二叉树遍历算法的应用

合集下载

深度优先遍历例题

深度优先遍历例题

深度优先遍历例题摘要:一、深度优先遍历概念介绍1.定义2.特点二、深度优先遍历算法应用1.图形遍历2.搜索算法三、深度优先遍历例题解析1.题目一:二叉树的深度优先遍历1.分析2.算法实现3.答案解析2.题目二:链式广度优先遍历1.分析2.算法实现3.答案解析四、深度优先遍历实战技巧与优化1.避免回溯2.提高效率正文:一、深度优先遍历概念介绍1.定义深度优先遍历(Depth-First Traversal,简称DFT)是一种遍历树或图的算法。

它沿着一个路径一直向前,直到达到最深的节点,然后回溯到上一个节点,继续沿着另一个路径遍历。

2.特点深度优先遍历的特点是访问一个节点后,会沿着该节点的子节点继续遍历,直到没有未访问的子节点为止。

此时,遍历过程会回溯到上一个节点,继续访问其未访问的子节点。

二、深度优先遍历算法应用1.图形遍历深度优先遍历在图形处理领域有广泛应用,如图像处理中的边缘检测、图像分割等。

通过遍历图像像素点,可以发现像素点之间的关系,从而实现图像处理任务。

2.搜索算法深度优先搜索(DFS)是一种经典的搜索算法,它采用深度优先策略在树或图中寻找目标节点。

DFS算法常用于解决迷宫问题、八皇后问题等。

三、深度优先遍历例题解析1.题目一:二叉树的深度优先遍历1.分析二叉树的深度优先遍历通常采用递归或栈实现。

递归方法简单,但效率较低;栈方法效率较高,但实现较复杂。

2.算法实现(递归)```def dfs(root):if not root:returnprint(root.val, end=" ")dfs(root.left)dfs(root.right)```3.答案解析按照题目给定的二叉树,进行深度优先遍历,得到的序列为:1 2 4 5 3 6 8。

2.题目二:链式广度优先遍历1.分析链式广度优先遍历与树的同层遍历类似,采用队列实现。

队列中的元素依次为当前层的节点,每次遍历时,取出队首节点,将其相邻节点加入队列,并将其标记为已访问。

二叉树的遍历和应用

二叉树的遍历和应用

内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。

目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。

二叉树遍历算法的应用

二叉树遍历算法的应用

二叉树遍历算法的应用二叉树是一种常用的数据结构,它由节点和节点之间的链接组成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树遍历算法是指按照一定的顺序访问二叉树中的所有节点,经典的二叉树遍历算法有前序遍历、中序遍历和后序遍历。

这些遍历算法在计算机科学中有广泛的应用。

一、前序遍历前序遍历算法的访问顺序是先访问根节点,然后依次访问左子树和右子树。

在实际应用中,前序遍历算法十分常见,具有以下几个应用:1.树的复制:如果需要复制一棵二叉树,可以使用前序遍历算法遍历原树,然后按照递归或迭代的方式创建新节点,并复制原节点的值。

