稠油热采完井技术

合集下载

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用
目前我国海上油田主要开采方式为水平井控制压裂,其中稠油油层热采技术是提高开采难度的主要因素之一。

稠油油层存在热采渗流效率低、水平井生产长度短、注汽井成本高等问题,为了克服这些困难,需要不断探索和应用新的技术手段。

一、水平井技术
水平井技术是开发海上稠油的重要手段之一,采用水平井可以增加有效生产长度,提高油气采收率,减少开发深度。

在稠油热采过程中,水平井还可以减少井筒壁面积,降低油层对地面和注汽井的渗流压力,提高注汽井有效注汽压力。

水驱技术是提高稠油油田采收率的重要手段之一。

水驱技术的主要作用是使稠油油层内的油和水混合起来,形成流体,增加稳定生产的面积,减少油层残余油。

在水驱技术的应用过程中,需要根据油层的特征来确定注水井位置和注水量。

三、蒸汽注入技术
对于稠油油层的热采过程,蒸汽注入技术是应用最广泛的一种。

蒸汽注入技术主要是通过注入蒸汽来加热油层,使稠油发生热胀冷缩作用,提高原油流动性,提高采收率。

在蒸汽注入过程中,需要根据油层渗流特点、岩石渗透条件等因素来确定注汽井的位置和注汽量。

四、其他技术
除了以上三种技术外,还有一些其他技术也适用于稠油油田的热采过程,如CO2注入技术、自然气注入技术和油层微生物改造技术等。

这些技术的主要作用是通过调整注入物质的物化性质和结构,改变原油的物化性质和结构,提高采收率。

总之,稠油油田的热采过程是一个复杂的过程,需要综合考虑油层特征、生产条件、经济效益等因素来确定合适的技术手段。

在这个过程中,需要不断探索和应用新技术,提高采收率,减少对环境的影响。

稠油热采开发技术(ppt)

稠油热采开发技术(ppt)

稠油资源分布
稠油资源主要分布在北美 的加拿大、中国、委内瑞 拉、俄罗斯等地。
稠油资源储量
全球稠油资源储量巨大, 但分布不均,主要集中在 加拿大的阿尔伯塔省和中 国的克拉玛依油田。
热采开发技术的定义与特点
热采开发技术定义
热采开发技术是一种利用热能将 稠油资源转化为可流动状态,然 后进行开采的技术。
热采开发技术特点
率的稠油开采方法。
原理
火烧油层法通过向油层注入空气 或氧气,并点燃油层中的轻质组 分,使燃烧反应持续进行。燃烧 过程中产生的高温高压气体推动
原油流向生产井。
适用范围
火烧油层法适用于粘度高、油层 厚度大、渗透率较高的稠油油藏。 该方法可以提高采收率,但开采 过程中需要严格控制火势和燃烧
条件。
热水驱法
投资回报低
由于技术难度和开采效率问题,稠油热采项目的 投资回报率较低。
市场风险
受国际油价波动的影响,稠油热采项目的经济效 益面临较大的市场风险。
环境挑战
排放控制
稠油热采过程中会产生大量的废气和废水,需要严格的排放控制 措施。
生态保护
稠油热采活动可能对周边生态环境造成一定的影响,需要采取生态 保护措施。
案例二:某油田的蒸汽驱项目
蒸汽驱是一种更为先进的稠油热 采技术,通过向油藏注入高温蒸 汽,将稠油驱赶到生产井,进一
步提高采收率。
某油田的蒸汽驱项目实施过程中, 通过优化注汽参数、改善井网布 置等方式,提高了蒸汽驱的开发
效果和经济性。
该项目的成功实施表明,蒸汽驱 技术适用于大规模稠油油藏的开 发,为类似油田的开发提供了有
其降粘并提高流动性。
采收和运输
通过采油树和采油管线将稠油 采出地面,并进行必要的处理

