天然气管道水利计算

合集下载

关于长输天然气管道水力计算的分析

关于长输天然气管道水力计算的分析

2016年12月关于长输天然气管道水力计算的分析马钧(中油辽河工程有限公司,辽宁盘锦124010)摘要:根据不同的方式,例如用途、敷设方式以及输送压力的大小等,可以将输配气管网分成不同的种类。

按照用途的不同,可以将输配气管网分为工业企业燃气管道、城市燃气管道以及长距离输气管道等种类。

本篇论文对长输天然气管道水力计算进行了分析与研究,以期对长输天然气管道水力计算的相关研究及实践工作提供具有参考价值的理论依据。

关键词:长输;天然气管道;水力计算;分析自21世纪以来,我国的油气储运行业得到了非常大的进步,也获得了众多发展成果,以西气东输为代表的油气储运产业得到了快速发展。

天然气作为一项重要的能源,在生产、生活过程中发挥着巨大的作用,人们对天然气的需求量也呈现出日益增长的趋势。

长输天然气管道水力计算的分析具有现实价值与长远意义。

1水力摩阻系数在天然气管道工程的工艺设计计算中,即使是微小的偏差,也有可给整个工程带来非常大的耗费。

天然气管流会受到很多因素的影响,例如天然气的流态、管道是否粗糙等。

因此,许多国家在普朗特理论、尼古拉兹试验以及阔尔布鲁克公式的基础上,提出了不同的水力摩阻系数公式,雷诺数以及管壁粗糙程度是公式的变量。

按照雷诺数的大小对天然气管道内流动流体的流态进行分类,可以分为层流区、临界区以及紊流区。

紊流区又可以分为阻力平方区、混合摩擦区以及水力光滑区。

长输管道中天然气流体的流态区域就是阻力平方区。

长输管道工程中,比较常用的阻力平方区摩阻系数公式主要有以下几种:第一,威莫斯公式。

λ=0.009407/D1/3(D,m)。

据相关研究表明,只有在天然气管道的管径为280毫米到500毫米左右、管壁比较粗糙的情况下,利用威莫斯公式计算出来的数值才具有一定的准确性,对于管壁粗糙程度小于千分之一的天然气管道,利用威莫斯公式计算出来的数值偏小。

第二,潘汉德尔公式。

潘汉德尔A式:λ=0.0847Re-0.1461。

低压燃气管道水力计算公式

低压燃气管道水力计算公式

低压燃气管道水力计算公式-CAL-FENGHAI.-(YICAI)-Company One1燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。

但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。

整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。

二、低压燃气管道水力计算公式:1、层流状态 R e≤2100λ=64/R e R e=dv/γΔP/L=×1010(Q0/d4)γρ0(T/T0)2、临界状态 R e=2100~3500λ=+(R e-2100)/(65 R e-1×105)ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)](Q02/d5)ρ0(T/T0)3、紊流状态 R e≥35001)钢管λ=[(Δ/d)+(68/ R e)]ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0)2)铸铁管λ=[(1/d)+4960(dγ/ Q0)]ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h)d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数T——燃气绝对温度(K) T0——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——×10-6m2/s(0℃和时)燃气运动粘度——×10-6m2/s(0℃和时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。

