二叉树的遍历和应用

合集下载

二叉树遍历算法的应用

二叉树遍历算法的应用

二叉树遍历算法的应用二叉树是一种常用的数据结构,它由节点和节点之间的链接组成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树遍历算法是指按照一定的顺序访问二叉树中的所有节点,经典的二叉树遍历算法有前序遍历、中序遍历和后序遍历。

这些遍历算法在计算机科学中有广泛的应用。

一、前序遍历前序遍历算法的访问顺序是先访问根节点,然后依次访问左子树和右子树。

在实际应用中,前序遍历算法十分常见,具有以下几个应用:1.树的复制:如果需要复制一棵二叉树,可以使用前序遍历算法遍历原树,然后按照递归或迭代的方式创建新节点,并复制原节点的值。

2.表达式求值:对于一个二叉树表示的数学表达式,前序遍历算法可以用来计算表达式的值。

遍历到运算符节点时,先计算左子表达式的值,然后计算右子表达式的值,最后根据运算符进行计算。

3.文件系统遍历:文件系统可以被视为一个树状结构,前序遍历算法可以按照前序的顺序遍历文件系统中的所有文件和文件夹。

二、中序遍历中序遍历算法的访问顺序是先访问左子树,然后访问根节点,最后访问右子树。

中序遍历算法也有多个应用:1.二叉树的中序遍历得到的节点值是按照从小到大的顺序排列的。

因此,可以使用中序遍历算法验证一个二叉树是否为二叉树。

2.二叉树中序遍历的结果可以用来实现按照升序排列的有序集合的功能。

例如,在数据库中存储的数据可以通过中序遍历的结果进行排序。

3.中序遍历算法可以将一个二叉树转换为一个有序的双向链表。

在遍历过程中,维护一个前驱节点和一个后继节点,并进行链接操作。

三、后序遍历后序遍历算法的访问顺序是先访问左子树,然后访问右子树,最后访问根节点。

后序遍历算法也有多个应用:1.后序遍历算法可以用来计算二叉树的深度。

在遍历过程中,可以维护一个全局变量来记录最大深度。

2.后序遍历算法可以用来判断一个二叉树是否为平衡二叉树。

在遍历过程中,可以比较左右子树的高度差,判断是否满足平衡二叉树的定义。

3.后序遍历算法可以用来释放二叉树的内存。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

《二叉树的概念》课件

《二叉树的概念》课件
过程中进行一些特定的操作。
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

二叉树用途

二叉树用途

二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。

二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。

2. 可以拥有零个、一个或两个子节点。

3. 二叉树的子树也是二叉树。

4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。

二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。

1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。

二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。

通过二分查找算法,在二叉搜索树中可以快速定位目标值。

2. 堆:二叉堆是一种用于实现优先队列的数据结构。

它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。

二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。

3. 表达式树:二叉树可以用于存储和计算数学表达式。

表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。

通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。

4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。

每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。

通过遍历二叉树,可以实现文件的查找、创建、删除等操作。

5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。

在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。

通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。

6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。

数据结构——- 二叉树

数据结构——- 二叉树

证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。

目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。

II内蒙古科技大学课程设计说明书第一章需求分析1.1课程设计目的培养学生用学到的书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养学生以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件具有关键性作用;通过课程设计的实践,学生可以在程序设计方法、上机操作等基本技能和科学作风方面受到比较系统和严格的训练。

1.2任务概述学生必须仔细阅读《数据结构》课程设计方案,认真主动完成课程设计的要求。

有问题及时主动通过各种方式与教师联系沟通。

学生要发挥自主学习能力,充分利用时间,安排好课程设计的时间计划,并在课程设计过程中不断检测自己的计划完成情况,及时向教师汇报。

课程设计按照教学计划需要一周时间完成,一周中每天至少要上两小时的上机来调试C或C++语言设计的程序,总共至少要上机调试程序10小时。

属教师安排上机时间学生不得缺席。

1.3课程设计内容二叉树的遍历和应用以二叉链表表示二叉树,在此基础上实现对二叉树的遍历和应用。

要求设计类(或类模板)来描述二叉树,包含必要的构造函3内蒙古科技大学课程设计说明书数和析构函数,以及其他能够完成如下功能的成员函数: 创建二叉树输出二叉树二叉树的先序、中序、后序遍历二叉树的按层遍历统计二叉树的叶子结点、计算二叉树的深度并设计主函数测试该类(或类模板)。

4内蒙古科技大学课程设计说明书第二章概要设计2.1设计思想以广义表格式输入一个二叉树,将其接收至一维数组中,利用栈结构建立二叉链表树;通过先、中、后访问根结点递归算法遍历二叉树。

