高职单招数学试题及答案
2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
单招试卷数学试题及答案

单招试卷数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x+3,则f(-1)的值为:A. 1B. -1C. -5D. 52. 已知集合A={1,2,3},B={2,3,4},则A∩B为:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 直线y=2x+1与x轴的交点坐标为:A. (0,1)B. (-1/2, 0)C. (1/2, 0)D. (0, -1)4. 函数y=x^2-4x+4的最小值是:A. 0B. 1C. 4D. 85. 等比数列{a_n}中,a_1=2,公比q=2,则a_3的值为:A. 4B. 8C. 16D. 326. 已知向量a=(1,2),b=(2,3),则向量a·b的值为:A. 5B. 6C. 7D. 87. 圆的方程为(x-2)^2+(y-3)^2=9,该圆的半径为:A. 3B. 6C. 9D. 128. 已知三角形ABC中,a=3,b=4,c=5,则cosA的值为:A. 1/2B. 1/3C. 1/4D. 1/59. 函数y=sin(x)的周期为:A. 2πB. πC. 3πD. 4π10. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a=2,b=1,则该双曲线的渐近线方程为:A. y=±x/2B. y=±2xC. y=±xD. y=±1/2x二、填空题(每题4分,共20分)11. 已知等差数列{a_n}中,a_1=1,d=2,则a_5的值为______。
12. 函数y=cos(x)的值域为______。
13. 已知向量a=(3,-1),b=(-1,3),则向量a与b的夹角为______。
14. 已知椭圆方程为x^2/16 + y^2/9 = 1,则该椭圆的离心率为______。
15. 函数y=ln(x)的定义域为______。
三、解答题(每题20分,共40分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x)。
高职单招数学试卷及答案

高职单招数学(003)liao姓名: 班级: (中秋)一、单项选择题(本大题10小题,每小题3分,共30分.)1、已知全集I={不大于5的正整数 },A={1,2,5},B={2,4,5}则C I A ∩C I B= ( )A 、 {1,2,4,5}B 、{3}C 、 {3,4}D 、{1,3}2、函数()22x x x f -=的定义域是 ( )A 、()0,∞-B 、(]2,0C 、(]0,2-D 、[]2,03、x >5是x >3的( )条件 ( )A 、充分且不必要B 、必要且不充分C 、充要D 、既不充分也不必要4、二次函数2285y x x =-+在( )内是单调递减函数。
( )A 、[)2,+∞B 、(],2-∞C 、(],2-∞-D 、[)2,-+∞ 5、设自变量R x ∈,下列是偶函数的是( )A 、y=sinxB 、y=133-xC 、y=|2x|D 、y=-4x 6、不等式|x-2|<1的解集是 ( )A 、{x|x <3}B 、{x|1<x <3}C 、{x|x <1}D 、{x|x <1,或x >3}7、在等比数列{}n a 中,已知345a a =,则1256a a a a = ( )A 、25B 、10C 、—25D 、—108、已知向量(5,3),(1,),a b m a b =-=-⊥且,则m = ( )A 、 35B 、-35C 、 -53D 、53 9、圆方程为222620x y x y ++-+=的圆心坐标与半径分别是 ( )A 、(1,3),r -=、(1,3),r -=、(1,3),r -=、(1,3),4r -=A BA C 1D 1 C B D C A 1 B 1 10、下面命题正确的是 ( )A 、如果两条直线同垂直于一条直线,则这两条直线互相平行B 、如果两条直线同平行于一个平面,则这两条直线互相平行C 、如果两个平面同垂直于一个平面,则这两个平面互相平行D 、如果两条直线同垂直于一个平面,则这两条直线互相平行二、填空题(把答案写在横线上;本大题12小题,每小题2分,共24分)1、集合{1,2,3}的真子集共有____________个。
普通高职单招考试数学试题及答案

普通高职单招考试数学试题及答案分值:150分时间:60分钟一、选择题:(1--30题,每小题3分,共90分。
下列各题给出的四个选项中只有一个选项是符合题目要求的,请在答题卡上将所选项对应的字母涂黑。
)1.已知|x|-3=0,则x= ( )A.3B.-3C.3或-3D.以上都不对2.方程x2=16的解集为 ( )A.{-4}B.{4}C.{-4,4}D.空集3.计算(-3)2·32=()A.81B.-81C.12D.-124.关于x的一元二次方程ax2-2ax+4=0有两个相等实数根,则a= ( )A.0B.4C.0或4D.-45.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A. B.C. D.6.已知集合A={1,3,5,7},集合B={2,3,4,5},那么A∩B= ( )A.{2,3,4}B.{3,4}C.{3,5}D.{2,3,5}7.“x =1”是“x 2-1=0”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知a >b,则下列不等式中正确的是 ( )A.ac >bcB.a+1>bC.a-1>b+1D.a 2>b 29.不等式|x-3|<1的解集为 ( )A.{x|-2<x <4}B.{x| -4<x <2}C.{x| 2<x <4}D.{x| -4<x <-2}10.已知f(x)=3x-5,则f(-1)= ( )A.8B.-8C.2D.-211.下列函数为奇函数的是 ( )A.f(x)=x 2B.f(x)=1xC.f(x)=2x-1D.f(x)=x 2+112.一元二次函数y =x 2-4x+2在区间[1,4]上的最小值是( ) A.-1 B.4C.-2D.213.若log x 8=-3,则x = ( )A.2B.-2C.12D.−1214.