对稠油开采几种主要技术分析

对稠油开采几种主要技术分析
参考文献 [1] 王 乃 举 . 中 国 油 藏 开 发 模 式·总 论 [M]. 北 京 :石 工 业 出 版 社 , 1999:275~281
284 企业导报 2012 年第 12 期
技术市场
对稠油开采几种主要技术分析
孔卫杰
(河南油田采油一厂,河南 南阳 473000)
一、热采技术 注蒸汽热采的开采机理主要是通过加热降粘改善流变性, 高温改善油相渗透率以及热膨胀作用、蒸汽(热水)动力驱油作 用、溶解气驱作用。当油、水总蒸汽压等于或高于系统压力时, 混合物将沸腾,使原油中轻组分分离,即为蒸馏作用。蒸馏作用 引起混合液沸腾产生的扰动效应能使死孔隙中的原油向连通 孔隙中转移,从而提高驱油效率。高温水蒸气对稠油的重组分 有热裂解作用,即产生分子量较小的烃类。在蒸汽驱过程中,从 稠油中馏出的烃馏分和热裂解产生的轻烃进入热水前沿温度 较低的地带时,又重新冷凝并与油层中原始油混合将其稀释, 降低了原始油的密度和粘度,形成了对原始油的混相驱。注蒸 汽热采的乳化驱作用同样很有意义,蒸汽驱过程中,蒸汽前沿 的蒸馏馏分凝析后与水发生乳化作用,形成水包油或油包水乳 化液,这种乳化液比水的粘度高得多。在非均质储层中,这种高 粘度的乳状液会降低蒸汽和热水的指进,提高驱油的波及体 积。热采井完井时的主要问题是,360℃高温蒸汽会导致套管发 生断裂和损坏。为此,采用特超稠油 HDCS 技术,将胶质、沥青质 团状结构分解分散,形成以胶质沥青质为分散相、原油轻质组 分为连续相的分散体系。 二、出砂冷采 1986 年,为了降低采油成本,提高稠油开采经济效益,加拿 大的一些小石油公司率先开展了稠油出砂冷采的探索性矿场 试验。到 90 年代中期,稠油出砂冷采已成为热点,不注热量、不 防砂,采用螺杆泵将原油和砂一起采出。文献指出,螺杆泵连续 抽吸避免了稠油网状结构的恢复,稠油形成稳定的流动地带, 在油带前缘,油滴被启动而增溶到油带中,因此,油带具有很好 的流动能力,表现到生产上就是含水下降。而抽油泵的脉动抽 吸,使得地层孔隙中的油流难以形成连续流,水相侵入到油流 通道,微观上表现为降低了油滴前后的压差,油滴更难启动。稠 油出砂冷采技术对地层原油含有溶解气的各类疏松砂岩稠油 油藏具有较广泛的适用性,它通过使油层大量出砂形成蚯蚓洞 和形成稳定泡沫油而获得较高的原油产量。形成地层中“蚯蚓 洞”,可提高油层渗透率;形成泡沫油,则给油层提供了内部驱 动能量。 三、加降粘剂 据研究,乳化液在孔隙介质中的流动过程是一个复杂的随 机游走过程,降低界面张力、提高毛管数可改善稠油油藏开发 效果。向生产井井底注入表面活性物质,降粘剂在井下与原油 相混合后产生乳化或分散作用,原油以小油珠的形式分散在水 溶液中,形成比较稳定的水包油型乳状液体系。比较常用的有 GL、HRV-2、PS、碱法造纸黑液、BM-5、DJH-1、HG 系列降粘剂。鲁克