2.表达式求值:对于一个二叉树表示的数学表达式,前序遍历算法可以用来计算表达式的值。

遍历到运算符节点时,先计算左子表达式的值,然后计算右子表达式的值,最后根据运算符进行计算。

3.文件系统遍历:文件系统可以被视为一个树状结构,前序遍历算法可以按照前序的顺序遍历文件系统中的所有文件和文件夹。

二、中序遍历中序遍历算法的访问顺序是先访问左子树,然后访问根节点,最后访问右子树。

中序遍历算法也有多个应用:1.二叉树的中序遍历得到的节点值是按照从小到大的顺序排列的。

因此,可以使用中序遍历算法验证一个二叉树是否为二叉树。

2.二叉树中序遍历的结果可以用来实现按照升序排列的有序集合的功能。

例如,在数据库中存储的数据可以通过中序遍历的结果进行排序。

3.中序遍历算法可以将一个二叉树转换为一个有序的双向链表。

在遍历过程中,维护一个前驱节点和一个后继节点,并进行链接操作。

三、后序遍历后序遍历算法的访问顺序是先访问左子树,然后访问右子树,最后访问根节点。

后序遍历算法也有多个应用:1.后序遍历算法可以用来计算二叉树的深度。

在遍历过程中,可以维护一个全局变量来记录最大深度。

2.后序遍历算法可以用来判断一个二叉树是否为平衡二叉树。

在遍历过程中,可以比较左右子树的高度差,判断是否满足平衡二叉树的定义。

3.后序遍历算法可以用来释放二叉树的内存。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

层序遍历概念

层序遍历概念

层序遍历概念层序遍历概念层序遍历是一种二叉树的遍历方式,也叫广度优先遍历。

它按照树的层次顺序,从上到下逐层地访问每个节点。

在同一层中,按照从左到右的顺序访问每个节点。

层序遍历可以用于解决很多问题,例如查找最短路径、建立哈夫曼树等。

一、二叉树概念二叉树是一种特殊的树形结构,它的每个节点最多只有两个子节点。

一个节点没有子节点称为叶子节点,具有子节点的节点称为内部节点。

二叉树有很多种不同形态,例如满二叉树、完全二叉树等。

二、广度优先搜索广度优先搜索是一种图形搜索算法,它从起点开始向外扩展,在扩展过程中逐渐覆盖更多的区域。

广度优先搜索可以用来寻找两点之间最短路径或者解决迷宫问题等。

三、层序遍历算法层序遍历算法使用队列来实现。

首先将根节点入队列,然后依次取出队列中的元素,并将其左右子节点入队列。

按照这种方式遍历完一层之后,再遍历下一层,直到所有节点都被访问。

四、层序遍历应用1.查找最短路径在一个图中,如果每个边的权重都相等,那么可以使用广度优先搜索来查找两点之间的最短路径。

通过层序遍历,可以依次扩展到离起点越来越远的节点,直到找到目标节点为止。

2.建立哈夫曼树哈夫曼树是一种用于数据压缩的树形结构。

在哈夫曼编码中,出现频率高的字符使用较短的编码表示,而出现频率低的字符则使用较长的编码表示。

建立哈夫曼树时,可以先将所有叶子节点入队列,并不断取出队列中权值最小的两个节点合并为一个新节点,并将新节点入队列。

最终得到的根节点就是哈夫曼树。

五、总结层序遍历是一种非常实用的算法,在二叉树和图形搜索等领域有着广泛应用。

通过了解其基本原理和应用场景,我们可以更好地理解和运用这种算法来解决实际问题。

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)

二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)1. 引言1.1 概述二叉树是计算机科学领域中常用的数据结构之一,具有广泛的应用场景。