例如:a(c(,d),f(g,))建立如下图所示二叉树。

2.2二叉树的遍历5内蒙古科技大学课程设计说明书2.3运行界面设计6内蒙古科技大学课程设计说明书第三章详细设计3.1二叉树的生成struct btnode *bt; int k;{int b; struct btnode *p,*t;printf("请输入b: ");scanf("%d",&b);if(b!=0){p=(struct btnode *)malloc(sizeof(struct btnode));p->d=b;p->lchild=NULL;p->rchild=NULL;if(k==0) t=p;if(k==1) bt->lchild=p;if(k==2) bt->rchild=p;creatbt(p,1); creatbt(p,2);}return(t);}3.2二叉树的先序遍历pretrav(bt) /***二叉树的先序遍历***/struct btnode *bt;{if(bt!=NULL){printf("%d ",bt->d);pretrav(bt->lchild);pretrav(bt->rchild);}7内蒙古科技大学课程设计说明书return;}3.3 二叉树的中序遍历intrav(bt) /***二叉树的中序遍历**/struct btnode *bt;{if(bt!=NULL){intrav(bt->lchild);printf("%d ",bt->d);intrav(bt->rchild);}return;}3.4二叉树的后续遍历postrav(bt ) /***二叉树的后序遍历****/struct btnode *bt;{if(bt!=NULL){postrav(bt->lchild);postrav(bt->rchild);printf("%d ",bt->d);}return;}3.5主程序的设计main(){8内蒙古科技大学课程设计说明书struct btnode *bt;int k; char i;bt=(struct btnode *)malloc (sizeof(struct btnode));k=0;printf("输入字符'0',退出程序\n");printf("输入字符'1',生成二叉树\n");printf("输入字符'2',二叉树的先序遍历\n");printf("输入字符'3',二叉树的中序遍历\n");printf("输入字符'4',二叉树的后序遍历\n");printf("请输入字符'0'-'4': ");scanf("%s",&i);for(;i!='0';){switch(i){case '1':{bt=creatbt(bt,k);break;}case '2':{pretrav(bt);printf("\n");break;}case '3':{intrav(bt);printf("\n");break;}case '4':{postrav(bt);printf("\n");break;}default:break;}printf("输入字符'0',退出程序\n");printf("输入字符'1',生成二叉树\n");printf("输入字符'2',二叉树的先序遍历\n");printf("输入字符'3',二叉树的中序遍历\n");9printf("输入字符'4',二叉树的后序遍历\n");printf("请输入字符'0'-'4': ");scanf("%s",&i);}free(bt);}第四章测试分析4.1二叉树的建立4.2二叉树的先序、中序、后序遍历先序中序后序第五章课程设计总结二叉树是数据结构的的基本内容。

虽然程序规模不大,我依然付出了努力,仍免不了各种错误的出现。

编程过程需要很大的毅力和耐心,而且要有良好的思维和扎实的专业基础知识,所以我需要不断的学习,发现自身不足之处并改正它,逐步提高自己。

培养学生用学到的书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养学生以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件具有关键性作用;通过课程设计的实践,学生可以在程序设计方法、上机操作等基本技能和科学作风方面受到比较系统和严格的训练。

通过这次数据结构的课程设计,让我熟悉了二叉树的结构以及其相关的操作程序。

尤其二叉树遍历的实现过程。

从中我对数据结构这门课程的理解也更深层次。

附录:程序代码#include <stdio.h>#include <stdlib.h>struct btnode{int d;struct btnode *lchild;struct btnode *rchild;};struct btnode *creatbt(bt,k)/*二叉树的生成*/struct btnode *bt; int k;{int b; struct btnode *p,*t;printf("请输入b: ");scanf("%d",&b);if(b!=0){p=(struct btnode *)malloc(sizeof(struct btnode));p->d=b;p->lchild=NULL;p->rchild=NULL;if(k==0) t=p;if(k==1) bt->lchild=p;if(k==2) bt->rchild=p;creatbt(p,1); creatbt(p,2);}return(t);}pretrav(bt) /***二叉树的先序遍历***/struct btnode *bt;if(bt!=NULL){printf("%d ",bt->d);pretrav(bt->lchild);pretrav(bt->rchild);}return;}intrav(bt) /***二叉树的中序遍历**/ struct btnode *bt;{if(bt!=NULL){intrav(bt->lchild);printf("%d ",bt->d);intrav(bt->rchild);}return;}postrav(bt ) /***二叉树的后序遍历****/ struct btnode *bt;{if(bt!=NULL){postrav(bt->lchild);postrav(bt->rchild);printf("%d ",bt->d);}return;main(){struct btnode *bt;int k; char i;bt=(struct btnode *)malloc (sizeof(struct btnode));k=0;printf("输入字符'0',退出程序\n");printf("输入字符'1',生成二叉树\n");printf("输入字符'2',二叉树的先序遍历\n");printf("输入字符'3',二叉树的中序遍历\n");printf("输入字符'4',二叉树的后序遍历\n");printf("请输入字符'0'-'4': ");scanf("%s",&i);for(;i!='0';){switch(i){case '1':{bt=creatbt(bt,k);break;}case '2':{pretrav(bt);printf("\n");break;}case '3':{intrav(bt);printf("\n");break;}case '4':{postrav(bt);printf("\n");break;}default:break;}printf("输入字符'0',退出程序\n");printf("输入字符'1',生成二叉树\n");printf("输入字符'2',二叉树的先序遍历\n");printf("输入字符'3',二叉树的中序遍历\n");printf("输入字符'4',二叉树的后序遍历\n");printf("请输入字符'0'-'4': ");scanf("%s",&i);}free(bt);}。

相关文档
最新文档