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种通过加热稠油使其降低黏度,以方便开采的方法。

稠油热采
工艺技术主要包括蒸汽吞吐、电加热、电阻加热、焦耳加热、微生物采油等。

本文将对稠
油热采工艺技术的应用及效果进行分析。

蒸汽吞吐工艺是稠油热采中使用最广泛的一种工艺。

蒸汽吞吐工艺通过注入高温高压
蒸汽到井筒中,使稠油受热而降低黏度,从而使其能够被抽采。

蒸汽吞吐工艺具有成本低、采油效果好的特点,适用于具有一定温度的稠油油层。

经过实践证明,蒸汽吞吐工艺可以
使稠油的采收率提高20%以上。

电加热工艺是一种通过电流加热稠油的方法。

在电加热工艺中,通过在地下注入电极
并通电,产生高温从而加热稠油。

电加热工艺适用于具有低温稠油油层,其优点是可以局
部加热,提高采收率。

电加热工艺的成本较高,需要大量的电力供应,因此在实际应用中
受到一定的限制。

微生物采油是一种通过微生物的作用来改变稠油性质以方便开采的方法。

微生物采油
工艺主要通过注入特定的微生物群体,改变原油中的组分和性质,从而降低黏度,提高可
采性。

微生物采油工艺具有环境友好、低成本的特点,但目前仍处于实验室研究阶段。

稠油热采工艺技术应用广泛且效果显著,可以提高稠油开采的可行性和效率。

不同的
工艺技术适用于不同类型的油层,因此在实际应用中需要根据具体情况选择最合适的工艺
技术。

未来,随着技术的不断发展,稠油热采工艺技术将会进一步完善,为稠油资源的开
采提供更多的选择和可能。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用一、热力开采稠油技术的原理和特点热力开采稠油技术是通过注入热能到稠油沉积层,降低油粘度,提高原油流动性,从而实现对稠油资源的有效开采。

常见的热力开采技术包括燃烧法、蒸汽吞吐法、电热法等。

1. 燃烧法燃烧法是通过在地下将天然气或其他燃料燃烧,产生高温高压的燃烧气体,使稠油沉积层受热而降低粘度,从而提高原油采收率。

这种方法需要考虑燃烧带、温度分布等因素,采取合理的燃烧控制措施,以避免地下岩石破裂和环境污染。

2. 蒸汽吞吐法蒸汽吞吐法是通过注入高温高压蒸汽到稠油沉积层,使得原油粘度降低,提高采收率。

这种方法主要应用于地表和近井筒地段,对油层温度、压力等参数要求严格,需要考虑地下岩石热传导、蒸汽分布等问题。

3. 电热法电热法是通过在油层中布设加热电缆或电极,利用电能转化为热能,提高原油流动性。

这种方法适用于稠油储量大、开采难度大的情况,并且对地下温度、电热能量传递等因素要求严格。

热力开采稠油技术的特点包括:能够有效提高稠油资源的采收率;可以改善油田开采技术条件,降低原油开采成本;具有较好的环境效益和社会效益。

1. 应用现状目前,热力开采稠油技术已经在全球范围内得到了广泛应用。

在加拿大、委内瑞拉等地,已经有大规模的稠油资源开采项目采用了热力开采技术,取得了较好的效果。

我国油田开采中也有一些热力开采稠油技术的应用案例,如在塔里木盆地、达里湖盆地等地,一些稠油沉积层已经开始采用燃烧法、蒸汽吞吐法等技术进行开采。

2. 发展趋势未来,热力开采稠油技术的发展将朝着以下方向发展:(1)技术综合应用热力开采稠油技术需要和水平井、压裂、水驱等其他现代油田开采技术相互配合,形成技术综合应用,提高热力开采的效率和可操作性。

(2)节能环保技术随着社会对能源节约和环保的要求越来越高,热力开采稠油技术需要向着节能、低碳、无排放的方向发展,减少对资源和环境的损害。

(3)新技术研发在燃烧法、蒸汽吞吐法、电热法等传统热力开采技术的基础上,需要不断开展新技术研发,如微波加热、纳米材料应用等,以提高稠油开采的技术水平。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种针对稠油资源的开采方法,其主要原理是通过热能将粘稠的稠油变得更加流动,从而方便提取。