简述室内燃气管道水力计算步骤

简述室内燃气管道水力计算步骤

简述室内燃气管道水力计算步骤
一、室内燃气管道水力计算步骤
1、计算管道参数:确定管道的内径、管道的长度、管道的材料、管道的摩擦系数等。

2、确定燃气流量:根据室内的燃气使用量,确定燃气流量,并根据一定的稳定流计算方法,确定燃气流量的大小。

3、确定管道的出口压力:根据管道的内径及管道材料,确定管道的出口压力。

4、根据给定的流量,确定管道的入口压力:根据管道的出口压力及管道的内径、管道的长度及管道的摩擦系数,确定管道的入口压力。

5、根据确定的流量及入口压力,计算管道的流速:根据管道的入口压力及管道的内径,确定管道的流速。

6、根据流速及管道的摩擦系数,确定管道的所需加压能力:根据管道的流速及管道的摩擦系数,确定管道的所需加压能力。

7、根据确定的管道加压能力,选择合适的加压设备:根据管道的所需加压能力,选择合适的加压设备,以确保管道的正常运行。

天然气企业燃气工程设计燃气管道计算流量和水力计算

天然气企业燃气工程设计燃气管道计算流量和水力计算

燃气管道计算流量和水力计算1.1城镇燃气管道的计算流量,应按计算月的小时zui 大用气量计算。

该小时zui 大用气量应根据所有用户燃气用气量的变化叠加后确定。

独立居民小区和庭院燃气支管的计算流量宜按本款第4条公式(1.4-2)计算。

1.2居民生活用气量:应根据本地燃料消耗统计数据折算,以每户3.5人计。

此处参考《××市××区燃气专项规划》,取2720MJ/人·年(65万大卡/人·年)。

1.3商业和工业用气量:应根据所有用气设备的额定流量和实际使用情况确定,参见本条规定的a 条和b 条。

无具体数据时,可按附录B 采用。

1) 商业用户燃气计算流量应按所有用气设备的额定热负荷和实际使用情况确定,无实际数据时,可参照附录Q 采用。

不同燃气的换算可按其低热值比计算,固体和液体燃料换算燃气还应考虑热效率,宜按下式计算:(1. 3)式中 V ——燃气用量(Nm 3/d );G ——原来使用的燃料量(kg/d ); Q 1——原用燃料的低热值(kcal/kg ); η1——原用燃料的燃具热效率(%); Q 2——燃气低热值(kcal/Nm 3); η2——燃气燃具热效率(%)。

各种燃料的低热值参照表1. 3-1,使用不同燃料的燃具热效率参照表1. 3-2。

2211ηηQ Q G V =表1. 3-1不同燃料的低热值表1.3-2使用不同燃料的燃具热效率注:①重油热效率比柴油约小5%。

2)工业企业生产用气设备的燃气用量,应按下列原则确定:a定型燃气加热设备,应根据设备铭牌标定的用气量或标定热负荷,采用经当地燃气热值折算的用气量;b非定型燃气加热设备应根据热平衡计算确定;或参照同类型用气设备的用气量确定;c 使用其他燃料的加热设备需要改用燃气时,可根据原燃料实际消耗量计算确定。

d 工业用户由固体或液体燃料改为使用燃气时,可按式(1.3)进行换算,式中的原用燃料量G 和原用燃料的燃具热效率η1应为实际测定值,η2可比照类似工业用气设备采用。

低压燃气管道水力计算公式

低压燃气管道水力计算公式

燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。

但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。

整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。

二、低压燃气管道水力计算公式:1、层流状态 Re≤2100λ=64/Re Re=dv/γΔP/L=1.13×1010(Q0/d4)γρ0(T/T0)2、临界状态 Re=2100~3500λ=0.03+(Re -2100)/(65 Re-1×105)ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q-1×105dγ)](Q02/d5)ρ(T/T)3、紊流状态 Re≥35001)钢管λ=0.11[(Δ/d)+(68/ Re)]0.25ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q2/d5)ρ(T/T)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q)]0.284ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q——燃气流量(Nm3/h)d——管道内径(mm)ρ——燃气密度(kg/Nm3)γ——0℃和101.325kPa时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) Re——雷诺数T——燃气绝对温度(K) T——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——1.658kg/Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——1.92×10-6m2/s(0℃和101.325kPa时)燃气运动粘度——11.1×10-6m2/s(0℃和101.325kPa时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。

