100测评网高三数学复习阶段测试二
100测评网高中数学复习向量与解析几何结合解答题精选

向量与解析几何结合解答题精选平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。
或者考虑向量运算的 几何意义,利用其几何意义解决有关问题。
1.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。
(1)求动点M 的轨迹C ;(2)若点P 、Q 是曲线C 上任意两点,且·OQ =0,求222PQ∙的值【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10根据椭圆的第一定义:动点M 的轨迹为椭圆:122=+y x (2)∵点P 、O 是1162522=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5)(注意:这是点在椭圆上的一种常规设法,也是椭圆的参数方程的一个应用) ∵OP ·OQ =0 得:βαβαsin sin 16cos cos 25+=0 ①而2PQ 、22OQ OP ∙都可以用α、β的三角函数表示,利用①可以解得:222∙=400412.已知:过点A (0,1)且方向向量为=(1,k )的直线l 与⊙C :1)3()2(22=-+-y x 相交与M 、N 两点。
(1)求实数k 的取值范围;(2)求证:AM ·为定值; (3)若O 为坐标原点,且OM ·ON =12,求k 的值。
【解】∵直线l 过点A (0,1)且方向向量为a =(1,k )∴直线l 的方程为:y =kx +1 (注意:这里已知方向向量即已知直线的斜率) 将其代入⊙C :1)3()2(22=-+-y x ,得:07)1(4)1(22=++-+x k x k ① 由题意:△=07)1(4)]1(4[2>⨯+⨯-+-k k 得:374374+<<-k (注意:这里用了直线和方程组成方程组,方程有两根;本题还可以用圆与直线有两个交点,d<R 来解)(2)利用切割线定理可以证明||·|AN |=||2=7,A T 为切线,T 为切点。
100测评网随堂步步高高三数学单元测试卷(共18套)试题

⑶在⑵的条件下,若 的图象上A、B两点的横坐标是函数 的不动点,且直线 是线段AB的垂直平分线,求实数b的取值范围.
高三数学·单元测试卷(二)
第二单元函数
(时量:120分钟150分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
7.设数列{an}是公比为a(a≠1),首项为b的等比数列,Sn是前n项和,对任意的n∈N+,点(Sn,Sn+1)在
A.直线y=ax-b上B.直线y=bx+a上
C.直线y=bx-a上D.直线y=ax+b上
8.数列{an}中,a1=1,Sn是前n项和,当n≥2时,an=3Sn,则 的值是
A.-2B.- C.- D.1
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
高三数学·单元测试卷(三)
第三单元数列
(时量:120分钟150分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.数列-1, ,- , ,…的一个通项公式是
A.an=(-1)n B.an=(-1)n
16.(本小题满分12分)
二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
⑴求f(x)的解析式;
⑵在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
17.(本小题满分12分)
已知集合A= ,B= .
⑴当a=2时,求A B;
⑵求使B A的实数a的取值范围.
A.线段AB和线段ADB.线段AB和线段CD
100测评网高中数学复习选修2-3A组练习题

选修2-3A 组练习题郑中钧中学 易安 一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .142.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +3.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A .男生2人,女生6人B .男生3人,女生5人C .男生5人,女生3人D .男生6人,女生2人.4.在82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28-5.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-6.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .3607.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是( ) A .1260 B .120 C .240 D .7208.不共面的四个定点到平面α的距离都相等,这样的平面α共有( ) A .3个 B .4个 C .6个 D .7个9.三个元件123,,T T T 正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路, 在如右图的电路中,电路不发生故障的概率是( ) A .3215 B .329 C . 327 D . 3217则随机变量ξ的数学期望是( )A .0.44B .0.52C .1.4D .条件不足二、填空题11.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?12.若9a x ⎛ ⎝的展开式中3x 的系数为94,则常数a 的值为 . 13.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数_______个,其中以y 轴作为该函数的图像的对称轴的函数有______个. 14.已知772127(12)o x a a a x a x -=++++,那么127a a a +++等于三、解答题15.解方程 432(1)140;x x A A =112311(2)n n n n n n n nC C C C +--+-+=++16(1)在n(1+x )的展开式中,若第3项与第6项系数相等,且n 等于多少?(2)n⎛⎝的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项。
2020年百校联考高考百日冲刺数学试卷(理科)(二)(全国Ⅱ卷)(附答案详解)

