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数4.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5B.∠1=∠3C.∠5=∠4D.∠1+∠5=180°5.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°6.二元一次方程组的解是()A.B.C.D.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<08.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.9.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k 的值为()A.B.C.﹣2D.210.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题:(每小题4分,共16分)11.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=.12.若|3x﹣2y+1|+=0,则xy的算术平方根是.13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.14.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是.三.解答下列各题(共54分)15.(10分)计算下列各题:(1)计算:×﹣(1﹣)2(2)计算:6×+(π﹣2019)0﹣|5﹣|﹣()﹣216.(10分)解下列方程组:(1)(2)17.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.19.(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y与x之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?20.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B 两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.一.填空题(每小题4分,共20分)21.函数y=﹣x的图象与函数y=x+1的图象的交点在第象限.22.如图,数轴上点A表示的数为a,化简:a+=.23.对于实数a,b,定义运算“※”:a※b=,例如3※4,因为3<4.所以3※4=3×4=12.若x,y满足方程组,则x※y=.24.如图,将长方形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长为.25.用若干个形状和大小完全相同的长方形纸片围成正方形.如图①所示的大正方形是由四个长方形纸片围成的,其中阴影部分小正方形的面积为12;如图②所示的大正方形是由八个长方形纸片围成的,其中阴影部分小正方形的面积为8;如图③所示的大正方形是由十二个长方形纸片围成的,则其中阴影部分小正方形的面积为.二.解答题(共30分)26.(8分)某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?27.(10分)(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.28.(12分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是二元一次方程组的解(OB>OC).(1)求点A和点B的坐标;(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.①当0<t<3时,求m关于t的函数关系式;②当m=时,求点P的横坐标t的值.参考答案与试题解析一.选择题(本大题共10个小题,每小题3分)1.【解答】解:,,是有理数,是无理数.故选:C.2.【解答】解:A、数轴上的点既可以表示有理数,也可以表示无理数,所以在数轴上存在表示的点,故选项错误;B、=2,故选项错误;C、与最接近的整数是3,故选项错误;D、=2,故选项正确.故选:D.3.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.4.【解答】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b,故选:B.5.【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.6.【解答】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.7.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.8.【解答】解:由题意可得,,故选:D.9.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.10.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题:(每小题4分,共16分)11.【解答】解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.12.【解答】解:∵|3x﹣2y+1|+=0,∴,解得:,则xy=2,2的算术的平方根是,故答案为:13.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.14.【解答】解:连接AD,如图,∵∠C=90°,AC=3,AB=5,∴BC==4,由作法得PQ垂直平分AB,∴DA=DB,设CD=x,则DB=DA=4﹣x,在Rt△ACD中,x2+32=(4﹣x)2,解得x=,即CD的长为.故答案为.三.解答下列各题(共54分)15.【解答】解:(1)原式=﹣(1﹣2+3)=2﹣4+2=4﹣4;(2)原式=2+1+5﹣3﹣4=2﹣.16.【解答】解:(1)②﹣①×2得:x=6,把x=6代入①得:y=﹣3,则方程组的解为;(2)①+②得:x=,解得:x=,把x=代入①得:y=﹣,则方程组的解为.17.【解答】解:(1)D组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.18.【解答】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=180°﹣40°﹣70°=70°.19.【解答】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y=kx+b,则,解得,,故函数关系式为y=3x﹣30;(3)由135=3x﹣30解得x=55,故12月份上网55个小时.20.【解答】解:(1)把C (m ,3)代入一次函数y =﹣x +5,可得3=﹣m +5,解得m =4,∴C (4,3),设l 2的解析式为y =ax ,则3=4a ,解得a =,∴l 2的解析式为y =x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =3,CE =4,y =﹣x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =×10×3﹣×5×4=15﹣10=5;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,∴当l 3经过点C (4,3)时,k =;当l 2,l 3平行时,k =;当l 1,l 3平行时,k =﹣;故k 的值为或或﹣.