61算术平方根(2)
人教版数学七年级下册6-1 平方根 第2课时 教案

6.1 平方根第2课时教学设计课题 6.1 平方根第2课时单元第六单元学科初中数学年级七下学习目标1.会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律;2.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义;3.能用夹逼法求一个数的算术平方根的近似值;4.体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数,培养探求精神,提高学生学习数学的兴趣.重点夹逼法及估计一个(无理)数的大小.难点会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.什么是算术平方根?一般地,如果一个正数x的平方等于a,即x² a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.求下列各式的值.(1)的算术平方根=_______(2)的算术平方根=_______追问:你2知道它有多大吗?【教学建议】让学生说出算术平方根的概念,并让学生回答,最后引出2有多大的疑问?学生思考并回答计算并思考.回顾旧知,引出本节课重点内容,如何求一个算术平方根的近似值.讲授新课【合作探究】能否用两个面积为 1 dm2 的小正方形拼成一个面积为2 dm2 的大正方形?学生分组讨通过探究活动,引出求的一种如图,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为 2 dm2的大正方形.你知道这个大正方形的边长是多少吗?解:设大正方形的边长为x dm,则x2 = 2由算术平方根的意义可知x=所以大正方形的边长是dm.小正方形的对角线的长是多少呢?x=小正方形的对角线的长即为大正方形的边长.学生分组讨论、拼图过程中,教师巡视,了解各组探究情况,最后动态展示拼图过程,由学生代表回答解题思路,教师进行板书示范.最后教师可强调大正方形的面积不能表示成一个有理数的平方,因此它的边长只能用算术平方根的符号,即表示.想一想:2有多大呢?()2=2无限不循环小数是指小数位数无限,且小数部分不循环的小数.播放动画过程中,教师可提问,对于(1)、(2)教师带领学生进行完成,(3)、(4)学生独立完成(1)在哪两个整数之间?(2)精确到0.1时在哪两个数之间?论、拼图,回答教师问题.方法,并举例说明什么是无限不循环小数,让学生理解其概念.(3)精确到0.01时在哪两个数之间?(4)精确到0.001时在哪两个数之间?最后,教师给出无限不循环小数的概念.【小试牛刀】你能估算出的近似值吗(精确到0.01)?解:∵22=4,32=9,∴2<<3.∵ 2.2²=4.84,2.3²=5.29,∴ 2.2<<2.3.∵ 2.23²=4. 9729,2.24²=5. 0176,∴ 2.23 <<2.24.∵ 2.2362 =4.999696,2.2372 =5.004169,∴ 2.236<<2.237,∴≈2.24.归纳:对算术平方根进行估算时,通常利用与被开方数比较接近的两个完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.【合作探究】在估计有理数的算术平方根的过程中,为方便计算,可借助计算器求一个正有理数a 的算术平方根(或其近似值).注意:计算器的型号不同,按键顺序可能有所不同,要注意阅读使用说明书.【典型例题】例1用计算器求下列各式的值:(1) ;(2) (精确到0.001).用计算器计算下列算术平方根,你发现了什么规律?学生思考,回答教师问题.通过例题,使学生掌握使用计算器求算术平方根的方法,做一做中的(2)可以和上面所估计的的大小进行比较.解:规律:被开方数的小数点向右或向左移动2位,算术平方根的小数点相应地向右或向左移1位.想一想:用计算器计算,并利用你发现的规律,求,,的近似值.你能根据的值说出是多少吗?【典型例题】例2 小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2 的长方形纸片,使它的长宽之比为3 : 2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm ,宽为2x cm,根据边长与面积的关系得3x∙ 2x = 300,6x2 = 300 ,x2 = 50,x = ,因此长方形纸片的长为3cm .∵50 > 49,∴> 7.由上可知 3 > 21,则长方形纸片的长应该大于21 cm. 思考并积极回答.例题给出了一个实际问题背景,学生一般会认为一定能用一块面积大的纸片裁出一块面积小的纸片,通过学习可以纠正学生的认识.重点使学生掌握通过平方数比较有理数与无理数大小的一种方法.