已知角α的终边过点P (3,-4) ,则sin α= ( )A.35B.− 45C.−43D. −3415.下列选项正确的是 ( )A.sin (α+β)=sinα+sinβB.cos (−α)=cosαC.sin (π+α)=sinαD.tan2α=2tan α16.已知等差数列{a n },若a 1=5,公差d =2,则a 10= ( )A.23B.-23C.13D.-1317.已知a,b,c,d 是公比为2 的等比数列,则c a = ( )A.2B.4C.12D.1418.已知向量a ⃗=(-2,3),b ⃗⃗=(1,-4),则a ⃗+b⃗⃗= ( ) A.(3,-7) B.(-3,7)C.(-1,-1)D.(1,1)19.已知|a ⃗|=2,|b ⃗⃗|=4,且<a ⃗, b ⃗⃗>=π3,则a ⃗·b ⃗⃗= ( ) A.4 B.8C.4√3D.8√320.已知点P(2,-3),Q(4,5),则线段PQ 的中点M 的坐标为 ( )A.(6,-2)B.(3,1)C.(2,8)D.(1,4)21.已知直线l 方程:2x-y+1=0,则直线l 的斜率k 及其纵截距b 分别为( )A.k =2,b =1B.k =-2,b =-1C.k =2,b =-1D.k =-2,b =122.已知直线l 1方程为:2x+3y-6=0,直线l 2的方程为4x+6y+3=0,则这两条直线的位置关系是 ( )A.垂直B.平行C.相交且不垂直D.重合23.经过点P 1(4,9)、P 2(6,3)的直线的斜率为 ( )A.13B.−13C.3D.-324.已知圆C 的标准方程为(x-2)2+(y+3)2=4,则其圆心坐标和半径分别为( )A.(-2,3),2B.(-2,3),4C.(2,-3),4D.(2,-3),225.直线3x+4y-10=0与圆x 2+y 2=4的位置关系是 ( )A.相离B.相交C.相切D.相交且过圆心26.已知椭圆的标准方程为x 225+y29=1,则椭圆的焦距为 ( )A.10B.8C.6D.427.已知抛物线的标准方程为y2=4x,则其焦点坐标为 ( )A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)28.已知正方体的棱长为2,则该正方体的全面积为 ( )A.8B.12C.16D.2429.垂直于同一平面的两条直线的位置关系是 ( )A.平行B.相交C.异面D.无法判断30.某班周一上午有语文、数学、英语、品德四节课,不同的排课方案共有 ( )A.12种B.24种C.36种D.48种二、多选题(31--35题,每题3分,共15分。
高职单独招生考试数学卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23B.32C.2D.33.已知角β终边上一点(4,3)P -,则cos β=()A.35-B.45C.34-D.544.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1- C.12D.12-5.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B.C.D.7.抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x mπ∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBBD 6-10题答案:ADDBD 11-15题答案:ABDCA 16-20题答案:BABCB 部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、答案.B 【解析】5(1)124k --==---.5、答案.D 【解析】1cos 211cos 2cos 2222x y x x -=+=+,最小正周期T =π,最小值为0.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、 ;8、1;9、1532-;10、x-y-1=0。
高职统招数学试题及答案

高职统招数学试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的零点个数是:A. 0个B. 1个C. 2个D. 3个答案:C2. 已知向量\( \vec{a} = (2, -1) \)和\( \vec{b} = (1, 3) \),求\( \vec{a} \cdot \vec{b} \)的值:A. 5B. -1C. 1D. -5答案:C3. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \frac{1}{x} \)D. \( f(x) = x + 1 \)答案:B4. 计算极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值:A. 0B. 1C. -1D. 2答案:B5. 已知双曲线\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)的焦点在x轴上,且\( a = 2 \),求\( b \)的值:A. 2B. 3C. 4D. 5答案:B6. 计算定积分\( \int_{0}^{1} x^2 dx \)的值:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A7. 以下哪个矩阵是可逆的?A. \( \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \)B. \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)C. \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)D. \( \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)答案:B8. 已知\( \sin A = \frac{1}{2} \),求\( \cos 2A \)的值:A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( -\frac{1}{2} \)D. \( -\frac{3}{4} \)答案:D9. 以下哪个方程是二阶微分方程?A. \( y' + 2y = 0 \)B. \( y'' + y' - 2y = 0 \)C. \( y' + y^2 = 0 \)D. \( y' + y = x \)答案:B10. 计算级数\( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)的和:A. 1B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{3} \)答案:A二、填空题(每题4分,共20分)11. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是 \( \_\_\_\_\_\_\_ \)。