随着全球对于能源资源的需求不断增加,稠油资源的开采技术也在不断提升。

本文将就热力开采稠油技术及其应用进行分析。

一、热力开采稠油技术原理热力开采稠油技术主要包括蒸汽吞吐法、蒸汽驱替法、地热法、电阻加热法等几种方法。

1. 蒸汽吞吐法蒸汽吞吐法是通过将高温的蒸汽注入稠油层,使稠油受热膨胀并形成气相驱动油的运移。

该方法的优点是操作简便,成本低廉,能够更有效地提高稠油产量。

蒸汽驱替法是将蒸汽注入稠油层,通过高温高压破坏稠油的粘度结构,从而使得稠油与油藏底部的水形成乳状液,提高了油品的可采性。

3. 地热法地热法是利用地下热能来提高稠油层的温度,使稠油在地热的作用下变得更加流动,并且可以减少热能的消耗。

4. 电阻加热法电阻加热法则是通过在井筒中加入电阻加热器,通过电流产生的热能来加热稠油,降低其粘度,从而方便提取。

热力开采稠油技术主要应用于稠油资源丰富的地区,如加拿大、委内瑞拉、俄罗斯等国家和地区。

在这些地区,使用传统采油技术提取稠油的效果并不理想,而热力开采稠油技术可以更好地发挥作用。

1. 加拿大加拿大是世界上最大的稠油生产国之一,其阿尔伯塔地区的稠油储量巨大,但由于粘度高,采油困难。

加拿大在热力开采稠油技术上进行了大量的探索和应用,取得了一定的成果。

2. 委内瑞拉委内瑞拉的奥里诺科地区拥有丰富的稠油资源,但大部分是非常高粘度的稠油,传统采油技术效果不佳。

委内瑞拉政府和石油公司在热力开采稠油技术的研发和应用上投入了大量资金和人力,取得了显著成效。

3. 俄罗斯俄罗斯是全球最大的石油生产国之一,在西伯利亚地区也有大量的稠油资源。

俄罗斯的石油公司在热力开采稠油技术方面经验丰富,在稠油资源的开采和利用上有着丰富的实践经验。

热力开采稠油技术相较于传统的采油方法有着明显的优势,包括以下几点:1. 提高采收率热力开采稠油技术可以有效地提高稠油资源的采收率,从而增加了石油产量,提高了资源利用效率。

248-257辽河油田稠油热采井钻完井技术

248-257辽河油田稠油热采井钻完井技术

辽河油田稠油热采井钻完井技术辽河石油勘探局工程技术研究院摘要:稠油热采井钻完井是稠油开采技术中的一个重要问题,钻井所面临的主要问题是低压钻井问题。

而热采井中最大的问题是完井中的套管先期损坏问题,通过对套管损坏井的调查与分析,提出了稠油热采井套管损坏的主要原因,并对此进行了系统研究。

提出了热采井套管设计技术、套管选择技术和降低套管热应力技术、提高固井质量技术、油井开采防砂技术等稠油热采井延长寿命的系列完井技术,通过这些技术的应用保证了稠油藏的顺利开发。

关键词:稠油井热采、套管损坏、热采井完井、热采井套管选择、套管设计、防砂、降低热应力。

1.辽河油田稠油开发概述辽河油田是一个以稠油为主的油田,稠油的总产量占油田原油总产量的70%,稠油开采以热力采油为主,因此辽河油田的发展史可以说是一部稠油发展史。

到目前为止辽河油田共探明稠油油藏面积200.5km2,共探明地质储量10.2237×108t,动用探明油藏面积128.4 km2,动用地质储量7.6208×108t,共生产稠油1.0371×108t。

辽河油田探明稠油分布图如下图所示4272343515 15999深层900-1300m, 占41.79% 特深层1300-1700m, 占42.56%中深层600~900m15.65%248辽河油田稠油油藏具有以下特点:探明地质储量102237×104t中的油藏深度情况如下:动用地质储量7.6208×108t中的油藏深度情况如下:辽河油田探明地质储量中的油品性质如下所示:辽河油田于1978年发现了高升稠油藏,这是辽河油田发现稠油油油田的开始,以后随着勘探工作的不断进展又发现了大量的稠油油藏。

辽河油田于1982年首次在高升油田进行了稠油热采实验并取得了巨大的成功。

辽河油田从此走上了稠油热采的快车道,稠油开发得到了高速发展。

由于稠油油田进行热力开采的特殊性也为辽河油田的稠生产带来了全新的技术观念和技术进步。

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术摘要:依据稠油油田的特点,采取加热的方式,降低稠油的粘度,提高油流的温度,满足稠油油藏开发的条件。