2020年百校联考高考百日冲刺数学试卷(理科)(二)(全国Ⅱ卷)一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|x<6且x∈N∗},则A的非空真子集的个数为()A. 30B. 31C. 62D. 632.复数z满足z⋅(1+i)=1+3i,则|z|=()A. 2B. 4C. √5D. 53.已知sin(3π2+α)=13,则cosα=()A. 13B. −13C. 2√23D. −2√234.李冶,真定栾城(今河北省石家庄市栾城区)人.金元时期的数学家.与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”.在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质.李治所著《测圆海镜》中有一道题:甲乙同立于乾隅,乙向东行不知步数而立,甲向南直行,多于乙步,望见乙复就东北斜行,与乙相会,二人共行一千六百步,又云南行不及斜行八十步,问通弦几何.翻译过来是:甲乙两人同在直角顶点C处,乙向东行走到B处,甲向南行走到A处,甲看到乙,便从A走到B处,甲乙二人共行走1600步,AB比AC 长80步,若按如图所示的程序框图执行求AB,则判断框中应填入的条件为()A. x2+z2=y2?B. x2+y2=z2?C. y2+z2=x2?D. x=y?5.已知袋中有3个红球,n个白球,有放回的摸球2次,恰1红1白的概率是1225,则n=()A. 1B. 2C. 6D. 76. 已知双曲线C :x 24−y 25=1,圆F 1:(x +3)2+y 2=16.Q 是双曲线C 右支上的一个动点,以Q 为圆心作圆Q 与圆F 1相外切,则以下命题正确的是( )A. ⊙Q 过双曲线C 的右焦点B. ⊙Q 过双曲线C 的右顶点C. ⊙Q 过双曲线C 的左焦点D. ⊙Q 过双曲线C 的左顶点7. 在△ABC 中,AB =5,AC =3,BC =4,△ABC 内有一点O ,满足:CO ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ +μCA⃗⃗⃗⃗⃗ ,且λ>0,μ>0,4λ+3μ=2,则CO 的最小值为( )A. 1B. 2C. √2D. 2√28. 已知函数y =sin(ωx +φ)(ω>0,φ∈(0,2π))的一条对称轴为x =−π6,且f(x)在(π,4π3)上单调,则ω的最大值为( )A. 52B. 3C. 72D. 839. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,右焦点为F ,延长BF 交椭圆E 于点C ,BF ⃗⃗⃗⃗⃗ =λFC⃗⃗⃗⃗⃗ (λ>1),则椭圆E 的离心率e =( ) A. √λ−1λ+1B. λ−1λ+1C. √λ2−1λ2+1D. λ2−1λ2+110. 已知(1+2x)n =a 0+a 1x +⋯+a n x n ,其中a 0+a 1+⋯+a n =243,则a1+a 12+a 23+⋯+a n n+1=( )A. 182B.1823C. 913D.182911. 某几何体的三视图如图所示,则该几何体中,最长的棱的长度为( )A. 2√3B. 2√2C. 3D. √612. 已知函数f(x)=a+lnx x,g(x)=e x −1(e 为自然对数的底数),∃x ∈(0,+∞),使得f(x)≥g(x)成立,则实数a 的最小值为( )A. 1B. eC. 2D. ln2二、单空题(本大题共4小题,共20.0分)13. 已知f(x)=xlg(√x 2+a +x)是偶函数,则f(2x −1)≤f(x)的解集为______.14.已知x,y满足线性约束条件{x+y−2≥0,x≤2,kx−y+2≥0,目标函数z=−2x+y的最大值为2,则实数k的取值范围是______.15.已知点O(0,0),A(4,0),M是圆C:(x−2)2+y2=1上一点,则|OM||AM|的最小值为______.16.公路北侧有一幢楼,高为60米,公路与楼脚底面在同一平面上.一人在公路上向东行走,在点A处测得楼顶的仰角为45°,行走80米到点B处,测得仰角为30°,再行走80米到点C处,测得仰角为θ.则tanθ=______.三、解答题(本大题共7小题,共84.0分)17.已知数列{a n}满足a1=13,a2=415,且数列{√a n4a n−1}是等差数列.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.18.四棱锥P−ABCD中,PA=AD=2,AB=BC=CD=1,BC//AD,∠PAD=90°.∠PBA为锐角,平面PBA⊥平面PBD.(1)证明:PA⊥平面ABCD;(2)求平面PCD与平面PAB所成的锐二面角的余弦值.19.直线l过点(4,0),且交抛物线y2=2px(p>0)于A,B两点,∠AOB=90°.(1)求p;(2)过点(−1,0)的直线交抛物线于M,N两点,抛物线上是否存在定点Q,使直线MQ,NQ斜率之和为定值,若存在,求出Q点坐标,若不存在,说明理由.20.某养鸡厂在荒山上散养天然土鸡,城里有7个饭店且每个饭店一年有300天需要这种土鸡,A饭店每天需要的数量是14~18之间的一个随机数,去年A饭店这300天里每天需要这种土鸡的数量x(单位:只)的统计情况如表:这300天内(假设这7个饭店对这种土鸡的需求量一样),养鸡厂每天出栏土鸡7a(14≤a≤18)只,送到城里的这7个饭店,每个饭店a只,每只土鸡的成本是40元,以每只70元的价格出售,超出饭店需求量的部分以每只56−a元的价钱处理.(Ⅰ)若a=16,求养鸡厂当天在A饭店得到的利润y(单位:元)关于需求量x(单位:只,x∈N∗)的函数解析式;(Ⅱ)以表中记录的各需求量的频率作为各需求量发生时的概率,若养鸡厂计划一天出栏112只或119只土鸡,为了获取最大利润,你认为养鸡厂一天应该出栏112只还是119只?21. 已知函数f(x)={x 24e 2,x ≥02x,x <0,g(x)=ln(x +a).(1)若f(x),g(x)有公共点M ,且在点M 处有相同的切线,求点M 的坐标; (2)判定函数ℎ(x)=f(x)−g(x)在[0,+∞)上的零点个数.22. 在平面直角坐标系xOy 中,直线l 的参数方程为{x =2+tcosϕy =1+tsinϕ(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为ρ2=483cos 2θ+4sin 2θ.(Ⅰ)当φ=π3时,把直线l 的参数方程化为普通方程,把椭圆C 的极坐标方程化为直角坐标方程;(Ⅱ)直线l 交椭圆C 于A ,B 两点,且A ,B 中点为M(2,1),求直线l 的斜率.23. 