高职数学单招试题及答案

高职数学单招试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 3B. y = 3x^2 + 1C. y = 5xD. y = x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 若sinα=0.6,则cosα的值等于()A. 0.8B. -0.8C. -0.6D. 0.64. 函数f(x)=x^2-4x+3在区间()上单调递增。
A. (-∞, 2)B. (2, +∞)C. (-∞, 1)D. (1, 2)5. 不等式|x-2|+|x-3|<4的解集为()A. (-1, 5)B. (-∞, 5)C. (-∞, 3)D. (1, 5)6. 已知数列{an}是等差数列,且a3=5,a5=11,则该数列的公差d等于()A. 2B. 3C. 4D. 67. 圆的一般方程为x^2+y^2+2gx+2fy+c=0,其中心坐标为()A. (-g, -f)B. (g, f)C. (-f, -g)D. (f, -g)8. 极限lim(x→0) [x^2 sin(1/x)] 的值是()A. 0B. 1C. 2D. -19. 曲线y=x^3在点(1, 1)处的切线斜率为()A. 2B. 3C. 1D. 010. 微分方程dy/dx = y/x的通解是()A. y^2 = 2cxB. y^2 = cxC. x^2 = 2cyD. x^2 = cy二、填空题(每题4分,共20分)11. 函数f(x)=√x的值域是_________。
12. 设等比数列的首项为2,公比为3,其第五项为_________。
13. 已知某二项式展开式中,中间项(第5项)为40,则该二项式的二项式系数为_________。
14. 若曲线y=x^2上点P(x0, y0)处的法线方程为y=-x+2,则点P的坐标为_________。
2023年高职单独招生考试数学试卷(含答案) (1)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A ∈0, 则满足}1,0{=B A 的集合A , B 的组数是 ( )A .1组B .2组C .4组D .6组2.若|log |)(,10x x f a a =<<且函数, 则下列各式中成立的是( )A .)41()31()2(f f f >>B .)31()2()41(f f f >>C .)2()31()41(f f f >>D .)41()2()31(f f f >>3.在ABC ∆中, 如果1019cos ,23sin ==B A , 则角A 等于 ( )A .3πB .32π C .3π或32π D .656ππ或 4.已知数列)(lim ,131}{242n n n n n a a a a S a +++-=∞→ 那么满足的值为 ( )A .21B .32 C .1 D .-25.直线0601210122=+--++=y x y x mx y 与圆有交点, 但直线不过圆心, 则∈m ( ) A .)34,1()1,43(B .]34,1()1,43[C .]34,43[D .)34,43(6.如图, 在正三角形ABC ∆中, D 、E 、F 分别为各边的中点, G 、H 、I 、J 分别为AF , AD , BE , DE 的中点, 将ABC ∆沿DE ,EF , DF 折成三棱锥以后, GH 与IJ 所成角的度数为 ( ) A .90° B .60° C .45°D .0°7.已知以y x ,为自变量的目标函数)0(>+=k y kx ω的可行域如图阴影部分(含边界), 若使ω取最大值时的最优解有无穷 多个, 则k 的值为( ) A .1B .23C .2D .48. 已知集合A={-1,0,1},集合B={x|x <3,x ∈N},则A ∩B=( ) A. {-1,1,2} B. {-1,1,2,3} C. {0,1,2} D. {0,1}9. 已知数列:23456 34567,,,,,…按此规律第7项为( )A. 78B. 89C.78D.8910. 若x ∈R ,下列不等式一定成立的是( )A. 52x x<B. 52x x >C. 20x > D. 22(1)1xx x >11、已知f(12x -1)=2x +3,f(m)=8,则m 等于( )A 、14B 、-14C 、32D 、-32 12、函数y =lg x +lg(5-2x)的定义域是( )A 、)25,0[B 、⎥⎦⎤⎢⎣⎡250,C 、)251[,D 、⎥⎦⎤⎢⎣⎡251,13、函数y =log2x -2的定义域是( )A 、(3,+∞)B 、[3,+∞)C 、(4,+∞)D 、[4,+∞)14、函数12--=x x y 的图像是 ( ) A.开口向上,顶点坐标为)(45,21-的一条抛物线; B.开口向下,顶点坐标为)(45,21-的一条抛物线; C.开口向上,顶点坐标为)(45,21-的一条抛物线; D.