热力采油技术措施是针对稠油油藏的最佳开采技术措施,经过油田生产的实践研究,采取注蒸汽开采,蒸汽吞吐采油等方式,提高稠油油藏的采收率。

关键词:稠油热采;工艺技术;探讨前言稠油热采工艺技术的应用,解决稠油油藏开发的技术难题,达到稠油开采的技术要求。

稠油热采可以将热的流体注入到地层中,提高稠油的温度,降低了稠油的粘度,达到开采的条件。

也可以在油层内燃烧,形成一个燃烧带,而提高油层的温度,实现对稠油的开发。

为了满足油田生产节能降耗的技术要求,因此,稠油开采过程中,优先采取注入热流体的方式,达到预期的开采效率。

1稠油热采概述稠油具有高粘度和高凝固点,给油田开发带来一定的难度。

采取化学降粘开采技术措施,应用化学药剂的作用,降低了油流的粘度,同时也会导致油流的化学变化,影响到原油的品质,因此,在优选稠油开采技术措施时,选择最佳热采技术措施,进行蒸汽驱、蒸汽吞吐等采油方式,并不断研究热力采油配套技术措施,节约稠油开发的成本,才能达到预期的开采效率。

2稠油的基本特点2.1稠油中胶质与沥青含量比较高,轻质馏分含量少稠油含有比例极高的胶质组分及沥青,轻质馏分比较少,稠油的黏度和密度在其中胶质组分及沥青质的成分增长的同时也会随之增加。

由此可见,黏度高并且密度高是稠油比较突出的特征,稠油的密度越大,其黏度越高。

2.2稠油对温度非常敏感稠油的黏度随着温度的增长反而降低。

在ASTM黏度-温度坐标图上做出的黏度-温度曲线,大部分稠油油田的降黏曲线均显现出斜直线状,这也验证了稠油对温度敏感性的一致性。

2.3稠油中含蜡量低。

2.4同一油藏原油性质差异较大。

3稠油热采技术的现状针对稠油对温度极其敏感这一特征,热力采油成为当前稠油开采的主要开采体系。

热力采油能够提升油层的温度,稠油的黏度和流动阻力得到了降低,增加稠油的流动性,实现降黏效果,从而使稠油的采收率变高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

114.3 mm x 88.9 mm ID - Insulated tubing @ 200 m.MD
114.3 mm x 17.26 kg/m
88.9 mm GDA-SD @ 605 m.MD Production Liner 219.1 mm x 47.62 kg/m @ 989 m.MD
177.8 mm x 38.68 kg/m @ 380 m.MD
19
蒸汽流动分布:常规方法
© 2009 Weatherford. All rights reserved.
20
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
21
蒸汽流动分布:改进的方法
Injection string 88.9 mm x 13.84 kg/m
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 蒸汽和H2S的存在 侵蚀/腐蚀
– 更低的流速和外层绕钢丝结构最小化蒸汽和流体的腐 蚀
– Ultra-Grip 筛管可以根据最优化的定制来选择不同的钢 材
© 2009 Weatherford. All rights reserved.
Steam distribution devices @ 840, 1,010 & 1,130 m MD
© 2009 Weatherford. All rights reserved.
27
蒸汽流动分布:改进的方法
Production string 88.9 mm x 13.84 kg/m
Injection string 60.3 mm x 6.99 kg/m @ 2,300 m MD Reciprocating pump Production Liner 139.7 mm x 25.3 kg/m @ 2,386 m MD
© 2009 Weatherford. All rights reserved.
22
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
23
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