燃气管道的流量计算和水力计算公式

燃气管道的流量计算和水力计算公式

燃气管道的流量计算和水力计算公式燃气管道的流量计算和水力计算公式第一节燃气需用工况城市各类用户的用气情况是不均匀的,是随月、日、时而变化的。

这是城市燃气供应的一个特点。

用气不均匀性可以分为三种,即月不均匀性(或季节不均匀性)、日不均匀性和时不均匀性。

城市燃气需用工况与各类用户的需用工况及这些用户在总用气量中所占的比重有关。

各类用户的用气不均匀性取决于很多因素,如气候条件、居民生活水平及生活习惯机关的作息制度和工业企业的工作班次,建筑物和车间内装置用气设备的情况等,这些因素对不均匀性的影响,从理论上是推算不出来的,只有经过大量地积累资料,并加以科学的整理,才能取得需用工况的可靠数据。

1 、月用气工况影响居民生活及公共建筑用气月不均匀性的主要因素是气候条件。

气温降低则用气量增大,因为在冬季一些月份水温低,故用气量较多,又因为在冬季,人们习惯吃热食,制备食品需用的燃气量增多,需用的热水也较多。

反之,在夏季用气量将会降低。

公共建筑用气的月不均匀规律及影响因素,与各类用户的性质有关,但与居民生活用气的不均匀情况基本相似。

工业企业用气的月不均匀规律主要取决于生产工艺的性质。

连续生产的大工业企业以及工业炉用气比较均匀。

夏季由于室外气温及水温较高,这类用户的用气量也会适当降低。

建筑物供暖的用气工况与城市所在地区的气候有关。

计算时需要知道该地区月平均气温和供暖期的资料。

根据各类用户的年用气量及需用工况,可编制年用气图表。

依照此图表制订供气计划,并确定给缓冲用户供气的能力和所需的储气设施,还可预先制订在用气量低的季节维修燃气管道及设备的计划。

一年中各月的用气不均匀情况用月不均匀系数表示。

根据字面上的意义,它应该是各月的用气量与全年平均月用气量的比值,但这不确切,因为每个月的天数是在28~31天的范围内变化的。

因此月不均匀系数K1值应按下式确定全年平均日用气量该月平均日用气量1k (3-1) 12个月中平均日用气量最大的月,也即月不均匀系数值最大的月,称为计算月。

燃气管网水力计算公式

燃气管网水力计算公式

燃气管网水力计算公式
1)庭院燃气管道的计算公式:
Q=N Q K K n t ∑0
式中:
Q ——庭院燃气管道的计算流量(Nm 3/h );
K t ——不同类型用户的同时工作系数,当缺乏资料时,可取K t =1; K 0——相同燃具或者相同组合燃具数;
N ——相同燃具或相同组合燃具数;
Q n ——相同燃具或相同组合燃具的额定流量(Nm 3/h )
2)中压管网水力计算公式:
Z T T d
Q 1027.1L P P 052102221ρλ⨯=- ⎥⎦⎤⎢⎣
⎡+-=λλRe 51.23.7d K 2lg 1 式中:
P 1,P 2 ——管道始、末端的燃气绝对压力(kP a );
Z ——压缩因子,当燃气压力小于1.2MPa (表压)时,压缩因子取1.0; L ——管段计算长度(km);
Q ——燃气流量(Nm 3/s);
d ——管道内径(m);
ρo ——燃气的密度(Kg/Nm 3);
λ——摩擦阻力系数;
K ——管壁内表面的当量粗糙度(mm );
Re ——雷诺数(无量纲);
3)低压燃气管道单位长度的摩擦阻力损失应按下式计算:
0527T T d
1026.6p ρλQ l ⨯=∆ 式中: △P ——燃气管道摩擦阻力损失(Pa );
λ——燃气管道摩擦阻力系数;
Q ——燃气管道的计算流量(m 3/h );
d ——管道内径(mm );
ρ——燃气的密度(kg/ m 3);
T ——设计中所采用的燃气温度(K );
T 0——273.15(K);。