开口向下,顶点坐标为)(45,21-的一条抛物线;15、函数()35x x x f +=的图象关于( )A 、y 轴对称B 、直线y =-x 对称C 、坐标原点对称D 、直线y =x 对称16、下列函数中,在区间(0,+∞)上为增函数的是( ) A 、y =x +1 B 、y =(x -1)2 C 、y =2-x D 、y =log0.5(x +1)17、已知函数x x f =)(,点),4(b P 在函数图像上,则=b ( ) A 、-4 B 、3 C 、-2 D 、2 18、不等式532≤-x 的解集是( )A 、()4,1-B 、()()∞+-∞-,,41 C 、[]4,1- D 、 ()()∞+--∞-,,14 19、不等式()()073>+x x -的解集是( )A 、 ()73,-B 、 ()7,3-C 、 ),3()7,(+∞--∞D 、 ),7()3,(+∞--∞ 20、不等式31<-x 的解集是( )A 、(-2,4)B 、(-1,3)C 、 ),4()2,(+∞--∞D 、 ),1()3,(+∞--∞ 一、填空题:(本题共2小题,每小题10分,共20分.)1、若实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x , 则y x +2的最小值是2、在等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d =_______.二、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 1.设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集 . 2.已知函数1)6sin(cos 4)(-+=πx x x f ,求求)(x f 的最小正周期;(2)求)(x f 在区间]4,6[ππ-上的最大值和最小值.3. 已知函数b b x a x x f 2)1()(22--++=,且)2()1(x f x f -=-,又知x x f ≥)(恒成立. 求:(1) )(x f y =的解析式;(2)若函数[]1)(log )(2--=x x f x g ,求函数g(x)的单调区间. 4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =,cosB =,求c 的值;(2)若=,求sin (B+)的值.参考答案: 一、选择题1-5:DCACB 6-10:BADBB 二、填空题 1.参考答案.4 【解析】试题分析:根据题意可知,实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x 对应的区域如下图,当目标函数z=2x+3y 在边界点(2,0)处取到最小值z=2×2+3×0=4. 故答案为:4考点:简单线性规划的运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职单招数学试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分) 1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2. 不等式的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<3 3.已知函数()22xf x =+,则(1)f 的值为( ) A .2 B .3 C .4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数D. 既增又减函数 5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D.127. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A.4B.5C.6D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( ) A .6- B .6 C .32 D .32- 点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种21<-xC .9种D .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)复数= _________12.(5分)设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= _________ .13.(5分)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ . 15.(5分))以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[﹣M ,M].例如,当φ1(x )=x 3,φ2(x )=sinx 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题: ①设函数f (x )的定义域为D ,则“f(x )∈A”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b”;②函数f (x )∈B 的充要条件是f (x )有最大值和最小值; ③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B . ④若函数f (x )=aln (x+2)+(x >﹣2,a ∈R )有最大值,则f (x )∈B .其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。
(1)求数列{}n a 的通项公式;(2)记数列1{}n a 的前n 项和n T ,求得使1|1|1000n T -<成立的n 的最小值。
17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N 。
(I )请将字母标记在正方体相应的顶点处(不需说明理由) (II )证明:直线//MN 平面BDH (III )求二面角A EG M --余弦值19.(12分)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *). (1)若a 1=﹣2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2﹣,求数列{}的前n 项和T n .20.(本小题13分)如图,椭圆2222:1+=x y E ab的离心率是2,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点。
当直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 (1) 球椭圆E 的方程;(2) 在平面直角坐标系xoy 中,是否存在与点P 不同的定点Q ,使得=QA PAQB PB恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由。