∵= 20,∴正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法. 小丽不能用这块正方形纸片裁出符合要求的长方形纸片.例2先由学生尝试,教师再进行讲解.【随堂练习】1.用计算器求下列各式的值:(1) ;(2) (精确到0.01).2.估算的值 ( B )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.学生自主练习学生通过练习,可以更好的理解如何用计算器求一个数的算术平方根,进一步提高分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.求算术平方根的方法(1)夹逼法(2)用计算器求解2.例题讲解。
6.1平方根(第2课时)教学设计

平方根学习目标1.了解平方根的概念,掌握平方根的性质.2.会求一个非负数的平方根.重点:会求一个非负数的平方根难点:平方根的相关运算三、教学过程复习回顾1.什么叫一个数的算术平方根?怎样表示?一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根表示为:a(a≥0),0的算术平方根是0,负数没有算术平方根.2.9的算术平方根是_____,15的算术平方根是_____.思考如果一个数的平方等于9,这个数是多少?由于(±3)2=9,所以这个数是3或-3.3是前面学习过的9的算术平方根,-3与3有什么关系?(互为相反数.)归纳平方根的概念2.填空(1) 2的平方等于4,那么4的算术平方根就是( 2 )(2) 的平方等于425,那么425的算术平方根就是2()5(3) 教室的地面为正方形,其面积是64 m2,则其边长为( 8 )m,问题:平方等于16,425,64的数还有吗? -2,425,-8你能类比算术平方根的概念,给出平方根的概念吗?一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.例如,3和-3是9的平方根,简记为±3是9的平方根.求一个数a的平方根的运算,叫做开平方.观察下图,你发现了什么?平方与开平方互为逆运算平方根的表示我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗?正数a的算术平方根可以表示为a“”,正数a的负的平方根,可以表示为a,正数a a表示,读作“正、负根号a”.典例精析例 求下列各数的平方根:(1) 100; (2)169; (3) 0.25. 解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为243⎪⎭⎫ ⎝⎛±=169,所以169的平方根是43±; (3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.即(1) 10100±=±; (2) 43169±=±; (3) 5.025.0±=±. 试一试(1)121的平方根是什么? ±11(2)0的平方根是什么? 0(3)169的平方根是什么? 43± (4)-2有没有平方根?为什么?没有,因为一个数的平方不可能是负数.归纳数的平方根的特征:平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根.学以致用1.求下列各数的平方根(1)0.009 (2)100 (3)121324 (4解(1)0.09==±(2)10==±(3)21118==±(4)2==±例2 求下列各式的值:123))解(16=(2)09-.(3)73±=±计算下列各式的值(1)(2)(3)解(1)15=±(2)9=-(3)5==±课堂小结①了解了平方根的概念;②掌握了平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根;③学会了平方根的表示方法及相关计算.作业见精准作业板书设计。
七年级数学下册第六章实数6.1平方根第2课时用计算器求算术平方根及其大小比较教学课件(新版)新人教版

1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,
6.1《平方根》同步练习题(2)及答案

一、基础训练
1.9 的算术平方根是( )
A.-3
B.3 C.±3
D.81
2.下列计算不正确的是( )
A. 4 =±2
(9)2 81=9
C. 3
DB.. 3 216 =-6
3.下列0说.0法64中=不0正.4 确的是( )
A.9 的算术平方根是 3 B. 16 的平方根是±2
C.27的立方根是±3
(x+3)3=8,x+3=2,x=-1.
6.1平方根同步练习(2)参考答案 1.B
2.A 点拨: 4 =2.
3.C
4.C 点拨: 64 =4,故 4 的平方根为±2.
5.D
1 点拨:(- 8
) 2 = 61 4
,故
1 64
的立方根为
1 4
.