一.填空题(每小题4分,共20分)21.【解答】解:函数y =﹣x 的图象应该在二、四象限,函数y =x +1的图象在一、二、三象限,因此他们的交点一定在第二象限.22.【解答】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.23.【解答】解:方程组,①+②×4得:9x=108,解得:x=12,把x=12代入②得:y=5,则x※y=12※5==13,故答案为:1324.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++,故答案为:3++.25.【解答】解:图①中阴影边长为=2,图②阴影边长为=2,设矩形长为a,宽为b,根据题意得,解得,所以图③阴影面积为(a﹣3b)2=44﹣16,故答案为:44﹣16.二.解答题(共30分)26.【解答】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w=﹣10×90+2400=1500(元).最小答:12月份该店需要支付这两种水果的货款最少应是1500元.27.【解答】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.28.【解答】解:(1)方程组的解为:,∵OB>OC,∴OB=6,OC=5,∴点B的坐标为:(6,0),过点A作AM⊥x轴于M,如图1所示:∵∠OAB=90°且OA=AB,∴△AOB是等腰直角三角形,∴OM=BM=AM=OB=×6=3,∴点A的坐标为:(3,3);(2)①过点C作CN⊥x轴于N,如图2所示:∵t=4时,直线l恰好过点C,∴ON=4,CN===3,∴点C的坐标为:(4,﹣3),设直线OC的解析式为:y=kx,把C(4,﹣3)代入得:﹣3=4k,∴k=﹣,∴直线OC的解析式为:y=﹣x,∴R(t,﹣t),设直线OA的解析式为:y=k′x,把A(3,3)代入得:3=3k′,∴k′=1,∴直线OA的解析式为:y=x,∴Q(t,t),∴QR=t﹣(﹣t)=t,即:m=t;②分三种情况:当0<t<3时,m=t,m=,则t=,解得:t=2;当3≤t<4时,设直线AB的解析式为:y=px+q,把A(3,3)、B(6,0)代入得,解得:,∴直线AB的解析式为:y=﹣x+6,∴Q(t,﹣t+6),R(t,﹣t),∴m=﹣t+6﹣(﹣t)=﹣t+6,∵m=,∴﹣t+6=,解得:t=10>4(不合题意舍去);当4≤t<6时,设直线BC的解析式为:y=ax+b,把B(6,0)、C(4,﹣3)代入得,解得:,∴直线BC的解析式为:y=x﹣9,∴Q(t,﹣t+6),R(t,t﹣9),∴m=﹣t+6﹣(t﹣9)=﹣t+15,∵m=,∴﹣t+15=,解得:t=;综上所述,满足条件的点P的横坐标t的值为2或.。

2022-2023学年四川省成都市武侯区西川中学八年级(上)期末数学试卷

2022-2023学年四川省成都市武侯区西川中学八年级(上)期末数学试卷

2022-2023学年四川省成都市武侯区西川中学八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项1.(4分)下列各数中是无理数的是()A.3.5B.C.D.2.(4分)下列计算正确的是()A.B.C.D.3.(4分)下列句子是命题的是()A.作线段AB=aB.a与b谁大C.你喜欢数学吗D.任何一个三角形一定有直角4.(4分)点P(﹣3,5)关于y轴的对称点的坐标是()A.(﹣3,﹣5)B.(3,﹣5)C.(5,﹣3)D.(3,5)5.(4分)已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+3的图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定6.(4分)对于一次函数y=3x+2,①图象必经过点(﹣1,﹣1);②图象经过第一、二、四象限;③当x >1时,y<0;④y的值随着x值的增大而增大,以上结论正确的个数是()A.0个B.1个C.2个D.3个7.(4分)如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是()A.20B.﹣15C.﹣10D.58.(4分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分:共16分,答案写在答题卡上)9.(4分)函数y=的自变量x的取值范围是.10.(4分)如图,将长方形ABCD沿对角线AC折叠,得到如图所示的图形,点B的对应点是点B′,B′C与AD交于点E.若AB=2,BC=4,则AE的长是.11.(4分)如图,长方形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是.12.(4分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解是.三、解答题(本大题共6个小题,共52分,解答过程写在答题卡上)13.(12分)计算:(1);(2).14.(6分)解方程组:.15.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;(2)若△ABC与△A2B2C2关于直线成轴对称,且点A的对称点为A2(2,1),请画出直线l及△A2B2C2,并求出线段AA2的长度.16.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示:(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85(2)结合两队成绩的平均数中中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手的成绩较为稳定.17.(8分)已知:如图所示,AB∥CD,∠A=∠F,∠D=∠E.求证:AF⊥DE.18.(10分)如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.(1)求OB的长度;(2)设DP=y,CQ=x,4求y与x的函数表达式(不要求写自变量的取值范围);(3)当△OCQ是等腰三角形时,求CP的长度.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知方程组和的解相同,则2m﹣n=.20.(4分)定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=.21.(4分)已知,则值为.22.(4分)在直角坐标系中,如图所示,把∠BAO放在直角坐标系中,使射线AO与x轴重合,已知∠BAO =30°,OA=OB=1,过点B作BA1⊥OB交x轴于A1,过A1作B1A1⊥BA1交直线AB于点B1,过点B1作B1A2⊥B1A1交x轴于点A2,再过A2依次作垂线…,则△A1B1A2的面积为,△A n B n A n+1的面积为.23.(4分)如图,∠MON=90°,已知△ABC中,AC=BC=25,AB=14,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)甜蜜公司要把240吨白砂糖运往江浙的A,B两地,先用大小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨每辆和10吨每辆,运往A地的费用为:大车630元每辆,小车420元每辆,运往B地的费用为:大车750元每辆,小车550元每辆.(1)求这两种货车各多少辆?