已知函数f(x)=|x −a|+|x −2|.(Ⅰ)若f(x)≥3恒成立,求实数a 的取值范围; (Ⅱ)f(x)≤x 的解集为[2,m],求a 和m .答案和解析1.【答案】A【解析】解:∵集合A={x|x<6且x∈N∗}={1,2,3,4,5},故A的子集个数为25=32,非空真子集个数为30.故选:A.求出集合A={x|x<6且x∈N∗}={1,2,3,4,5},由此能求出A的非空真子集个数.本题考查集合的非空真子集的个数的求法,考查子真子集等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:由z⋅(1+i)=1+3i,得z=1+3i1+i =(1+3i)(1−i)(1+i)(1−i)=2+i,∴|z|=√5.故选:C.把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.【答案】B【解析】解:sin(3π2+α)=sin3π2cosα+cos3π2sinα=−cosα=13,故cosα=−13.故选:B.利用两角和与差公式直接求解.本题考查三角函数值的求法,考查两角和与差公式等基础知识,考查运算求解能力,是中档题.4.【答案】A【解析】解:由题知,AC=x,AB=y,BC=z,由勾股定理可知x2+z2=y2.故选:A.模拟程序的运行过程,分析循环中各变量值的变化情况,可得判断框中应填入的条件.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.【答案】B【解析】解:袋中有3个红球,n个白球,有放回的摸球2次,恰1红1白的概率是1225,则p=33+n ×n3+n+n3+n×33+n=1225,解得n=2.故选:B.利用相互独立事件概率乘法公式和互斥事件概率加法公式能求出结果.本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.6.【答案】A【解析】解:如图;因为以Q为圆心作圆Q与圆F1相外切,∴QF1=4+r;∵QF1−QF2=2a⇒QF1=2a+QF2=4+QF2;∴r=QF2;故圆Q过双曲线C的右焦点;故选:A.根据两圆外切得到QF1=4+r;再结合双曲线的定义即可求解结论.本题考查双曲线的方程和性质以及两圆的位置关系,考查了学生综合分析问题和解决问题的能力,属于基础题.7.【答案】C【解析】解:△ABC 中,AB 2=AC 2+BC 2, ∴AC ⊥BC , ∴CB ⃗⃗⃗⃗⃗ ⋅CA⃗⃗⃗⃗⃗ =0, |CO ⃗⃗⃗⃗⃗ |2=λ2CB ⃗⃗⃗⃗⃗ 2+2λμCB ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +μ2CA ⃗⃗⃗⃗⃗ 2=16λ2+9μ2, ∵λ>0,μ>0,4λ+3μ=2, ∴2−4λ>0,解得λ<12, ∴0<λ<12.∣CO ⃗⃗⃗⃗⃗ ∣2=16λ2+9μ2=16λ2+(2−4λ)2=32(λ−14)2+2,∴∣CO ⃗⃗⃗⃗⃗ ∣2≥2, ∴CO 的最小值为√2. 故选:C .根据题意,易知△ABC 为直角三角形,CB ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =0,根据题意,确定λ的取值范围,给CO ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ +μCA ⃗⃗⃗⃗⃗ 两边平方,化为关于λ的二次函数,求得最值再开平方即得答案. 本题主要考查平面向量的模长公式和数量积的应用,需要学生有转化的思想,属于中档题,解题时要认真审题.8.【答案】D【解析】解:函数y =sin(ωx +φ)(ω>0,φ∈(0,2π))的一条对称轴为x =−π6, 整理得:x =kω6−π6(k ∈Z), 由于f(x)在(π,4π3)上单调,所以{k 0πω−π6≤π(k0+1)πω−π6≥4π3,解得:67k 0≤ω≤23(k 0+1),由于ω>0,所以{k 0>067k 0≤23(k 0+1),解得0<k 0≤72.所以k 0=1,2,3,当k 0=3时,ω的最大值为83. 故选:D .首先利用正弦型函数的对称轴建立等量,进一步利用函数的单调性的应用求出结果. 本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:设C(x,y),根据BF ⃗⃗⃗⃗⃗ =λFC ⃗⃗⃗⃗⃗ 可得:{c =λ(x −c)−b =λy ,则{x =(1+λ)λc y =−b λ, 因为C 在椭圆上,带入方程可得(1+λ)2λ2⋅e 2+1λ2=1,即e 2=λ2−1(1+λ)2=λ−1λ+1,则e =√λ−1λ+1.故选:A .设点C(x,y),利用条件BF ⃗⃗⃗⃗⃗ =λFC ⃗⃗⃗⃗⃗ 可得{x =(1+λ)λcy =−bλ,代入椭圆方程整理即可求得e 的值. 本题考查椭圆离心率的表示,抓住向量表示是关键,属于中档题.10.【答案】B【解析】解:(1+2x)n =a 0+a 1x +⋯+a n x n , 令x =1,则3n =a 0+a 1+⋯+a n =243,解得n =5.∴(1+2x)5的通项公式T k+1=∁5k (2x)k =2k ∁5k x k ,∴a k =2k ∁5k ,∴a k k+1=2k ∁5k k+1.则a 01+a 12+a 23+⋯+ann+1=11+2∁512+25∁556=1+5+403+20+16+163=1823.故选:B .(1+2x)n =a 0+a 1x +⋯+a n x n ,令x =1,可得3n =a 0+a 1+⋯+a n =243,解得n =5.利用(1+2x)5的通项公式可得a k k+1=2k ∁5kk+1.代入即可得出.本题考查了二项式定理、方程的解法,考查了推理能力与计算能力,属于基础题.11.【答案】C【解析】解:由三视图还原原几何体如图, 该几何体为四面体ABCD ,四面体所在正方体的棱长为2,则棱长分别为:AB =CD =√5,AC =2√2,BC =1,BD =√6,BD =3. 最长的棱的长度为3. 故选:C .由三视图还原原几何体如图,该几何体为四面体ABCD ,四面体所在正方体的棱长为2,分别求出六条棱的长度得答案.本题考查空间几何体的三视图,考查空间想象能力与思维能力,是中档题.12.【答案】A【解析】解:∵f(x)=a+lnx x,g(x)=e x −1(e 为自然对数的底数),∃x ∈(0,+∞),使得f(x)≥g(x)成立, 即∃x ∈(0,+∞),使得a+lnx x ≥e x −1成立,即∃x ∈(0,+∞),使得a ≥xe x −x −lnx 成立. 