在二叉树的操作中,遍历是其中最基本和常见的操作之一。

通过遍历,我们可以按照特定规则依次访问二叉树中的所有节点。

本文将探讨二叉树遍历操作的基本应用,包括复制、求深度、求叶子数、求节点数等。

这些操作不仅在实际开发中有重要意义,而且对于理解和掌握二叉树数据结构及其相关算法也具有重要作用。

1.2 文章结构本文将分为五个部分进行论述。

首先,在引言部分(第1节)我们将概述文章的主题和目标。

紧接着,在第2节中,我们将介绍二叉树遍历的基本应用,包括复制、求深度、求叶子数和求节点数等。

在第3节中,我们将详细解析这些基本应用,并给出相应算法和实例分析。

接下来,在第4节中,我们将通过实际案例应用来验证并讨论这些基本应用的性能与适用范围。

最后,在第5节中总结全文内容,并对未来研究方向进行展望。

1.3 目的本文的目的是通过对二叉树遍历操作的基本应用进行详细剖析,帮助读者深入理解和掌握二叉树数据结构及其相关算法。

同时,我们希望通过实际案例应用与讨论,探讨如何优化算法性能、提高效率以及适应大规模二叉树遍历问题。

通过本文的阅读,读者将能够全面了解并应用二叉树遍历操作的基本方法,在实际开发中解决相关问题,并为进一步研究和探索提供思路与参考。

该部分主要介绍了文章的概述、结构和目的,引导读者了解全文并明确阅读目标。

2. 二叉树遍历的基本应用:二叉树是一种常见的数据结构,其遍历操作可以应用于多种实际问题中。

本节将介绍四个基本的二叉树遍历应用:复制二叉树、求二叉树的深度、求二叉树的叶子数和求二叉树的节点数。

2.1 复制二叉树:复制一个二叉树意味着创建一个与原始二叉树结构完全相同的新二叉树。

该应用场景在涉及对原始数据进行修改或者对数据进行独立操作时非常有用。

复制操作可以以递归方式实现,通过先复制左子树,再复制右子树,最后创建一个与当前节点值相等的新节点来完成。

平衡二叉树用途

平衡二叉树用途

平衡二叉树用途平衡二叉树是一种特殊的二叉树结构,它具有良好的平衡性,能够提高二叉树的查找、插入和删除操作的效率。

平衡二叉树在计算机科学领域中广泛应用,特别是在数据结构和算法中。

下面将详细介绍平衡二叉树的用途。

1. 提高查找效率平衡二叉树的一个重要应用是提高查找效率。

在平衡二叉树中,每个节点的左子树和右子树的高度差不超过1,这保证了树的高度相对较低。

相比于普通的二叉搜索树,平衡二叉树的查找操作更加高效。

在平衡二叉树中查找一个元素的平均时间复杂度为O(log n),而在普通二叉搜索树中,最坏情况下的时间复杂度为O(n)。

因此,平衡二叉树适用于需要频繁进行查找操作的场景,如数据库索引、字典等。

2. 支持有序遍历平衡二叉树具有有序性的特点,可以支持有序遍历。

有序遍历是指按照节点的值从小到大或从大到小的顺序遍历二叉树。

平衡二叉树可以通过中序遍历实现有序遍历,这对于需要按照顺序获取数据的应用场景非常有用,比如按照字母顺序输出单词列表、按照时间顺序输出事件列表等。

3. 实现高效的插入和删除操作平衡二叉树对于插入和删除操作也具有很好的效率。

在普通的二叉搜索树中,如果插入或删除一个节点后导致树的不平衡,就需要通过旋转操作来重新调整树的结构,以保持平衡。

而平衡二叉树在插入和删除操作时会自动进行平衡调整,不需要额外的旋转操作。

这使得平衡二叉树在插入和删除操作上具有更好的性能表现。

4. 提供高效的范围查询平衡二叉树支持范围查询,即根据给定的范围查找满足条件的元素。

通过中序遍历平衡二叉树,可以按照节点值的顺序获取元素,然后根据范围进行筛选。

这对于需要根据范围查询数据的应用场景非常有用,比如查找某个时间段内的日程安排、查找某个价格区间内的商品等。

5. 实现高效的集合操作平衡二叉树可以用来实现高效的集合操作,如并集、交集、差集等。

通过遍历两个平衡二叉树,可以将它们的元素按照一定的规则进行合并或筛选,从而实现集合操作。

这对于需要对大量数据进行集合操作的应用场景非常有用,比如数据去重、数据合并等。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
D
E
F
G
H
I
J
K
L
M
基本术语
结点 即树的数据元素 结点的度(degree) 结点挂接的子树数(孩子数) 结点的层次 从根到该结点的层数(根结点算第一层) 终端结点 即度为0的结点,即叶子 分支结点 即度不为0的结点(也称为内部结点) 树的度 所有结点度中的最大值 树的深(高)度 指所有结点中最大的层数
6.2.2 二叉树的性质
约定:对二叉树的结点连续编号,编号从根节点开始,自上而下(层优先), 自左至右。
性质1: 在二叉树的第i层上至多有2i-1个结点
思考:第i层上至少有
1 k
个结点?
性质2: 深度为k的二叉树至多有2k-1个结点
思考:深度为k时至少有
个结点?
性质3: 对于任何一棵二叉树,若度为2的结点数有n2个,则叶子数n0 必定为n2+1 (即n0=n2+1)
第6章 树和二叉树
逻辑结构
集合——数据元素间除“同属于一 个集合”外,无其它关系 树形结构——一个对多个。例如