(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨.请你设计出使总运费最少的方案并求出最少的总运费?25.(10分)已知∠ACB=90°,AC=2,CB=4.点P为线段CB上一动点,连接AP,△APC与△APC′关于直线AP对称,其中点C的对称点为点C′.直线m过点A且平行于CB(1)如图①:连接AB,当点C落在线段AB上时,求BC′的长;(2)如图②:当PC=BC时,延长PC′交直线m于点D,求△ADC′面积;(3)在(2)的条件下,连接BC′,直接写出线段BC′的长.26.(12分)如图,已知直线l1:y=﹣x+8与直线l2:y=x交于点M,直线l1与坐标轴分别交于A,C两点.(1)分别求点A和点M的坐标;(2)在直线y=x上找一点D,使△ADM的面积等于△AOM的面积的2倍,求出点D的坐标;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB∥x轴交CM于点B.①在x轴上是否存在一点H,使得△PBH为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;②设点P的纵坐标为n,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF与△MOC 重叠部分的面积为S,求S与n之间的函数关系式,并写出相应n的取值范围.。

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数,,,中,无理数是( )A. B. C. D.2.估计的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间3.下列运算中,正确的是( )A. B. C. D.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市2023年12月某五天的空气质量指数:34,28,35,61,27,则这组数据的中位数是( )A. 34B. 28C. 35D. 275.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了4棵桂花树.分别以两条小路为x,y轴建立如图所示的平面直角坐标系,若A,B两处桂花树的位置关于x轴对称,点A的坐标为,则点B的坐标为( )A.B.C.D.6.如图,直线,,,则的度数为( )A.B.C.D.7.中国象棋文化历史悠久.如图是某次对弈的残图,如果在图中建立平面直角坐标系,使棋子“帅”位于点的位置,则经过棋子“帅”和“马”所在的点的一次函数解析式为( )A.B.C.D.8.的三边长a,b,c满足,则是( )A. 等腰直角三角形B. 等腰三角形C. 直角三角形D. 等边三角形二、填空题:本题共10小题,每小题4分,共40分。

9.已知是方程的一个解,则m的值是______.10.一次函数的图象一定不经过第______象限.11.某校在12月9日举办了以“不忘国耻振兴中华”为主题的合唱比赛,每支参赛队的最终成绩按歌曲内容占,演唱技巧占,精神面貌占进行考评.八一班参赛歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分,则八一班的最终成绩是______分.12.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛斛:古代容量单位;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x斛,小容器的容量为y斛,则可列二元一次方程组为______.13.如图,我国汉代数学家赵爽证明勾股定理时创制了一幅由4个全等的直角三角形和一个小正方形组成的“勾股圆方图”,后人称之为“赵爽弦图”.设直角三角形的直角边长为a,b,斜边长为c,若,,则每个直角三角形面积为______.14.计算:______.15.关于x,y的方程组的解满足,则m的值是______.16.如图,在中,,,点D为外一点,满足,,则的面积是______.17.如图,直线:与x轴交于点,与直线:交于点,过点作的垂线交x轴于点,过点作的平行线交于点,过点作的垂线交x轴于点,过点作的平行线交于点,…按此方法作下去,则点的坐标是______.18.如图,BD是边长为6的等边的高,E为BD上的动点,以CE为边长在CE的右上方作等边,连接DF,则的周长的最小值是______.三、解答题:本题共8小题,共78分。

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题一、单选题1.下列说法正确的是( ) A2 B .3-是27负的立方根 C .125216的立方根是56± D .()21-的立方根是1-2.下列函数中是正比例函数的是( ) A .7y x =-B . 7y x-=C .221y x =+D .0.65y x =-3.已知点(,3)P a b +、(2,)Q b -关于y 轴对称,则ab 的值是( ) A .-1B .2C .-3D .34x 的取值范围是( ) A .3x ≤B .3x <C .3x >D .3x ≥5.下列命题为真命题的是( ). A .若a 2=b 2,则a =b B .直角三角形的两锐角互余C .同位角相等D .若⎺x 甲=⎺x 乙,22S s >甲乙,则甲组数据更稳定6.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( ) A .垂直 B .平行 C .相交D .不能确定7.在平面直角坐标系中,点()34A ,绕原点O 逆时针旋转90︒得到点B ,点B 关于x 轴对称的点为C ,则点C 的坐标是( ). A .()43--,B .()43,C .()43-,D .()34--,8.一次函数y =﹣2x ﹣3的图象和性质.叙述正确的是( ) A .y 随x 的增大而增大 B .与y 轴交于点(0,﹣2)C .函数图象不经过第一象限D .与x 轴交于点(﹣3,0)二、填空题9.已知数据1x ,2x ,…,n x 的方差是3,则数据125x -+,225x -+,……,25n x -+的方差为.10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是.11.如图,在△ABC 中,AD 是BC 边上的高线,AE 是∠BAC 的平分线,且∠B=40º,∠C=60º,则∠EAD 的度数是.12.下面的图(2)是图(1)的侧面展开图一只小昆虫沿着圆柱的侧面,从A 点沿最短的距离爬到B 点,则B 点在图(2)中的位置是.(请填序号)13.如图,将ABC V 绕点A 逆时针旋转一定角度,得到ADE V .若63CAE ∠=︒,71E ∠=︒,且AD BC ⊥,则BAC ∠的度数为.三、解答题14.计算,解方程组: (1)()()()22012131π32-⎛⎫-+-⨯- ⎪⎝⎭;(2)25123150.20.3x yx y --⎧-=⎪⎪⎨+⎪-=⎪⎩.15.某校为了解学生每周参加家务劳动的情况,随机调查了该校部分学生每周参加家务劳动的时间.根据调查结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m 的值为______. (2)求统计的这组每周参加家务劳动时间数据的众数、中位数和平均数.(3)根据统计的这组每周参加家务劳动时间的样本数据,若该校共有800名学生,估计该校每周参加家务劳动的时间大于1h 的学生人数. 16.如图,已知直线AB 经过点(1,5)和(4,2).