6.± 2 , 3 9 3
7.6.403,12.61
3
8
8.(1)±10 (2)0 (3)± 5 (4)±1 (5)± 7
6.1平方根同步练习(2)
知识点:
1.算术平方根:一般地,如果一个正数的平方等于 a,那么这个正数叫做 a 的算术平方根。 A 叫做被开方数。 1.平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根 2.平方根的性质:正数有两个平方根,互为相反数
0 的平方根是 0 负数没有平方根 同步练习:
9.(1)-3 (2)-2 (3) 1 4 (4)±0.5
(6)±0.3
10.D 点拨:这个自然数是 x2,所以它后面的一个数是 x2+1,则 x2+1的算术平方根是 .
12.B 点拨:3x+4=0且 y-3=0. 13.10,12,14 点拨:23 <这个数<4 ,即 8<这个数<16.
七年级数学下册教学课件《算术平方根》

3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
6 .1平方根(第2课时)

孙疃中心学校师生共用讲学稿年级 七 学科 数学 主备教师 曹磊 审核人 纪勇 年级组长签名 讲学日期 班级 学生姓名 课题: 6.1平方根(第二课时)学习目标:1、知识与技能:进一步理解平方根的概念、开平方的概念.明确算术平方根与平方根的区别与联系.进一步明确平方与开方是互为逆运算.2、过程与方法:加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3、情感态度与价值观:通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度.学习重点:理解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根。
学习难点:理解负数没有平方根,即负数不能进行开平方运算的原因.学习过程: 【自学提示】想一想:(1)9的算术平方根是3,也就是说,3的平方是9,那么还有其他的数的平方也是9吗?(2)平方等于254的数有几个?平方等于0.64的数呢?一、 平方根的概念:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的 (也叫二次方根),记做 ;求一个数a 的平方根的运算,叫做 . 其中a 叫做被开方数。
注:1.正数a 有两个平方根,一个是a 的算数平方根“a ”,一个是“-a ”,他们互为相反数。
例如 9的平方根 和 。
表示为±9=±3.9的算术平方根是 .2.±a 表示求a 的平方根,a ≥0.3.算术平方根是平方根中的正根例3 求下列各数的平方根:(1)64; (2)49121; (3) 0.0004; (4)()225-; (5) 11 二、平方根的性质问题:(1)能说出144、3625和0的平方根吗?(2)-4有没有平方根?为什么? 归纳:一个正数有 个平方根,它们互为 ;0 的 平方根是 ;没有平方根三、想一想:第一类:(1)(64)2= (12149)2= (2.7)2= (2)对于正数a ,(a )2等于多少? 第二类:(1)()_____32=±;()_____42=±;_____432=⎪⎭⎫ ⎝⎛± (2) 对于任意数等于多少?2,a a 【基础训练】(一)随堂练习1.求下列各数的平方根1.44, 0, 8,49100, 441, 196,0.0025, 169,4916, 49, 18,2.填空(1)、25的平方根是_________;(2)、2)5(- =_________;(3)、(5)2=_________.(4)、如果x 2=a,(x 为正数)那么x 叫做__________________.(5)、9的平方是_________,9的平方根是__________,—9是______的一个平方根,(—4)2的平方根是___________.(6)、平方根等于它本身的数是____________,算术平方根等于它本身的数有_________________, 【学习小结】本节课你有什么收获?你能说说平方根与算数平方根的联系和区别吗?【达标检测】1.“254的平方根是52±”,用数学式子可以表示为( ) A.52254±= B.52254±=± C.52254= D.52254-=-2.41的平方根是( ) A.161 B.81 C.21 D.21± 3、(-3)2的平方根是( ) A.3 B.-3 C.±3 D.±94、若a 是()24-的平方根,b 的一个平方根是2,则代数式a +b 的值为( ) A.8 B.0 C.8或0 D.4或-45、16的平方根是 ; 4916的平方根是 ; (-2)2的平方根是 ;6、36±= ;01.0±= ;231⎪⎭⎫ ⎝⎛-±= ;=01.0 ; 216= ;()=-216 ;()25-= 。