令g(x)=xe x −x −lnx(x >0), 则a ≥g(x)min ,∵g′(x)=(1+x)e x −1−1x (x >0),∴g″(x)=(2+x)e x +1x 2>0,∴g′(x)=(1+x)e x −1−1x 在(0,+∞)上单调递增, 又g′(13)=43e 13−4<0,g′(1)=2e −2>0,∴∃x 0∈(13,1)使得g′(x 0)=0,此时g(x)=xe x −x −lnx 取得极小值,也是最小值. 令g′(x 0)=0,则(1+x 0)e x 0=1+x 0x 0,即e x 0=1x 0.∴g(x 0)=x 0e x 0−x 0−lnx 0=1−x 0−lne −x 0=1,即g(x)min =1, ∴a ≥1,∴实数a的最小值为1,故选:A.∃x∈(0,+∞),使得f(x)≥g(x)成立,分离参数a,可转化为∃x∈(0,+∞),使得a≥xe x−x−lnx成立.构造函数g(x)=xe x−x−lnx(x>0),利用导数法可求得g(x)min,从而可得答案.本题主要考查了利用导数研究函数的极值与最值,考查等价转化思想与函数与方程思想,考查推理能力与综合运算能力,是难题.13.【答案】[13,1]【解析】解:∵f(x)为偶函数,y=x为奇函数,∴g(x)=lg(√x2+a+x)为奇函数,∴g(0)=0,解得a=1,对0<x1<x2,可知0<g(x1)<g(x2),故0<x1g(x1)<x2g(x2),∴函数f(x)在(0,+∞)上为增函数,∴f(2x−1)≤f(x)等价于|2x−1|≤|x|,即(2x−1)2≤x2,解得13≤x≤1,即f(2x−1)≤f(x)的解集为[13,1].故答案为:[13,1].根据题意,利用复合函数的奇偶性,得出g(x)=lg(√x2+a+x)为奇函数,g(0)=0,解得a=1,利用函数的单调性解不等式,即可求出f(2x−1)≤f(x)的解集.本题考查复合函数的奇偶性和利用单调性解不等式,考查计算求解能力.14.【答案】(−1,2]【解析】解:x,y满足线性约束条件{x+y−2≥0,x≤2,kx−y+2≥0,表示的可行域如图:目标函数化为y=2x+z,z=2时,可知:最优解在直线2x−y+2=0上,而(0,2)在可行域内,且满足2x−y+2=0.故可知:实数k的取值范围是(−1,2].故答案为:(−1,2].画出约束条件的可行域,利用目标函数的最大值,结合直线系结果的定点,转化求解实数k的取值范围.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【答案】13【解析】解:如图,由图可知,当M为(1,0)时,|OM|最小为1,|AM|最大为3.则|OM||AM|的最小值为13.故答案为:13.由题意画出图形,通过图形得到|OM|的最小值与|AM|的最大值,则答案可求.本题考查直线与圆的位置关系,考查数形结合的解题思想方法,是中档题.16.【答案】3√7777【解析】解:如图;DE⊥面ACE,∠EAB=45°,∠EBD=30°;由题可得:AE=DE=60;AB=BC=80;∴EB=DEtan30∘=60√3;∴cos∠EAB=AE2+AB2−BE22AE⋅AB=AE 2+AC 2−EC 22AE⋅AC⇒602+802−(60√3)22×60×80=602+1602−EC 22×60×160⇒EC =20√77;∴tanθ=6020√77=3√7777;故答案为:3√7777. 画出示意图,知道边长和角度,然后利用cos∠EAB =AE 2+AB 2−BE 22AE⋅AB=AE 2+AC 2−EC 22AE⋅AC⇒EC ,即可求出结论.本题考查三角形的实际应用,根据条件画出示意图是解决本题的关键,理解本题是立体图形.17.【答案】解:(1)由a 1=13,a 2=415,可得√a 14a 1−1=1,√a 24a 2−1=2,∵数列{√an4a n−1}是等差数列,且首项为1,公差d =1,∴√an 4a n−1=n ,∴a n =n 24n 2−1=14+14×14n 2−1=14+18(12n−1−12n+1), ∴S n =n 4+18[(11−13)+(13−15)+⋯+(12n−1−12n+1)]=n 4+18−116n+8.【解析】(1)先由题设条件求√an4a n−1,再求出a n ;(2)由(1)中求得的a n ,再利用裂项相消法求出S n . 本题主要考查等差数列及裂项相消法求和,属于基础题.18.【答案】解:(1)证明:作AM ⊥PB 于M ,则由平面PAB ⊥平面PBD ⇒AM ⊥平面PBD ⇒AM ⊥BD . 取AD 中点为Q ,则BC −//̲QD ⇒BQ =CD =1=QD =QA ⇒∠ABD =90°.又∠PBA 为锐角,∴M 、B 不重合.{DB ⊥AB DB ⊥AM⇒DB ⊥平面PAB ⇒PA ⊥DB 与PA ⊥AD ⇒PA ⊥平面ABCD .(2)取AQ 中点H ,如图建立空间直角坐标系(其中x 轴与HB 平行), 则B(√32,12,0),C(√32,32,0),D(0,2,0),P(0,0,2).由(1)的证明知:平面PAB 的法向量为BD⃗⃗⃗⃗⃗⃗ =(−√32,32,0).设平面PCD 的法向量为m ⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0即{2y −2z =0−√32x +12y =0. 令x =1⇒m =(1,√3,√3),cos〈m ⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BD⃗⃗⃗⃗⃗⃗ |=−√32+3√32√3⋅√7=√77.平面PCD 与平面PAB 所成的锐二面角的余弦值:√77.【解析】(1)作AM ⊥PB 于M ,推出AM ⊥BD.取AD 中点为Q ,通过{DB ⊥ABDB ⊥AM ⇒DB ⊥平面PAB ⇒PA ⊥DB 与PA ⊥AD ⇒PA ⊥平面ABCD .(2)取AQ 中点H ,建立空间直角坐标系,求出平面PAB 法向量,平面PCD 法向量,利用空间向量的数量积求解即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力,计算能力.19.【答案】解:(1)设A(x 1,y 1),B(x 2,y 2),由∠AOB =90°,即OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0, 可得x 1x 2+y 1y 2=0,即有y 122p⋅y 222p +y 1y 2=0,即y 1y 2=−4p 2, 设直线l 的方程为x =my +4,联立抛物线的方程y 2=2px ,可得y 2−2pmy −8p =0, 则y 1y 2=−8p =−4p 2,可得p =2;(2)抛物线上假设存在定点Q ,使直线MQ ,NQ 斜率之和为定值.