(1)求直线AB的解析式;(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有______个;(3)在图中作点(4,0)C关于直线AB的对称点D,则点D的坐标为_____;(4)若在直线AB和y轴上分别存在一点M、N使CMNV的周长最短,请在图中标出点M、N (不写作法,保留痕迹).17.曹州牡丹园售票处规定:入园门票每张80元.非节假日的票价打6折售票;节假日根据团队人数实行分段售票:不超过10人,则按原票价购买;超过10人,则其中10人按原票价购买,超过部分的按原票价打8折购买.某旅行社带团x人到牡丹园游览,设非节假日的购票款为y1元,在节假日的购票款为y2元.求:(1)当x>10时,y1、y2与x的函数关系式;(2)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到牡丹园游览,甲、乙两个团各25人,请问乙团比甲团便宜多少元?18.如图甲所示,已知直线139 42y x-+=与x轴和y轴分别相交于点A,B,直线2320y kx k k=+-≠()与y轴相交于点C,两直线交于点P.(1)求AOBV的面积;(2)如图乙所示,过点P作x轴的平行线交y轴于点D,若点B,C关于直线DP对称,求点C 的坐标;(3)当BCP V 是以BC 为腰的等腰三角形,求直线2y 的函数解析式.四、填空题1920.已知点A (3,0)和B (1,3),如果直线y =kx +1与线段AB 有公共点,那么k 的取值范围是.21.对于实数a ,b ,定义运算“◆”:),()a b a b ab a b ≥=<⎪⎩◆,例如32◆,因为32>,所以32◆x ,y 满足方程组2353210x y x y +=⎧⎨+=⎩,则()x y x =◆◆. 22.如图,ABC ABD ACE V V V 、、均为直角三角形,90ABC BAD ACE AB AD ∠=∠=∠=︒=,,AC CE AE =,与BD 交于点F ,若DF =EF =BC 边的长为.23.已知正比例函数y kx =(k =.五、解答题24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml 和500ml 的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元. (1)求甲、乙两种免洗手消毒液的单价.(2)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L 的免洗手消毒液全部装入最大容量分别为300ml 和500ml 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.25.如图,在平面直角坐标系中,一次函数4y x =+的图象与x 轴交于点A ,与y 轴交于点B ,与直线CD 交于点43E a ⎛⎫- ⎪⎝⎭,,C 点坐标为()02,.(1)求直线CD 的函数表达式;(2)平面内存在点F ,使得以A ,B ,D ,F 为顶点的四边形为平行四边形,请直接写出点F 的坐标;(3)直线AB 在E 点左侧部分上有一点P ,y 轴右侧有一动直线l y P 轴交AB 于M ,作直线PD 交l 于N ,是否存在点P 使得无论直线l 如何运动始终有PDE △与PMN V 相似,若存在请求出P 点坐标,若不存在请说明理由.26.定义:如图1,点,M N 把线段AB 分割成,AM MN 和BN ,若以,,AM MN BN 为边的三角形是一个直角三角形,则称点,M N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若2,3AM MN ==,求BN 的长.(2)如图2,在等腰直角ABC V 中, ,90AC BC ACB =∠=︒,点,M N 为边AB 上两点,满足45MCN ∠=︒,求证:点,M N 是线段AB 的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN △绕点C 逆时针旋转90︒试一试.请根据陈老师的提示完成第(2)小题的证明过程.。

2022-2023学年四川省成都市树德实验中学西区八年级上学期期末数学试卷及参考答案

2022-2023学年四川省成都市树德实验中学西区八年级上学期期末数学试卷及参考答案

2022-2023学年成都市树德实验中学西区初二数学第一学期期末试卷一、选择题1.下列各数: 2.1-0,π,125, 1.0200002-⋯(相邻两个2之间依次增加1个0),其中无理数有( ) A .1个B .2个C .3个D .4个2.点1(1,)A y -和点2(3,)B y -都在直线1y x =-+上,则1y 与2y 的大小关系为( ) A .12y y >B .12y y <C .12y y =D .12y y3.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D 4.满足下列条件的ABC ∆,不是直角三角形的是( ) A .222a b c =- B .::5:12:13a b c =C .C A B ∠=∠-∠D .::3:4:5A B C ∠∠∠=5.如图,根据尺规作图痕迹,判断数轴上点C 所表示的数是( )A .B .3.7C .3.8D 6.下列命题为真命题的是( )A .两直线被第三直线所截,同旁内角互补B .三角形的一个外角等于任意两个内角的和C .平行于同一条直线的两条直线平行D .若甲、乙两组数据的平均数都是3,20.8S =甲,2 1.4S =乙,则乙组数据较稳定 7.《九章算术》中有这样一个题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?其意思为:1斗优质酒价值50钱,1斗劣质酒价值10钱.用30钱恰好买得优质酒和劣质酒共2斗,问优质酒和劣质酒各能买得多少斗?设买优质酒x 斗,劣质酒y 斗,则可建立方程组为( ) A .2501030x y x y +=⎧⎨+=⎩B .2501030x yx y +=⎧⎨+=⎩C .2105030x y x y +=⎧⎨+=⎩D .2105030x yx y +=⎧⎨+=⎩8在实数范围内有意义,则一次函数(3)3y k x k =--+的图象可能是( )A .B .C .D .二、填空题9.比较大小:>”或“<” ).10.直线21y x =+的图象沿y 轴向下平移3个单位后得到的直线解析式为 . 11.已知平面直角坐标系中,点(3,8)P m 到坐标原点距离为10,则m 的值为 .12.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点(1,)P b ,则关于x ,y 的方程组1y x y mx n =+⎧⎨=+⎩的解是 .13.如图,长方形ABCD 纸片的边CD 上有一点E ,将长方形ABCD 纸片沿AE 折叠,点D 恰好落在BC 边上的点F 处,若5AB =,13AD =,则CF = .三、解答题(共5题,共48分)14.(14分)(10|1(1)π++. (2)解方程组:234521x y x y -=-⎧⎨-=-⎩.(3)已知a =b =,求22a ab b -+的值.15.已知在平面直角坐标系中有三点(2,1)A -,(3,1)B ,(2,3)C ,请回答如下问题: (1)在坐标系内描出点A 、B 、C 的位置,连接AB ,AC ,BC ;ABC ∆是 三角形;(2)画出ABC关于x轴对称的△A B C;111(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为5.若存在,请直接写出点P的坐标;若不存在,请说明理由.16.