燃气管网水力计算

燃气管网水力计算
燃气供应
第6章 燃气管网水力计算
第一节 燃气管网设计计算
水力计算的任务
➢ 设计计算:根据计算流量(Q)和允许压力损失 (△P)计算管径(D),进而决定管网投资与金属 消耗量等
➢校核计算:对已有管道进行流量(Q)和压力损失 (△P)的验算,已充分发挥管道的输气能力,或决 定是否需要对原有管道进行改造
➢意义:关系到输配系统经济性和可靠性,是城镇 燃气规划与设计中的一项重要工作
• 转输流量:流经燃气管段,并转送给后续管段的流量 Q2称为转输流量
燃气供应
第6章 燃气管网水力计算
第一节 燃气管网设计计算
(一)燃气分配管网的供气方式
➢ 管段沿途不输出燃气,这种管段的燃气流量是不变的 Q1 = 0, Q2 ≠0
➢ 由管段始端进入的燃气在途中全部供给各个用户 Q1 ≠ 0, Q2 = 0
Z 压缩因子, 当燃气压力小于1.2MPa
(表压)时,取Z =1;
d 管道直径,mm
L 燃气管道的计算长度,km
燃气管道摩擦阻力系数
燃气密度,kg/m3
T 设计中所采用的燃气温度,K
T0 标准状态气体绝对温度,273.15K
燃气供应
第6章 燃气管网水力计算
第一节 燃气管网设计计算
8)由管段的压力降推算管网节点的压力:
节点压力需满足要求,管道压力降过小而不经济时,需调整管
径,重复6)、7)两步计算
燃气供应
第6章 燃气管网水力计算
第二节 室内燃气管道的设计计算
一、室内燃气管道及燃具的布置
(一)燃气用户引入管 (二)室内燃气管道 (三)燃气计量表的布置 (四)燃具的布置
燃气供应
Q1 - 途泄流量,m3 /h Q2 - 转输流量,m3 /h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流速计算
流 量(m3/h) 10000 流 速(m/s) 13.18405069 运行压力(Mpa) 0.4 管 径(m) 0.219 壁厚(m) 0.005
基本参数 放空量
破口截面积
管道挖坏气损计算 泄漏时间 运行压力 35 (min) (Mpa)
0.38
温度(℃)
5
流速
50
管径
长度
壁厚
管存量
备注
400 实时压力降
(KPa)
64.690 335.310
6000 粗糙度
(m)
9.72
0.209 16000
0.1533 三通阻力降
(KPa)
0.00002 粘度(N·S/m2)
0.0000103
天然气管存量计算 管线压力
(MPa)
管线长度
(m)
管径(m) 0.426
壁厚(m) 0.008
管容(m3) 528.10
天然气管线储量(NM3) 2047.98
0.38
4000
天然气管径计算
流 量(m3/h) 50000 流 速(m/s) 30 运行绝对压力(Mpa) 0.4 管 径(mm) 383.8820352
管道金额计算 管径 0.377 壁厚 0.0095 价格(元/吨) 4980 每米重量(Kg/m) 85.55106429 每米单价(元/m) 426.0443001 长度(m) 320
天然气输气管线管路计算
起始压力P1 末端压力P2
(KPa) (KPa)
雷诺数 Re 640750.69 密度(Kg/m3)
摩擦因数λ 0.014 0.65
瞬时流量
(m3/h)
流速
(m/s)
质量流速 温度 31.58 278
管径 219
壁厚 5.0
内径
管长 90°弯头阻力降
(m ) ቤተ መጻሕፍቲ ባይዱKPa)
(kg/m2· (K) (mm) (mm) (m) s)
管存量
管存量
小计 置换消耗 合计气损 损失金额
45°弯头阻力降
(KPa)
0.0745 0.2190

金额(元) 136334.176
管道内径(m) 0.209
相关文档
最新文档