线性结构——一个对一个,如线性表、 栈、队列
图形结构——多个对多个,例如
第6章 树和二叉树
6.1 6.2 6.3 6.4 6.5 树的定义和基本术语 二叉树 遍历二叉树和线索二叉树 树和森林 哈夫曼树
6.1 树的定义和基本术语
树的定义Байду номын сангаас
树(Tree)是n(n≥0)个结点的有限集,它或为空树(n = 0);或为 非空树,对于非空树T: (1)有且仅有一个称之为根(Root)的结点; (2)除根结点以外的其余结点可分为m(m>0)个互不相交的有 限集T1, …, Tm , 其中每一个集合Ti本身又是一棵树,并且称为根的 子树(SubTree)。
树是n个结点的有限集
A
B A
C
D
E
F
G
H
I
J
K
L
M
T1
T2
T3
基本术语
根(Root) 即根结点(没有前驱) 叶子(Leaf) 即终端结点(没有后继) 森林(Forest) 指m棵不相交的树的集合 (例如删除A后的子树个数) 有序树 结点各子树从左至右有序,不能互换(左为第一) 无序树 结点各子树可互换位置
满二叉树和完全二叉树的区别
1 2 4 8 9 10 5 11 12 6 13 14 3 7 15 8 4 9 10 2 5 11 12 6 1 3 7
满二叉树是叶子一个也不少的树,而完全二叉树虽然前n-1 层是满的,但最底层却允许在右边缺少连续若干个结点。满二 叉树是完全二叉树的一个特例。
练 习
一棵完全二叉树有5000个结点,可以计算出其叶结点的个数 是( 2500 )。
性质4: 具有n个结点的完全二叉树的深度必为 log2n +1
1 2 4 8 9 10 5 11 12 6 3 7
k-1层
k层
2 k 1 1 2 1
k
n
2k−1−1<n≤2k−1 或 2k−1≤n<2k k−1≤log2n<k,因为k是整数 所以k = log2n + 1
二叉树基本特点:
•结点的度小于等于2 •有序树(子树有序,不能颠倒)
二叉树的五种不同形态
练 习
具有3个结点的二叉树可能有几种不同形态?普通树呢? 5种 2种
6.2.1 二叉树的抽象数据类型定义
ADT BinaryTree{ 数据对象D: 数据关系R: D是具有相同特性的数据元素的集合。
若D=Φ,则R= Φ ; 若D≠Φ,则R= {H};存在二元关系: ① root 唯一 / /关于根的说明 ② Dj∩Dk= Φ //关于子树不相交的说明 ③ …… //关于数据元素的说明 ④ …… //关于左子树和右子树的说明 基本操作 P: //至少有20个 }ADT BinaryTree
CreateBiTree(&T,definition) 初始条件;definition给出二叉树T的定义。 操作结果:按definition构造二叉树T。 PreOrderTraverse(T) 初始条件:二叉树T存在。 操作结果:先序遍历T,对每个结点访问一次。 InOrderTraverse(T) 初始条件:二叉树T存在。 操作结果:中序遍历T,对每个结点访问一次。 PostOrderTraverse(T) 初始条件:二叉树T存在。 操作结果:后序遍历T,对每个结点访问一次。
1 2 4 8 9 10 5 11 12 6 3 7 8 4 9 10 2 5 11 12 6 1 3 7
B n 1
B n2 2 n1 1
n n2 2 n1 1 1 n2 n1 n0
特殊形态的二叉树
1 2 4 8 9 10 5 11 12 6 13 14 3 7 15 8 4
性质5: 对完全二叉树,若从上至下、从左至右编号, 则编号为 i 的结点, 其左孩子(若存在)编号必为2i, 其右孩子(若存在)编号必 为2i+1;其双亲的编号必为 i/2 。
A
B
C
D
E
F
G
H
I
J
K
L
M
基本术语
双亲(Parent) 即上层的那个结点(直接前驱) 孩子(Child) 即下层结点的子树的根(直接后继) 兄弟(Sibling) 同一双亲下的同层结点(孩子之间互称兄弟) 堂兄弟 即双亲位于同一层的结点(但并非同一双亲) 祖先 即从根到该结点所经分支的所有结点
子孙 即该结点下层子树中的任一结点
只有最后一层叶子不满, 且全部集中在左边 1
2 5 9 10 11 12 6 3 7
满二叉树:一棵深度为k 且有 2k -1个结点的二叉树。 (特点:每层都“充满”了结 点)
完全二叉树:深度为k 的,有n个 结点的二叉树,当且仅当其每一 个结点都与深度为k 的满二叉树 中编号从1至n 的结点一一对应
A
层次
1
D
B
C
2
J
E
F
G
H
I
3
K
L
M
4
6.2 二叉树
二叉树(Binary Tree)是 n (n≥0) 个结点所构成的集合,它或为 空树 (n = 0);或为非空树,对于非空树T:满足 (1)有且仅有一个称之为根的结点; (2)除根结点以外的其余结点分为两个互不相交的子集T1和T2, 分别称为T的左子树和右子树,且T1和T2本身又都是二叉树。 为何要重点研究每个结点最多只有两个 “叉” 的树? 二叉树的结构最简单,规律性最强; 所有树都能转为唯一对应的二叉树,不失一般性。 普通树(多叉树)运算很难实现
相关文档
最新文档