设Q(x 0,y 0),MN 的方程为x =ty −1,代入抛物线的方程y 2=4x ,可得y 2−4ty +4=0,则y M +y N =4t ,y M y N =4,则k MQ +k NQ =y M −y 0x M−x 0+y N −y0x N−x 0=y M −y 0y M 24−y 024+y N −y 0y N 24−y 024=4y M +y 0+4y N +y 0=4(2y 0+y M +y N )y 02+y 0(y M +y N )+y M y N=4(2y 0+4t)y 02+4ty 0+4=16(t+y 02)4y 0(t+y 02+44y 0).当且仅当y 02=4+y 024y 0时,上式为定值.解得y 0=±2.故Q(1,2)或(1,−2).【解析】(1)设A(x 1,y 1),B(x 2,y 2),运用向量垂直的条件和联立直线方程与抛物线的方程,解方程可得p ;(2)抛物线上假设存在定点Q ,使直线MQ ,NQ 斜率之和为定值.设Q(x 0,y 0),MN 的方程为x =ty −1,联立抛物线的方程,运用韦达定理和斜率公式,计算可得结论. 本题考查直线和抛物线的位置关系,注意直线方程与抛物线的方程联立,运用韦达定理,考查运算能力,属于中档题.20.【答案】解:(Ⅰ)当x <a 时,y =(70−40)x +(56−a −40)(a −x)=(14+a)x +16a −a 2,当x ≥a 时,y =30a ,∴y ={(14+a)x +16a −a 2,x <a30a,x ≥a (x ∈N ∗),由a =16,得y ={30x,x <16480,x ≥16(x ∈N ∗); (Ⅱ)若出栏112只,则a =16,y ={30x,x <16480,x ≥16(x ∈N ∗).记Y 1为养鸡场当天在一个饭店获得的利润, Y 1可求420,450,480.P(Y 1=420)=0.15,P(Y 1=450)=0.2,P(Y 1=480)=0.65, Y 1的分布列为:E(Y 1)=420×0.15+450×0.2+480×0.65=465; 若出栏119只,则a =17,y ={31x −17,x <17510,x ≥17(x ∈N ∗). 记Y 2为养鸡场当天在一个饭店获得的利润, Y 2可求417,448,479,510.P(Y 2=417)=0.15,P(Y 2=448)=0.2,P(Y 2=479)=0.25,P(Y 2=510)=0.4, Y 2的分布列为:E(Y 2)=417×0.15+448×0.2+479×0.25+510×0.4=475.9. ∵E(Y 1)<E(Y 2),∴养鸡场出栏119只时,或利润最大.【解析】(Ⅰ)根据每只鸡的成本为40元,饭店给鸡场每只结算70元,如果每个饭店当天的需求量x <a ,剩下的鸡只能以每只56−a 元的价格处理,建立分段函数模型,再将a =16代入求解;(Ⅱ)根据离散型分布列的特点,分类讨论,分别求出出栏112与119只时的期望,比较大小得结论.本题主要考查样本估计总体,考查分段函数的应用与运算求解能力,考查离散型随机变量的分布列与期望,是中档题.21.【答案】解:(1)设M(x 0,y 0),则当x 0≥0时,{x 024e 2=ln(x 0+a)①x 02e 2=1x 0+a ②, 由②得x 0+a =2e 2x 0,代入①得x 024e 2=ln2e 2x 0=ln(2e 2)−lnx 0,对函数φ(x)=x 24e 2−ln(2e 2)+lnx,求导得φ′(x)=x2e 2+1x >0, ∴φ(x)为增函数,且φ(2e)=0,故x 0=2e ;当x 0<0时,{2x 0=ln(x 0+a)2=1x 0+a,则2x 0=ln 12,即x 0=−ln22; 综上,M 的坐标为(2e,1)或(−ln22,−ln2);(2)由(1)知,x 0=2e 时,a =−e,ℎ(x)=x 24e 2−ln(x −e),则ℎ′(x)=x2e 2−1x−e ,ℎ″(x)=12e2+1(x−e)2>0,故ℎ′(x)在定义域上单调递增,则易知ℎ′(x)有唯一零点为x =2e ,则ℎ(x)≥ℎ(2e)=0, 故ℎ(x)有唯一零点; 当a <−e 时,ℎ(x)=x 24e2−ln(x +a)>x 24e 2−ln(x −e)≥0,ℎ(x)无零点;当−e <a ≤1时,ℎ′(x)=x 2e 2−1x+a 在[0,+∞)上至多一个零点,ℎ(x)在(0,+∞)上至少两个零点,而ℎ(0)=−lna ≥0,ℎ(2e)=1−ln(2e +a)<0,x →+∞时,ℎ(x)→+∞, 故ℎ(x)在(0,2e),(2e,+∞)上各一个零点;当a >1时,ℎ′(x)=x2e 2−1x+a 满足ℎ′(0)<0,ℎ′(2e)>0,故在(0,2e)上,ℎ′(x)仅一个零点,设为m ,在(0,m)上,ℎ(x)为减函数,在(m,+∞)上,ℎ(x)为增函数,而ℎ(0)=−1a <0,ℎ(m)<ℎ(0)<0,x →+∞时,ℎ(x)→+∞, 故仅在(m,+∞)上有一个零点.综上可得,当a <−e 时,ℎ(x)无零点;当a =−e 或a >1时,ℎ(x)有1个零点;当−e <a ≤1时,ℎ(x)有2个零点.【解析】(1)设M(x 0,y 0),分x 0≥0和x 0<0两种情况讨论,每种情况下利用两个函数在x =x 0处的导数值和函数值相等建立方程求解;(2)结合(1)中得到的结论,分a=−e、a<−e、−e<a≤1、a>1四种情况讨论.本题考查的是导数的几何意义及利用导数研究函数的零点个数,考查分类讨论思想,属于压轴题目.22.【答案】解:(Ⅰ)直线l的普通方程为:√3x−y+1−2√3=0;椭圆C的直角坐标方程为:x216+y212=1.(Ⅱ)将直线l的参数方程代入椭圆C的直角坐标方程整理得:(3+sin2φ)t2+(12cosφ+ 8sinφ)t−32=0,由题意得:t1+t2=0,故12cosφ+8sinφ=0⇒k=tanφ=−32,所以直线l的斜率为−32.【解析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用一元二次方程根和系数的应用和三角函数关系式的恒等变换求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,三角函数关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力生的运算能力,属于基础题型.23.【答案】解:(Ⅰ)∵f(x)=|x−a|+|x−2|≥∣(x−a)−(x−2)∣=∣a−2∣,当且仅当(x−a)(x−2)≤0时取等号,故f(x)的最小值为∣a−2∣,∴∣a−2∣≥3⇔a≥5或a≤−1.(Ⅱ)由不等式解集的意义可知:x=2时,f(2)=2,即∣a−2∣=2,解得a=0或4.a=0时,如图所示:不合题意,舍去;a=4时,如图所示:由y=x与y=2x−6,解得:x=6.即m=6,综上,a=4,m=6.【解析】(Ⅰ).根据绝对值三角不等式,由f(x)=|x−a|+|x−2|≥∣(x−a)−(x−2)∣=∣a−2∣,求得f(x)最小值,再由∣a−2∣≥3求解;(Ⅱ)不等式的解集与相应方程根的关系,当x=2时,f(2)=2,即∣a−2∣=2,解得a=0或4.再分类求解.本题主要考查绝对值不等式和不等式的解集与相应方程根的关系,还考查了数形结合的思想和运算求解的能力,属于中档题.。