为弘扬向善、为善优秀品质,助力爱心公益事业,树西组织开展“人间自有真情在,爱心助力暖人心”慈善捐款活动,八年级全体同学参加了此次活动.随机抽查了部分同学捐款的情况,统计结果如图1和图2所示.(1)本次抽查的学生人数是,并补全条形统计图;(2)本次捐款金额的众数为元,中位数为元;(3)若树西八年级学生为300名,捐款总金额约有多少元?17.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”):甲的速度是米/分钟;(2)求出乙比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系式;(3)甲与乙何时相遇?18.如图,在平面直角坐标系中,一次函数的图象与x 轴交于点(4,0)A -,与y 轴交于点B ,且与正比例函数32y x =的图象交于点(,6)C m .(1)求m 的值与一次函数解析式;(2)如图,一动直线x t =分别与两直线交于P ,Q 两点,若2PQ =,求t 的值;(3)在y 轴上是否存在点M ,使得ABM ∆是以AB 为腰的等腰三角形?若存在,请求出符合条件的所有点M 的坐标;若不存在,请说明理由.四、填空题(共5个题,每题4分,共20分)19.已知2y =,则y x = .20.若关于x ,y 的二元一次方程组24327x y kx y k +=⎧⎨+=⎩的解也是二元一次方程12x y +=的解,则k 的值为 .21.如图,已知直线112y x =-+与坐标轴交于点B 、A .过线段AB 的中点1A 做11A B x ⊥轴于点1B ,则△11AOB 的面积为 ,过线段1A B 的中点2A 作22A B x ⊥轴于点2B ,过线段2A B 的中点3A 作33A B x ⊥轴于点3B 以此类推,则△202220222021A B B 的面积为 .22.当m ,n 是正实数,且满足m n mn +=时,就称点(,)mP m n为“美好点”.已知点(9,0)A 与点B 的坐标满足y x b =-+,且点B 是“美好点”,则OAB ∆的面积为 .23.如图,Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,2AC =,点D 为斜边AB 上一点,且45ADC ∠=︒,以CD 为边、点D 为直角顶点作Rt CDP ∆,点M 为CP 的中点,连接MB ,则MB 的最小值为 .五、解答题(共3道题.共30分)24.春节即将来临,抗击新冠疫情防控工作至关重要,某公司加紧生产酒精消毒液与额温枪两种抗疫物质,其两种物资的生产成本和销售单价如表所示:(1)若该公司2020年12月生产两种物资共100万件,生产总成本为7280万元,请用列二元一次方程组的方法, 求该月酒精消毒液和额温枪两种物资各生产了多少万件?(2)该公司2021年1月生产两种物资共150万件,根据市场需求,该月将举办迎新年促销活动,其中酒精消毒液的销售单价降低2元,额温枪打9折销售.若设该月生产酒精消毒液x 万件,该月销售完这两种物资的总利润为y 万元,求y 与x 之间的函数关系式.25.已知ABC ∆中,90C ∠=︒,4AC BC ==,直角EPF ∠的顶点P 为斜边AB 上的一个动点,直角的两边分别交线段AC 、BC 于E 、F 两点.(1)如图1,当3PB AP =,且PF BC ⊥时,求PF 的长度; (2)如图2,当AP PB =时,求证:PE PF =;(3)如图3,在(2)的条件下,将直角EPF ∠绕点P 旋转,点D 是EP 的中点,连接DF ,过点C 作CN DF ⊥,垂足为M ,交PF 于N ;当线段DF 最短时,求三角形MNF 的面积.26.如图1,已知直线1:l y kx b =+与直线24:3l y x =交于点M ,直线1l 与坐标轴分别交于A ,C 两点,且点A 坐标为(0,7),点C 坐标为(7,0). (1)求直线1l 的函数表达式;(2)在直线2l 上是否存在点D ,使ADM ∆的面积等于AOM ∆面积的2倍,若存在,请求出点D 的坐标,若不存在,请说明理由;(3)若点P 是线段OM 上的一动点(不与端点重合),过点P 作//PB x 轴交CM 于点B ,设点P 的纵坐标为m ,以点P 为直角顶点作等腰直角PBF ∆(点F 在直线PB 下方),设PBF ∆与MOC ∆重叠部分的面积为S ,求S 与m 之间的函数关系式,并写出相应m 的取值范围.答案与解析一、选择题1.解:在实数 2.1-0,π,125, 1.0200002-⋯(相邻两个2之间依次增加1个0)π,1.0200002-⋯(相邻两个2之间依次增加1个0),共3个.故选:C .2.解:10k =-<, y ∴随x 的增大而减小,又点1(1,)A y -和点2(3,)B y -都在直线1y x =-+上,且13->-, 12y y ∴<.故选:B . 3.解:A 、21(2)4--=,所以选项A 错误,B 2=,所以选项B 错误,C 、6626612664(2)(2)222264÷-=÷=÷==,所以选项C 正确;D ==D 错误,故选:C .4.解:A 、222a b c =-, 222a c b ∴+=, ABC ∴∆是直角三角形;B 、::5:12:13a b c =, ∴设5a k =,12b k =,13c k =,22222(5)(12)169a b k k k ∴+=+=,222(13)169b k k ==,222a b c ∴+=, ABC ∴∆是直角三角形;C 、C A B ∠=∠-∠,180A B C ∠+∠+∠=︒, 90A ∴∠=︒,ABC ∴∆是直角三角形;D 、设3A x ∠=︒,则4B x ∠=︒,5C x ∠=︒,则345180x x x ++=,15x ∴=,即75C ∠=︒,ABC ∴∆不是直角三角形;故选:D .5.解:点A 表示的数为3, ∴点A 到原点的距离为3,由图可得312AB =-=,∴点B 到原点的距离=点C 到原点的距离和点B 到原点的距离相等,∴点C ,∴点C故选:D .6.解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意; B 、三角形的一个外角等于与它不相邻的两个内角的和,原命题是假命题,不符合题意; C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,20.8S =甲,2 1.4S =乙,则甲组数据较稳定,原命题是假命题,不符合题意; 故选:C .7.解:依题意得:2501030x y x y +=⎧⎨+=⎩,故选:A .8.解:30k ∴-,即:3k . 又(3)3y k x k =--+是一次函数,30k ∴-≠,即:3k ≠.k ∴的取值范围:3k <. 30k ∴-<, 30k -+>,∴一次函数(3)3y k x k =--+的图象经过一、二、四象限,故选:C . 二、填空题9.解:4,4∴>故答案为:>.10.解:由“上加下减”的原则可知,直线21y x =+的图象沿y 轴向下平移3个单位后得到的直线解析式为:21322y x x =+-=-.故答案为:22y x =-.11.解:点(3,8)P m 到坐标原点距离为10,∴10,解得2m =±, 故答案为:2±.12.解:直线1y x =+经过点(1,)P b , 11b ∴=+,解得2b =, (1,2)P ∴,∴关于x 的方程组1y x y mx n =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩.13.解:由翻折可得13AF AD ==,DE EF =, 四边形ABCD 为矩形,5AB CD ∴==,13AD BC ==,90B C ∠=∠=︒,在Rt ABF ∆中,由勾股定理得12BF =, 13121CF BC BF ∴=-=-=,故答案为:1.