Ultra-Grip 筛管使用高致密金属丝缠绕在基管,具有高精度 的割缝公差与合理结构和特殊的金属丝剖面特点,可以提 供最优的阻挡地层固体颗粒进入井筒能力的同时最大化的 提高油气产量。 Ultra-Grip 筛管是一种很容易被回收的筛
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 地层砂分布不均质 堵塞
– 金属丝剖面形状对防止地层固体颗粒堵塞缝隙非常理想
– 平滑的金属丝表面防止了细粉颗粒和粘土的堵塞 – 较大的流动面积改善了流动形态 • 地层砂分布不均质 细粉砂 / 砂粒产出
Injection string 88.9 mm x 13.84 kg/m @ 1,500 m MD Production Liner 177.8 mm x 34.23 kg/m @ 1,550 m MD
Steam distribution device @ 1,250 m MD Production Casing 219 mm x 47.62 kg/m @ 1,140 m MD BH pressure sensing device string
– 加拿大和全球其它地区(Weatherford Laboratories – HyCal) 最优秀的技术团队提供筛管缝隙选择的支持。
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 井眼轨迹安全顺利下入 – 对StatoilHydro 进行的资格认证测试证实了威德福优质 筛管的强度(拉伸强度, push-off,焊接强度,破裂强 度,挤压,抗扭强度和弯曲效应等) – 提高了钻井效率,筛管安装不需要很高的钻井液要求 。 – 在GOM油田,当筛管被从大位移水平井中回收时,没 有破坏其整体性。
With FloReg ICD
© 2009 Weatherford. All rights reserved.
17
蒸汽流动分布和ICD安装
© 2009 Weatherford. All rights reserved.
18
蒸汽流动分布:常规方法
© 2009 Weatherford. All rights reserved.
24
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
25
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
26
蒸汽流动分布:改进的方法
Surface Casing 406.4 mm x 96.73 kg/m @ 85 m
5
筛管& 流入控制装置/阻挡器
© 2009 Weatherford. All rights reserved.
6
筛管:面临的挑战
• 提高温度到 350°C 并进行周期性循环测试 热稳定性 • 地层砂分布不均质 堵塞 • 地层砂分布不均质 细粉砂 / 砂粒产出 • 井眼轨迹 安全顺利下入 • 增加产量 流动面积和汇流 • 提高采收率 压力下降 • 蒸汽和H2S的存在 侵蚀/腐蚀
300
6000
280
5000
270
4000
260
3000
250
2000 0 500 1000 Measured depth, m Injection tubing pressure Injection tubing temperature 1500 2000
240 2500
© 2009 Weatherford. All rights reserved.
Steam distribution devices @ 1,160 & 1,760 m MD
Production Casing 219 mm x 47.62 kg/m @ 1,140 m MD BH pressure sensing device string
10000
320
9000
310
8000
Risk of early water/gas production.
Res. To Well Influx, STB/D/FT
FloReg™ ICD:
Even Influx No Coning
FloReg™ ICD
Improve well drainage from toe to heel.
Without FloReg ICD
管,甚至包括一些非常困难的打捞作业中。
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

特点与优势
• Ultra-Grip 筛管通过冷缩配合生产处理过程使筛管的拉伸, 扭矩与弯曲强度大幅度的提高超过传统的slip-on screens.
• 外层钢丝通过热处理焊接到环绕到割缝管外的一系列型棒上. • 坚固的外层钢丝提供更好的抗腐蚀性,使得在大部分恶劣的 环境下提高工具的物理强度和生命力. – 新颖的梯形绕钢丝机构具有无堵塞,自我清洗与自由流 通特点 • 梯型棒和梯形绕钢丝提供了更高级的焊接对焊接强度.
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 增加油气产量 流动面积 – 通常流入面积能到达6 ~ 15% 每英尺筛管流动面积 – 割缝筛管的流入面积是1.5 ~3% – 减小合流/ 机械表皮
• 提高采收率 压力下降
– 较大的流动面积可以降低尾管两侧的压力降,即使存 在一定的缝隙堵塞。 – 尾管压降的减小提高了SAGD的作业性能,降低了蒸汽 刺穿的风险,提高了过冷控制和水平段的生产流入剖 面均衡性。
Temperature, degC
7000
290
Pressure, kPa
28
蒸汽流动分布:改进的方法
Production string 88.9 mm x 13.84 kg/m
Injection string 60.3 mm x 6.99 kg/m @ 2,300 m MD Reciprocating pump Production Liner 139.7 mm x 25.3 kg/m @ 2,386 m MD
1
尾管挂封隔器/阻挡器
© 2009 Weatherford. All rights reserved.
2
MFP尾管顶部封隔器
• 在井温改变时,尾管可移动 • 有效控制砂堵成本 • 高温设计及测试(7”MPF在9-5/8” 套管里拖 拉测试无刮痕) • 在介于150°C 和 280°C之间的热循环做 预测试 ,含尾管运动,记录受力。 • 目前已作业超过30口井(CPC, SHC)
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

特点:
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 提高温度到 350°C 并进行温度周期性循环测试 热稳定 性 – 直接缠绕的生产过程将热应力分布在整根筛管上,提 高了温度周期性变化时的稳定性。 – Weatherford 在类似的Dura-Grip™ 筛管上进行了温度 周期性变化测试达到700°F (~371°C),没有监测到 缝隙和基管的变形。
相关文档
最新文档