100测评网高二数学练习卷高三第三次调研试题

苏北四市高三第三次调研试题 物理试题 04.28一、单项选择题:本题共5小题,每小题3分,共15分.每小题只有一个....选项符合题意. 1.利用速度传感器与计算机结合,可以自动作出物体运动的图像. 某同学在一次实验中得到的运动小车的速度—时间图像如图所示,以下说法错误的是( )A .小车先做加速运动,后做减速运动B .小车运动的最大速度约为0.8m /sC .小车的位移一定大于8mD .小车做曲线运动2.一质量为m 、带电量为q 的小球用细线系住,线的一端固定在o 点. 若在空间加上匀强电场,平衡时线与竖直方向成60°角。
则电场强度的最小值为( )A .mg/2qB .3mg/2qC .2mg/qD .mg/q3. 如右图所示,曲线C 1、C 2分别是纯电阻直流电路中,内、外电路消耗的电功率随电流变化的图线.由该图可知下列说法中错误的是( ) A .电源的电动势为4VB .电源的内电阻为1ΩC .电源输出功率最大值为8WD .电源被短路时,电源消耗的最大功率可达16W4. 如图所示,相距为d 的两平行金属板水平放置,开始开关S 合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个带电粒子恰能以水平速度v 向右匀速通过两板间.在以下方法中,要使带电粒子仍能匀速通过两板,(不考虑带电粒子所受重力)正确的是 ( )A .把两板间距离减小一倍,同时把粒子速率增加一倍B .把两板的距离增大一倍,同时把板间的磁场增大一倍C .把开关S 断开,两板的距离增大一倍,同时把板间的磁场减小一倍D .把开关S 断开,两板的距离减小一倍,同时把粒子速率减小一倍5.如图所示,P 、Q 是电量相等的两个正电荷,它们的连线中点是O ,A 、B 是PQ 连线的中垂线上的两点,OA <OB ,用E A 、E B 、φA 、φB 分别表示A 、B 两点的场强和电势,则( ) A .E A 一定大于E B ,φA 一定大于φB B .E A 不一定大于E B ,φA 一定大于φB C .E A 一定大于E B ,φA 不一定大于φB D .E A 不一定大于E B ,φA 不一定大于φB.0.1/v s二.多项选择题:本题共 4 小题,每小题 4 分,共16 分.每小题有多个选项....符合题意.全部选对的得 4 分,选对但不全的得 2 分,错选或不答的得 0 分. 6.如图所示,虚线EF 的下方存在着正交的匀强电场和匀强磁场,电场强度为E ,磁感应强度为B .一带电微粒自离EF 为h 的高处由静止下落,从B 点进入场区,做了一段匀速圆周运动,从D 点射出. 下列说法正确的是A .微粒受到的电场力的方向一定竖直向上B .微粒做圆周运动的半径为ghB E 2C .从B 点运动到D 点的过程中微粒的电势能先增大后减小D .从B 点运动到D 点的过程中微粒的电势能和重力势能之 和在最低点C 最小7.如图所示,质量为m 的小球A 沿高度为h 倾角为θ的光滑斜面以初速v 0滑下. 另一质量与A 相同的小球B 自相同高度由静止落下,结果两球同时落地。
100测评网高二数学练习卷普通高中高三教学质量检测

2008年佛山市普通高中高三教学质量检测(二)物理试题本试卷分选择题和非选择题两部分,共10页,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上.用2B铅笔将答题卡试卷类型(A)填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答卷和答题卡一并交回.第一部分选择题(共 48 分)一、本题共 12 小题,每小题 4 分,共 48分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分。
1.下列说法中正确的是A.开普勒通过对天体运动的长期观察,发现了行星运动三定律B.牛顿运动定律可以适应于以接近光速的速度运动的物体C.查德威克通过实验发现了中子D.楞次发现了电磁感应定律2.当氢原子由较高能级跃迁到较低能级时将A .辐射光子,获得能量B.吸收光子,获得能量C.吸收光子,放出能量D.辐射光子,放出能量3.2008年3月24日在希腊点燃了象征着和平、友谊、希望的奥林匹克圣火,罗雪娟成为我国第一个火炬接力手。
某记者拍下固定在地面的旗帜和旗杆下甲、乙两火炬手手中火炬的火焰的照片,如右图所示,下列说法正确的是 A .甲火炬手可能运动,乙火炬手可能静止 B .甲火炬手可能静止,乙火炬手可能向左运动 C .火炬中燃料燃烧将化学能转化为内能与光能D .若火炬手在水平路面上向前跑动且火炬距地面的高度不变,则重力对火炬做正功4.M 、N 为正点电荷Q 的电场中某直线上的两点,距Q 的距离如图所示,一试验电荷q 在Q 的作用下沿该直线由M 向Q 做加速运动。
100测评网高三数学复习江苏省邗江中学(集团)2009年度第二学期高二期中考(B卷)

江苏省邗江中学(集团)2008—2009学年度第二学期高二数学期中试卷(B )命题人:魏跃兵 王 祥一、填空题(共70分)1、计算:=++897868C C C ▲ (用数字作答).2、在0-1分布中,设P (X=0)=31,则)1(=X P3、已知向量)23,1,2(),1,,4(-=-=n k k m ,若m 4、()n a b +的展开式中,第5项与第6 5、随机变量X 服从二项分布)21,5(B ,则=3(X P 6、一个袋中装有10个红球,20个白球,这些球除颜色外完全相同,一次从中摸出5个球,随机变量X 表示取到的红球数,X 服从超几何分布)30,10,5(H ,则)30,10,5,3(H =▲ (用组合数作答). 7、从5名男同学和4名女同学中分别选出3名男同学和2名女同学,担任5项不同的工作,则不同的选法为 ▲ (用数字作答)8、已知C B A ,,三点不共线,O 为平面ABC 外任一点,若由OP λ++=3251确定的一点P 与三点C B A ,,共面,则=λ ▲ .9、平行六面体ABCD-A 1B 1C 1D 1中,以A 为同一顶点的三条棱长均为1,且两两的夹角 为060,则对角线AC 1的长是 ▲ .10、若6622106)12(x a x a x a a x ++++=- ,则+0a 6521a a a a ++++ = ▲ . 11、设*N n ∈,则1+nn n n n C C C 777221+++ 除以9的余数为 ▲ . 12、抛掷两枚质量均匀的骰子各一次,向上的点数不相同时,其中有一个的点数为3的概率是 ▲ .13、如图:用这3类不同的Z Y X ,,元件连接成系统,每个元件是否正常工作不受其他元件的影响,当元件X 正常工作和元件Z Y ,中至少有一个正常工作时,系统就正常工作。