三、解答题(共5题,共48分)14.解:(10|1(1)π++2411=-+=(2)234521x yx y-=-⎧⎨-=-⎩①②,①2⨯-②得:315y=,5y∴=,将5y=代入23x y-=-得:22x=,1x∴=,∴方程组的解为:15xy=⎧⎨=⎩;(3)12a=-b=,1a∴==,1b=,22a ab b∴-+2()a b ab=-+211)1)=+421=+-5=.15.解:(1)如图,ABC∆即为所求.由勾股定理得,AC=,BC=5AB=,,,为直角三角形.故答案为:直角.(2)如图,△(3)设点坐标为,由题意得,,解得或,点的坐标为或.16.解:(1)816%50÷=(人),“捐款为15元”的学生有508146418----=(人,补全条形统计图如下:(2)学生捐款金额出现次数最多的是15元,共出现18次,因此捐款金额的众数是15元,将这50名学生捐款金额从小到大排列处在中间位置的两个数都是15元,因此中位数是15元,故答案为:15,15;(3)样本平均数为(元人),所以全校八年级学生为300名,捐款总金额为(元,答:全校八年级学生为400名,捐款总金额为4002元.17.解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度米/分钟.故答案为:乙;250;(2)010x 时,设y kx =,把(10,2000)代入得:200010k =,解得:200k =,200(010)y x x ∴=;当1016x <时,设y mx n =+,把(2000,10),(5000,16)代入得: 102000165000k b k b +=⎧⎨+=⎩, 解得5003000k b =⎧⎨=-⎩, 5003000(1016)y x x ∴=-<,综上,乙比赛时所跑的路程y (米)与时间x (分钟)之间的函数关系式为200(010)5003000(1016)x x y x x ⎧=⎨-<⎩; (3)设甲跑的路程y (米)与时间x (分钟)之间的函数关系式为y kx =, 根据图象,可得500025020y x x ==, 由(2)知:甲乙相遇后(即1016)x <<,乙跑的路程y (米)与时间x (分钟)之间的函数关系式为:5003000y x =-,联立两直线的解析式2505003000y x y x =⎧⎨=-⎩, 解得123000x y =⎧⎨=⎩, 答:甲与乙在12分钟时相遇.18.解:(1)将点(,6)C m 代入32y x =, 362m ∴=, 4m ∴=,(4,6)C ∴,设一次函数的解析式为y kx b =+,4640k b k b +=⎧⎨+=⎩, 343k b ⎧=⎪⎨⎪=⎩,334y x ∴=+; (2)设点3(,3)4P t t +,3(,)2Q t t , 则33|3|242PQ t t =+-=, 解得:43t =或203; (3)在y 轴上存在点M ,使得ABM ∆是以为腰的等腰三角形;理由如下:令0x =,则3y =,(0,3)B ∴,(4,0)A -,5AB ∴=,4OA =, 当B 为等腰三角形的顶点时,5BM AB ==,(0,8)M ∴或(0,2)M -;当A 为等腰三角形的顶点时,M 点是B 点关于x 轴的对称点,(0,3)M ∴-;综上所述:M 点坐标为(0,8)或(0,2)-或(0,3)-.四、填空题(共5个题,每题4分,共20分)19.解:根据题意得3030x x -⎧⎨-⎩, 解得3x =,当3x =时,2y =,239y x ∴==,故答案为:9.20.解:解方程组24327x y k x y k +=⎧⎨+=⎩,得2x k y k =⎧⎨=⎩, 将2x k y k =⎧⎨=⎩代入方程12x y +=,得312k =,解得4k =. 故答案为:4.21.解:当0x =时,1y =,即(0,1)A ,当0y =时,1102x -+=,解得:2x =, (2,0)B ∴,AB ∴的中点1A 的坐标为1(1,)2, 1B ∴的坐标为(1,0),11OB ∴=,1112A B =, ∴111111224A OB S =⨯⨯=, 点2A 是1A B的中点,,(2,0)B , ∴点2A 的坐标为3(2,,23(2B ∴,0), 1212B B ∴=,2214A B =, ∴221211*********A B B S =⨯⨯==, 同理可得,点的坐标为,,,,,,,,△202214=. 故答案为:14,202214. 22.解:把点(9,0)A 代入y x b =-+中得:09b =-+,解得:9b =,9y x ∴=-+,点B 的坐标满足9y x =-+,∴设点B 的坐标为(,9)a a -+,点B 是“美好点”, ∴9m a m a n=⎧⎪⎨=-+⎪⎩, m ,n 是正实数,且满足m n mn +=, ∴1m m n +=,∴1m m n=-, 19m a ∴-=-+,19a a ∴-=-+,解得:5a =,∴点B 的坐标为(5,4),OAB ∴∆的面积11941822B OA y =⋅=⨯⨯=, 故答案为:18.23.解:过点C 作CN AB ⊥于点N ,作CD 的垂直平分线l ,45CDA ∠=︒,CN AB ⊥,l ∴经过点N , M 是直角三角形CDP 的斜边的中点,M ∴到C 的距离等于M 到D 的距离,M ∴在直线l 上,∴当MB l ⊥时MB 最短,2AC =,30ABC ∠=︒,90ACB ∠=︒,4AB ∴=,BC =60A ∠=︒,1AN ∴=,413BN =-=,//CD BM ',45M BD CDN '∴∠=∠=︒,BM '∴==五、解答题(共3道题.共30分)24.解:(1)设该月酒精消毒液生产了a 万件,额温枪生产了b 万件,依题意得:10056847280a b a b +=⎧⎨+=⎩,解得:4060a b =⎧⎨=⎩. 答:该月酒精消毒液生产了40万件,额温枪生产了60万件.(2)设该月生产酒精消毒液x 万件,该月销售完这两种物资的总利润为y 万元,则该月生产额温枪(150)x -万件, 依题意得:(62562)(1000.984)(150)2900y x x x =--+⨯--=-+. 答:y 与x 之间的函数关系式为2900y x =-+.25.(1)解:PE AC ⊥,90AEP PEC ∴∠=∠=︒.又90EPF ACB ∠=∠=︒,∴四边形PECF 为矩形,90PFC ∴∠=︒,90PFB ∴∠=︒,AEP PFB ∴∠=∠.AC BC =,90C ∠=︒,45A B ∴∠=∠=︒,45FPB B ∴∠=∠=︒,PF BF ∴=,3PB AP =,BA =PB ∴=222PF BF +=,3PF ∴=;(2)证明:连接PC ,如图2.90ACB ∠=︒,CA CB =,12CP AP AB ∴==.1452ACP BCP ACB ∠=∠=∠=︒,CP AB ⊥,90APE CPE ∴∠+∠=︒.90CPF CPE ∠+∠=︒,APE CPF ∴∠=∠.在APE ∆和CPF ∆中,45A PCF PA PCAPE CPF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ()APE CPF ASA ∴∆≅∆,PE PF ∴=.(3)解:由(2)可知PEF ∆是等腰直角三角形,当PF CB ⊥时,线段DF 最短,∴四边形PECF 是正方形,CF PF ∴=,AP BP ==2PF BF CF ∴===,CN DF ⊥,90MCF MFC ∴∠+∠=︒,90MFC DFP ∠+∠=︒,MCF DFP ∴∠=∠,CFN DPF ∠=∠,()CFN FPD ASA ∴∆≅∆,1FN DP ∴==,∴CN =1122CFN S CF NF MF CN ∆=⋅=⋅,CF FN MF CN ⋅∴===MN ∴=∴111225MFN S MN MF ∆=⋅==. 