2021-2022学年人教版七年级下册61平方根(第2课时)作业(1)

6.1平方根(第2课时)课后作业【基础巩固】1.若m=√40-4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<52.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间3.用计算器计算:√13-3.142≈.(结果保留三个有效数字)4.小杰卧室地板的总面积为16平方米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长.5.圆的面积S(cm2)与半径r(cm)之间的关系式为S=πr2,现要制作一块面积为49πcm2的圆形零件,此零件的半径应为多少厘米?【能力提升】6.如图所示,方格图中小正方形的边长为1,将方格中阴影部分图形剪下来,再把剪下的部分重新剪拼成一个正方形,那么所拼成的这个正方形的边长为()A.√3B.2C.√5D.√67.用计算器估算:若2.6456<√a<2.6459,则a的整数值是.8.如果√5的整数部分为a,小数部分为b,那么a-b=.9.学校组织集邮展览,某同学用30枚长3cm,宽2.5cm的邮票恰好拼成了一个正方形,你能求出这个正方形的边长吗?【拓展探究】10.请你观察、思考下列计算过程:因为112=121,所以√121=11,同样因为1112=12321,所以√12321=111,由此猜想√12345678987654321=.11.用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.【答案与解析】1.B(解析:先估算出√40在哪两个整数之间,即可得到结果.因为6=√36<√40<√49=7,所以2<√40-4<3,故选B.)2.B(解析:根据正方形的面积先求出正方形的边长,然后估算即可得出答案.设正方形的边长为x,因为正方形面积是15,所以x2=15,故x=√15.因为9<15<16,所以3<√15<4.故选B.)3.0.464(解析:首先利用计算器求出13的算术平方根,然后即可求出结果.√13-3.142≈3.6056-3.142=0.4636≈0.464.)4.解:每块地板砖的面积=1664平方米,所以每块地板砖的边长=√1664=12(米).5.解:设此零件的半径为r cm,由题意得49π=πr2,解得r=7.所以此零件的半径为7cm.6.C(解析:根据题意可得,所拼成的正方形的面积是5,所以正方形的边长是√5.故选C.)7.7(解析:因为2.6456=√6.99919936,2.6459=√7.00078681,所以a的整数值是7.)8.4-√5(解析:先求出√5的范围,即可求出a,b的值,再代入求出即可.因为2<√5<3,所以√5的整数部分为a=2,小数部分是b=√5-2,所以a-b=2-(√5-2)=4-√5,故答案为4-√5.)9.解:一枚邮票的面积为3×2.5=7.5(cm2),30枚邮票的总面积为7.5×30=225(cm2),则正方形的边长为15cm.10.111111111(解析:因为112=121,所以√121=11.同样1112=12321,所以√12321=111,…,由此猜想√12345678987654321=111111111.)11.解:(1)√78000≈279.3,√780≈27.93,√7.8≈2.793,√0.078≈0.2793,√0.00078≈0.02793.(2)√0.00065≈0.02550,√0.065≈0.2550,√6.5≈2.550,√650≈25.50,√65000≈255.0.规律是:被开方数的小数点向左(右)移动两位,则其算术平方根的小数点就向左(右)移动一位.。
6.1.2算术平方根(2)

本节课你学会了什么? 1、如何表示一个数的算术平方根; 2、如何估算一个含根号的数的大小;
抓紧时间,订正完善你的导学案!
请学科班长总结评价本节课同学们的表现!
1、9的算术平方根是 ; 的算术平方根是 ; 2、 = ; = ; = ;
第六章 实数
6.1 算术平方根(1)
1. 会用根号表示一个数的算术平方根; 2.通过夹逼法,了解如何估计一个含根号的数的大 致范围; 3.体会估算算术平方根大小在实际生活中的应用。
1、我们知道4的算术平方根是 ,可以表示为 么如何表示2的算术平方根呢?