如果元件Z Y X ,,正常工作的概率分别为0.8、0.9、0.914、将编号为1、2、3、4的4盒只投1球,记球与盒编号相同的个数为,ξ 则ξE = ▲ .二、解答题(共90分) 15、有3本不同的语文书和3本不同的数学书,求满足下列条件的方法总数(用数字作答) (1)6本排成一排;(2)6本排成一排,其中3本数学书必须相邻; (3)6本排成一排,其中语文书互不相邻. ,点D 是AB 的中点,(1)求n 的值;(2)求展开式中第4项的系数和二项式系数; (3)求展开式中x 的一次项.BDCA 1B 1C 1A18、甲、乙两人各射击3次,甲每次击中目标的概率为12,乙每次击中目标的概率为23, (1)记甲击中目标的次数为X ,求随机变量X 的概率分布表及数学期望()E X ; (2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.19、如图,在棱长为1正方体ABCD-A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点所成角的余弦值; ⊥面PMN 时,求λ的值. *),,,3,N n n ∈ .AB CD MN P A 1D 1 C 1B 12008—2009学年度第二学期高二数学期中试卷(B )答题纸=70分) 1 ;2 ;5 ;6 ;9 ;10 ;13 ;14二、解答题(写出必要的解题过程14+14+15+15+16+16=90分)15题:(14分)16题:(14分)BC A 1B 1C 117题:(15分)18题:(15分)2008—2009学年度第一学期高二数学期中试卷(B)答题纸1C20题:(16分)。
100测评网高三数学复习江苏省扬州中学2008-2009学年高二10月份月考

a ←1 c ←0For a Form 1 To 11 Step 2 c ←2c +3If c>20 Then c ←c -20 End For Print c江苏省扬州中学2008-2009学年高二10月份月考数学本试卷参考公式:用最小二乘法求线性回归方程的系数公式:^1221^^()ni i i n i i x y nx yb x n x a y b x==⎧-⎪⎪=⎪⎨-⎪⎪⎪=-⎩∑∑ 样本数据1x ,2x ,,n x 的标准差s =一、填空题(18590⨯=分)1.下面的问题中必须用条件结构才能实现的是___________. (1)已知三角形三边长,求三角形的面积; (2)求方程ax +b =0(a ,b 为常数)的根; (3)求三个实数a ,b ,c 中的最大者; (4)求1+2+3++100的值。
2.某校高中共有900个人,其中高一年级300人,高二年级200人,,高三年级400人,现采用分层抽样法抽取容量为45的样本,那么高一,高二,高三年级抽取的人数分别为_______________.3.用秦九韶算法计算函数43()2354f x x x x =++-当2x =时的函数值时,乘法运算进行_____次。
4.先后抛掷两枚均匀的正方体骰子,骰子朝上的点数分别为x 、y ,则1log 1x y +=的概率为_________.5.将一个体积为27cm 3的正方体木块表面涂上蓝色,然后锯成体积为1 cm 3的小正方体,从中任取一块,则这一块恰有两面涂有蓝色的概率是____________.6.某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图.则罚球命中率较高的是____________.7.向圆224x y +=所围成的区域内随机地丢一粒豆子,20y -+=上方的概率是_____________.8.根据如图所示的伪代码,可知输出的结果c 为 ___________.甲 乙 0 1 2 398 1 3 4 8 92 3 0 1 1 30 2 4 5 6 7 7(第8题图)(第9题图)9.如果执行右面的程序框图,那么输出的S =____________.10.在一次知识竞赛中,抽取10名选手,成绩分布情况如下:则这组样本的方差为_____________.11.右边程序执行后输出的结果是_________.12.某算法的伪代码如图所示,如果输出的y 值是4,那么输入的x 的所有可能的 值是___________.13.若从集合{}1,2,3,4,5的所有子集中任取一个子集,则取出的集合含有至少两个元素的概率是_______________.14.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是_________.15.在样本的频率分布直方图中,共有4个长方形,这4个小长方形的面积由小到大构成等差数列{}n a ,已知122a a =,且样本容量为400,则小长方形面积最大的一组的频数为______________ .16.甲乙两人约定在6时到7时之间在某处会面,并约定先到者等候另一人15分钟,过时即可离Read xIf x <0 Theny←x -2 Elsey←x 2-3x End If Print y (第12题)去,则两人会面的概率是____________.17.设集合{,1},{,1,2},,,{1,2,3,,9}P x Q y P Q x y ==⊆∈,且在直角坐标平面内,从所有满足这些条件的有序实数对(,)x y 所表示的点中任取一个,其落在圆222x y r +=内的概率恰为27,则2r 的一个可能的正整数值是________(只需写出一个即可).18.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为________.二、解答题(14570⨯=分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏宝应县曹甸高级中学08—09学年高二上期末总复习数学测试
试题二
制卷人 李兆江 一、填空题:
1.已知命题p:01x x ,R x 2≥+-∈∀,则⌝p 是___ ___.