26.解:(1)直线1:l y kx b =+与坐标轴分别交于(0,7)A ,(7,0)C ,∴770b k b =⎧⎨+=⎩, ∴71b k =⎧⎨=-⎩, ∴直线1l 的函数表达式为:7y x =-+;(2)联立1:7l y x =-+和24:3l y x =,解得,34x y =⎧⎨=⎩, (3,4)M ∴, 如图1,过点M 作ME x ⊥轴于E ,3OE ∴=,4ME =,根据勾股定理得,5OM =,设(3,4)D n n ,①当点D 在射线OM 上时,ADM ∆的面积等于AOM ∆面积的2倍,且边AM 和OM 上的高相同, 210DM OM ∴==,15OD ∴=,222(3)(4)15n n ∴+=,3n ∴=或3n =-,由于点D 在第一象限内,3n ∴=,(9,12)D ∴;②当点D 在射线MO 上时,ADM ∆的面积等于AOM ∆面积的2倍,且边AM 和OM 上高相同, 2DM OM ∴=,5OM OD ∴==,222(3)(4)5n n ∴+=,1n ∴=或1n =-,由于点D 在第三象限内,1n ∴=-,(3,4)D ∴--,即点(9,12)D 或(3,4)--;(3)点P 的纵坐标为m ,3(4P m ∴,)m , //PB x 轴,(7,)B m m ∴-,377744PB m m m ∴=--=-, 以点P 为直角顶点作等腰直角PBF ∆,774PF PB m ∴==-, 当774m m -=时,2811m =; ①当28011m <<时,如图2,记PF 与x 轴相交于G ,BF 与x 轴相交于H , PG m ∴=,7117744FG PF PG m m m =-=--=-, PBF ∆是等腰直角三角形, 45F PBF ∴∠=∠=︒,//PB x 轴,45GHF F ∴∠=︒=∠,FG HG ∴=,221122PBF FGH S S S PB FG ∆∆∴=-=- 221711[(7)(7)]244m m =--- 2974m m =-+; ②当28411m <时,如图3, 222117494949(7)2243242PBF S S PB m m m ∆===-=-+。

四川省成都市天府新区2023-2024学年八年级上学期期末考试数学试卷(含答案)

四川省成都市天府新区2023-2024学年八年级上学期期末考试数学试卷(含答案)

2023–2024学年上期八年级数学A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列实数中,属于无理数的是()A.0B.C.D.2.下列各组数中,不能构成直角三角形三边的是()A.7,24,25B.9,12,15C.1,,3D.0.3,0.4,0.53.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为,黑棋(乙)的坐标为,则白棋(甲)的坐标为()A.B.C.D.4.下列运算,结果正确的是()A.B.C.D.5.如图,在下列给出的条件中,不能判定的是()A.B.C.D.6.下列命题是真命题的是()A.两个锐角之和一定是钝角B.各边对应相等的两个多边形一定全等C.D.实数和数轴上的点是一一对应的7.如图所示,一圆柱高8cm,底面半径为2cm,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是(π取3)()A.6cm B.10cm C.D.8.关于一次函数,下列结论错误的是()A.y的值随x值的增大而减小B.图象过定点C.函数图象经过第二、三、四象限D.当时,第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.若,则x=______.10.一个正比例函数的图象经过点,,则a的值为______.11.如图,阴影部分的直角三角形面积为______.12.如图,,,EF平分∠BEC,,则∠DEG的度数为______.13.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y 辆车,可列方程组为______.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图是一个8×8的正方形网格.(1)在此正方形网格中建立平面直角坐标系,使点A的坐标为,点B的坐标为(2)将点A向下平移5个单位,再关于y轴对称得到点C,求点C坐标;(3)画出,并求其面积.16.(本小题满分8分)为丰富市民假日休闲活动体验,以全民运动方式欢度国庆,2023年中秋和国庆期间,在天府新区兴隆湖畔,拉开了一场持续8天的“万千气象·公园城市生活节”,其中包含了城市路跑赛、水上潮运会、营地生活节、湖畔音乐节、国潮市集等多项主题活动,展现了公园城市美好生活场景.为了解现场游客的游玩时间,随机抽取部分游客进行调查,并将调查结果绘制成如下两幅不完整的统计图.(1)本次调查被抽查的总人数为______人,并补全条形统计图.(2)本次活动游客游玩时间的中位数是______,众数是______.(3)若国庆节当天有4000名市民参与活动,请估计游玩时间在4小时及以上的市民共有多少人?17.(本小题满分10分)如图,在平面直角坐标系xOy中,直线:与x轴,y轴分别交于A,B两点,与直线:交于点C.(1)求点A,B,C的坐标;(2)设点D在线段OC上,过点D作轴交直线于点E,过点D作轴于点F,过点E作轴于点G.若四边形DEGF为正方形,求点D的坐标.18.(本小题满分10分)在中,,过点B作交直线AC于D,延长BD至E,使,连接AE,CE.(1)如图1,若,求∠CAE的度数;(2)若,试探究∠CAE与∠CBD的数量关系并说明理由;(3)如图2,若,,求的面积.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.若,则的算术平方根是______.20.方程组的解为,则被遮盖的■表示的数为______.21.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知大正方形的边长为,小正方形的边长为1,连接四条线段得到如图2新的图案,则阴影部分的面积为______.22.定义:若实数a,b满足(k为常数),则称点为“k倍幸福点”,如点为“3倍幸福点”.在平面直角坐标系xOy中,点,点B为直线l:上两点,其中点B为“k倍幸福点”,且的面积为,则k的值为______.23.如图,在中,,BC=3,AC=4,E为线段BC上一动点(点E不与B,C重合),F为线段AC上一动点(点F不与A,C重合),且始终满足,则的最小值为______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(本小题满分8分)2014年10月,四川天府新区正式获批成为第11个国家级新区.近十年来,天府新区全面践行新发展理念,努力推进公园城市先行区建设.为庆祝四川天府新区获批国家级新区10周年,甲、乙两个服装厂特推出以“奋楫扬帆启新程·喜迎新区十周年”为主题的文化衫,设甲服装厂的销售总费用为(元),乙服装厂的销售总费用为(元),销售量为x(件),,与x的函数关系式如图所示:(1)请分别求出,与x的函数关系式.(2)若当甲、乙服装厂的销售量相同且销售总费用相差150元时,则销售量是多少件?25.(本小题满分10分)在中,,,点D是平面内一点(不与点A,B,C重合),连接BD,CD,,连接AD.将沿直线AD翻折,得到,连接CG.(1)如图1,点D在∠ABC内部,BD交AC于点E,点F是BD上一点,且,连接AF.①求证:;②若,,求点G到直线BC的距离;(2)如图2,点D在∠BAC的内部,试探究BD,AD,CG之间的数量关系并说明理由.26.