,那
请你写出下列各数的算术平方根: 被开方数 16 20 35
算术平方根
101 144
思考: 求一个数的算术平方根时,什么时候需要保留根号?
2、有多大?你能准确算出的大小吗?它是一个什么数?
归纳: 比较依据:被开方数越大,对应的算术平方根也越 。
由此可得, 是一个 数, ≈
(精确到0.01)
知识积累: ≈
,≈
。
内容 组别
探究案 第1题
探究案 第2题
知识点 估算一个数的算术平方根的大小
算术平方根的性质
算术平方根的实际应用
(4)用计算器计算下表中的算术平方根,并将结果 填在表中,你发现了什么规律?
规律:相应的
向
移动
位。
移动
例2:小丽想用一块面积为100cm2的正方形纸片,沿 着边的方向裁出一块面积为80 cm2的长方形纸片,使 它的长宽之比为2:1,不知道能否裁出?为什么? 思考: 是否一定能用一块面积大的纸片裁出一块面积小的纸片? 实际上,除了面积,在裁的过程中还要注意比较什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1算术平方根(2)
一、教学目标
1.通过由正方形面积求边长,让学生经历2的估值过程,加深对算术平方根概念的理解,
感受无理数,初步了解无限不循环小数的特点.
2.会用计算器求算术平方根.
二、重点和难点
1.重点:感受无理数. 2.难点:感受无理数.
三、自主探究
1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.
2.填空:
(1)因为_____2=36,所以36的算术平方根是_______,即36=_____;
(2)因为(____)2=964,所以964的算术平方根是_______,即964=_____;
(3)因为_____2=0.81,所以0.81的算术平方根是_______,即0.81=_____;
(4)因为_____2=0.572,所以0.572的算术平方根是_______,即20.57=_____.
(二)(看下图)
这个正方形的面积等于4,它的边长等于多少?
谁会用算术平方根来说这个正方形边长和面积的关系?
这个正方形的面积等于1,它的边长等于多少?
用算术平方根来说这个正方形边长和面积的关系?
(指准图)这个正方形的边长等于面积1的算术平方根,也就是边长=1,1等于多少?
(看下图)这个正方形的面积等于2,它的边长等于什么?
因为边长等于面积的算术平方根,所以边长等于2
(板书:边长=2).(上面三个图的位置如下所示)
4=2,1
=1,那么2等于多少呢?求2等于多少,怎么求?
在1和2之间的数有很多,到底哪个数等于2呢?我们怎么才能找到这个数呢?我们可以
这样来考虑问题,等于2的那个数,它的平方等于多少?
第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线
面积=4
面积=1
面积=2
边长=4=2边长=2边长=1=1
面积=2
面积=1
面积=4
索,我们来找等于2的那个数.
我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共
同用计算器计算)
1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多
少?(师生共同用计算器计算)2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,
找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?
2
等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点
不同,有什么不同呢?第一,这个小数是无限小数(板书:无限). 2是无限小数,又是
不循环小数,所以2是一个无限不循环小数.
除了2,还有别的无限不循环小数吗?无限不循环小数还有很多很多,3、5、6、
7都是无限不循环小数(板书:3、5、6、7
都是无限不循环小数).
那怎么求3、5、6、7这些无限不循环小数的值呢?我们可以利用计算器来求.
四、精讲精练
1、 用计算器求下列各式的值:
(1)3(精确到0.001); (2)3136.
(按键时,教师要领着学生做;解题格式要与课本上的相同)
2、填空:
(1)面积为9的正方形,边长== ;
(2)面积为7的正方形,边长=≈ (利用计算器求值,精确到0.001).
3、用计算器求值:
(1)1849= ;(2)86.8624= ;(3)6≈ (精确到0.01).
4、选做题:
(1)用计算器计算,并将计算结果填入下表:
… 0.625 6.25 62.5
6250
62500
…
… 25 …
(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的
值:
62500= , 6250000= ,
0.0625= , 0.000625
= .
五、课堂小结
六、我的收获