21.已知函数f (x )=e x ﹣ax 2﹣bx ﹣1,其中a ,b ∈R ,e=2.71828…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.GFHEC DA B参考答案一、选择题11. 解:复数===﹣2i,故答案为:﹣2i.12. 解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:113. 解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m∴CD==46≈79.58m.又∵Rt△ABD中,∠ABD=67°,可得BD==≈19.5m∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m故答案为:60m14. 解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:515. 解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f (a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x )≤M.例如:函数f (x )满足﹣2<f (x )<5,则有﹣5≤f(x )≤5,此时,f (x )无最大值,无最小值.∴命题②“函数f (x )∈B 的充要条件是f (x )有最大值和最小值.”是假命题; (3)对于命题③ 若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B , 则f (x )值域为R ,f (x )∈(﹣∞,+∞), 并且存在一个正数M ,使得﹣M≤g(x )≤M. ∴f(x )+g (x )∈R . 则f (x )+g (x )∉B . ∴命题③是真命题. (4)对于命题④ ∵函数f (x )=aln (x+2)+(x >﹣2,a ∈R )有最大值,∴假设a >0,当x→+∞时,→0,ln (x+2)→+∞,∴aln(x+2)→+∞,则f (x )→+∞.与题意不符; 假设a <0,当x→﹣2时,→,ln (x+2)→﹣∞,∴aln(x+2)→+∞,则f(x )→+∞.与题意不符. ∴a=0. 即函数f (x )=(x >﹣2) 当x >0时,,∴,即;当x=0时,f (x )=0; 当x <0时,,∴,即.∴.即f (x )∈B .故命题④是真命题. 故答案为①③④. 三、解答题16. 解:(1)当2n ≥时有,11112(2)n n n n n a S S a a a a --=-=---则12n n a a -=(2)n ≥12n n a a (2n )则{}n a 是以1a 为首项,2为公比的等比数列。
又由题意得21322a a a +=+1112224a a a ⇒⋅+=+12a ⇒= 则2nn a = *()n N ∈(2)由题意得112n n a = *()n N ∈ 由等比数列求和公式得11[1()]1221()1212n n n T -==-- 则2111-=()22nn T ()-= 又当10n =时, 10911=1024=51222(),()111000n T ∴-<成立时,n 的最小值的10n =。
点评:此题放在简答题的第一题,考察前n 项和n S 与通项n a 的关系和等比数列的求和公式,难度较易,考察常规。
可以说是知识点的直接运用。
所以也提醒我们在复习时要紧抓课本,着重基础。
17. 解:(1)X 可能取值有﹣200,10,20,100. 则P (X=﹣200)=,P (X=10)== P (X=20)==,P (X=100)==,故分布列为: X ﹣200 10 20 100 P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣. 由(1)知,每盘游戏或得的分数为X 的数学期望是E (X )=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.18.解:(I )直接将平面图形折叠同时注意顶点的对应方式即可,如图(II )连接BD ,取BD 的中点Q ,连接MQ因为M 、Q 为线段BC 、BD 中点,所以////MQ CD GH 且1122MQ CD GH == 又因N 为GH 中点,所以12NH GH = 得到NH MQ =且//NH MQ 所以四边形QMNH 为得到//QH MN 又因为QH ⊂平面BDH所以//MN 平面BDH (得证)(III )连接AC ,EG ,过点M 作MK AC ⊥,垂足在AC 上,过点K 作平面ABCD 垂线,交EG 于点L ,连接ML ,则二面角A EG M MLK --=∠ 因为MK ⊂平面ABCD ,且AE ABCD ⊥,所以MK AE ⊥ 又AE ,AC ⊂平面AEG ,所以MK ⊥平面AEG且KL AEG ⊂,所以MK ⊥KL ,所以三角形MKL 为RT ∆ 设正方体棱长为a ,则AB BC KL a ===, 所以2a MC =, 因为45MCK ∠=︒,三角形MCK 为RT ∆,所以cos 454MK MC =∠︒=所以4tan MK MLK KL a ∠===cos MLK ∠= QLKMH N GE FD CA B所以cos cos 3A EG M MLK <-->=∠=19. 解:(1)∵点(a 8,4b 7)在函数f (x )=2x的图象上, ∴,又等差数列{a n }的公差为d , ∴==2d,∵点(a 8,4b 7)在函数f (x )的图象上, ∴=b 8,∴=4=2d,解得d=2.又a 1=﹣2,∴S n ==﹣2n+=n 2﹣3n .(2)由f (x )=2x,∴f′(x )=2xln2,∴函数f (x )的图象在点(a 2,b 2)处的切线方程为,又,令y=0可得x=,∴,解得a 2=2.∴d=a 2﹣a 1=2﹣1=1.∴a n =a 1+(n ﹣1)d=1+(n ﹣1)×1=n,∴b n =2n. ∴.∴T n =+…++,∴2T n =1+++…+,两式相减得T n =1++…+﹣=﹣= =.20:解:(1)由题知椭圆过点)。