(本小题满分12分)如图1,在平面直角坐标系xOy中,直线:与直线交于点,直线与x轴,y轴分别交于点B,点C,的面积为.(1)求直线的表达式;(2)如图2,过点作直线分别交直线,于点E,点F,设点E在第三象限.①连接AD,设的面积为,的面积为,若,求点E的坐标;②当的面积最小时,求点E的坐标.2023-2024学年上期八年期末考试数学参考答案A卷一、选择题题号12345678答案C C B D A D B D 二、填空题9.16 10.2 11.15 12.38° 13.三、解答题14.解:(1)原式(2)化简得:①×3+②得:,解得:,把代入①得:,∴原方程组的解为.15.解:(1)如图所示:(2)点A向下平移5个单位得到点,关于y轴对称的点(3)16.解:(1)80,如图(2)3小时,3小时(3)(人)答:游玩时间在4小时及以上的市民共有1600人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市八年级上学期数学期末试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2016七下·洪山期中) 在平面直角坐标系中,点P(﹣3,2)在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
2. (2分) (2020七下·云梦期中) 在平面直角坐标系中,把点先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是()
A .
B .
C .
D .
3. (2分)(2017·兰山模拟) 在等边三角形、平行四边形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的有()
A . 1种
B . 2种
C . 3种
D . 4种
4. (2分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()
A . 甲的速度是4km/h
B . 乙的速度是10km/h
C . 乙比甲晚出发1h
D . 甲比乙晚到B地3h
5. (2分)一次函数与,在同一平面直角坐标系中的图象是()
A .
B .
C .
D .
6. (2分)用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设()
A . ∠A=60°
B . ∠A<60°
C . ∠A≠60°
D . ∠A≤60°
7. (2分) (2019七下·长春月考) 现有两根小木棒,它们的长度分别为和,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是()
A .
B .
C .
D .
8. (2分)等腰三角形的一个角是100°,则其底角是()
A . 40°
B . 100°
C . 80°
D . 100°或40°
9. (2分) (2017八上·伊宁期中) 等腰三角形的一个角是70°,则它的底角是()
A . 70°
B . 70°或55°
C . 80°和100°
D . 110°
10. (2分) (2020七下·密山期末) 如图,AB=AC , D , E分别是AB , AC上的点,下列条件不能判断△ABE≌△ACD的是()
A . ∠B=∠C
B . BE=CD
C . AD=AE
D . BD=CE
二、填空题 (共4题;共5分)
11. (2分) (2019九下·期中) 如图,在矩形ABCD中,,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:
①∠AEB=∠AEH②DH= ③ ④
其中符合题意命题的序号是________(填上所有符合题意命题的序号).
12. (1分) (2016八上·上城期末) 在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
13. (1分) (2018八上·广东期中) 如图,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°。

则∠BDC=________,∠BFD=________.
14. (1分) (2017八下·武进期中) 如图,矩形ABCD对角线AC、BD交于点O,若∠AOD=110°,则
________°.
三、解答题 (共9题;共70分)
15. (5分)在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.
16. (2分) (2017九下·永春期中) 如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.
求证:AB=CD.
17. (2分)已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.
(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.
18. (11分) (2019八上·双台子月考) 如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)①请写出△ABC关于x轴对称的点A1、B1、C1的坐标;
②请在这个坐标系中作出△ABC关于y轴对称的△A2B2C2;
(2)计算:△A2B2C2的面积.
19. (5分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.
20. (5分) (2019八下·永川期中) 如图,在中,,,BD是的平分线,求的度数.
21. (15分)如图,已知函数y=2x﹣5,观察图象回答下列问题
(1) x________时,y<0;
(2) y________时,x<3.
22. (10分) (2020八下·大庆期中) 某市自来水公司为限制单位用水,每月只给某单位计划内用水 3000 吨,计划内用水每吨收费 0.5元,超计划部分每吨按 0.8 元收费.
(1)写出该单位水费 y(元)与每月用水量 x(吨)之间的函数关系式:(写出自变量取值范围)
①用水量小于等于 3000 吨________;
②用水量大于 3000 吨________.
(2)某月该单位用水 3200 吨,水费是________元;若用水 2800 吨,水费________元.
(3)若某月该单位缴纳水费 1580 元,则该单位用水多少吨?
23. (15分) (2019八上·扬州月考) 如图,已知∠MON=30°,点A1、A2、A3……在射线ON上,点B1、B2、B3……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,且OA1=1.
(1)分别求出△A1B1A2、△A3B3A4的边长;
(2)求△A7B7A8的周长(直接写出结果).
参考答案一、单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
二、填空题 (共4题;共5分)答案:11-1、
考点:
答案:12-1、
考点:
解析:
答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
三、解答题 (共9题;共70分)
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、考点:
解析:
答案:21-1、答案:21-2、考点:
解析:
答案:22-1、答案:22-2、
答案:22-3、考点:
解析:
答案:23-1、
答案:23-2、考点:
解析:。

相关文档
最新文档