2.从观测所得的到数据中取出m 个a ,n 个b ,p 个c 组成一个样本,那么这个样本的平均数是 .
3.用反证法证明命题:“N b a ∈,,如果a b ⋅可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为 . 4.椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为 .
5.若z C ∈,且221z i +-=,则22z i --的最小值是 . 6.计算机执行如图所示程序后,输出的结果
是 .
7.将下列三段论形式的演绎推理补充完整:
_____________________,
0.3
3 是无限循环小数, 所以0.3
3 是有理数. 8.一个社会调查机构就某地居民的月收入调查了10000人,并根
据所得数据画了样本频率分布直方图(如右图所示).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人进一步调查,则在[2500,3500)(元/月)收入段应抽出 人.
9.若R ∈k ,试写出方程
13
322
=+--k y k x 表示双曲线的一个充分不必要条件为 .
10.以(1,1)-为中点的抛物线2
8y x =的弦所在直线方程为 .
0.0005300035000.00030.0004
200015000.00020.0001
4000
25001000月收入(元)
频率/组距
第8题
11.过点(12,1)且与函数y=1
x
图象相切的直线方程是 .
12.某小卖部为了了解热茶销量y (杯)与气温C x 0之间的关系,随机统计了某4天卖出的热茶杯数与当天气温,并制作了对照表:
由表中数据得线性回归方程a bx y
ˆ+=中2b -=,预测当气温为C 50-时,热茶销量约为___ _ _杯 13.设椭圆C 1的离心率为
13
5
,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1 的两个焦点的距离差的绝对值等于8,则曲线C 2的标准方程为 . 14.下面是按照一定规律画出的一列“树型”图:
设第n 个图有n a 个树枝,则1+n a 与(2)n a n ≥之间的关系是 . 二、解答题:
15.已知复数z=i )3m (2
)i 1(m 2
-+++. (I)若R m ∈且R z ∈,求实数m 的值;
(II )若R m ∈,复数
z 所对应的点位于第一象限,求实数m 的范围; (III )若m 是复数,且z=0, 求复数m .
16.先后2次抛掷一枚骰子,将得到的点数分别记为b a ,. (I )求直线05=++by ax 与圆12
2
=+y x 相切的概率;
(II )将5,,b a 的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
17. 如图所示的等腰梯形是一个简易水槽的横断面,已知水槽的最大流量与横断面的面积成正比,比例系数为k (0k >). (Ⅰ)试将水槽的最大流量表示成关于θ函数()f θ; (Ⅱ)求当θ多大时,水槽的最大流量最大.
18.数列}{n a 是正项等差数列,若n
na a a a b n
n ++++++++=
32132321,则数列}{n b 也为等差
数列. 类比上述结论,写出正项等比数列}{n c ,若n d = ,则数列{n d }也为等比数列,并证明你类比所得结论的正确性.
19.已知函数2
()(2),,x
f x x ax e x R a R =-∈∈.
(Ⅰ)当0a ≥时,()f x 是否存在最小值,若存在,请求出相应x 的值;若不存在,请说明理由.
(Ⅱ)当12,2
x ⎡⎤∈--⎢⎥⎣
⎦
时,若()f x 的图象上存在两点,M N ,使得直线MN y ⊥轴,求实
数a 的取值范围.
θ
a
a
a
20.已知椭圆2
212
x y +=的左焦点为F ,O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;
(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.
参考答案:
一、填空题:
1、01,2
<+-∈∃x x R x 2、
p
n m pc
nb m a ++++ 3、b a ,两数都不能被5整除 4、1 5、3 6、5 7、无限循环小数是有理数 8、40 9、略(不唯一) 10、
034=-+y x 11、()022
4246=--++y x 或()
0224246=+-+-y x 12、70 13、
19
16
2
2
=-
y
x 14、)2(21≥+=+n a a n n n 或)2(121≥+=+n a a n n
二、解答题:
15.(1)2 (2)2>m (3)i +1 16.(1)
181 (2) 187
17.(1)()⎪⎭⎫ ⎝⎛
<<+==20cos 1sin )(2πθθθθka f y (2)3πθ= 18.()
n n n n c c c c d +⋅⋅⋅+++⋅⋅⋅=3211
33221(证明略
) 19.(1)当112++-=a a x 存在最小值(2)0>a 或43
-<a
20.(1)()
4922122=±+⎪⎭⎫ ⎝⎛
+y x (2)021<<-G x
===========================================================
适用版本:
人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新
版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理 适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初 适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
===========================================================
本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。