自动控制根轨迹实验报告

合集下载

自动控制原理实验报告

自动控制原理实验报告

5-4、设控制系统的开环传递函数为)16.0)(5.0()()(2+++=s s s s k s H s G ,试绘制系统的根轨迹图,并分析阻尼情况。

源代码:>> num=[0 1]>> den=conv([1 0],conv([1 0.5],[1 0.6 1]))>>sys=tf(num,den)>> rlocus(sys)>>grid根轨迹图:由根轨迹图的网格我们大概可以知道根轨迹上的不同部分所对应的阻尼系数,在左边横轴上的线阻尼系数对应的为1;在左半平面(非横轴)对应的阻尼系数为0到1;在右半平面阻尼系数对应为小于0;在纵轴上对应的阻尼系数为0。

下面进行验证在左边横轴上对应的阻尼系数:在左半平面(非横轴)对应的阻尼系数:在右半平面对应的阻尼系数:经过验证可知,之前的阻尼系数分析正确5-6、已知单位反馈控制系统的开环传递函数为)3()1()(-+=s s s k s G ,试绘制系统的根轨迹图,并求出使系统稳定的k 值范围。

源代码:>> num=[1 1]>> den=conv([1 0],[1 -3])>> sys=tf(num,den)>> rlocus(sys)根轨迹图:分析稳定的k的取值范围:由上图可知:当k>3的时候,根轨迹在左半平面,此时系统稳定。

阻尼分布情况由图可以看出与上题相同:在左边横轴上的线阻尼系数对应的为1;在左半平面(非横轴)对应的阻尼系数为0到1;在右半平面阻尼系数对应为小于0;在纵轴上对应的阻尼系数为0。

另外,在右边横轴上的阻尼系数为-1。

6-4、(1))12)(12.0)(11.0()1(5)()(++++=s s s s s H s G 源代码:>> num=[5 5]>> den=conv(conv([0.1 1],[0.2 1]),[2 1])>> sys=tf(num,den)>> nyquist(sys)奈氏曲线:奈氏曲线逆时针包围(-1,j0)点0次,右半平面开环极点数为0,由奈氏判据一可知该闭环系统稳定。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自动控制原理实验报告根轨迹分析法

自动控制原理实验报告根轨迹分析法

相关根轨迹知识
根轨迹的概念 根轨迹是开环系统某一参数从零变化到无穷大时, 闭环系 统特征根在 s 平面上变化的轨迹。 增设零、极点对根轨迹的影响 (1)增加开环零点对根轨迹的影响 第一,加入开环零点,改变渐近线的条数和渐近线的倾角; 第二,增加开环零点,相当于增加微分作用,使根轨迹向左 移动或弯曲,从而提高了系统的相对稳定性。系统阻尼增加,过 渡过程时间缩短; 第三,增加的开环零点越接近坐标原点,微分作用越强,系 统的相对稳定性越好。 (2)增加开环极点对根轨迹的影响 第一,加入开环极点,改变渐近线的条数和渐近线的倾角; 第二,增加开环极点,相当于增加积分作用,使根轨迹向右 移动或弯曲,从而降低了系统的相对稳定性。系统阻 尼减小,过渡过程时间加长;
-4-
五、实验过程
第一题 Gc=1:
Gc=s+5:
Gc=(s+2)(s+3):
-5-
Gc=1/(s+5):
第二题 第 一 步 : 在 MATLAB 的 命 令 窗 口 中 键 入 “ num=[1 3];den=[1 2 0];rlocus(num,den)” ,得图如下:
第二步: 第三步:
第三题 第一步:由已知条件 ts(△=2%)≤4s,超调量≤40%得
s ( s 2)
1 。作 s5
确定系统具有最大的超调量时的根轨迹增益,并作时域 仿真验证;(2)确定系统阶跃响应无超调时的根轨迹取值 范围,并作时域仿真验证 3、已知一单位反馈系统的开环传递函数为 ss 0.8试加入一 个串联超前校正控制(其中,|z|<|p|) ,使得闭环系统 的 ts(△=2%)≤4s,超调量≤40%。
-7-
本为图标的切线与 K 的横坐标的交点所得的纵坐标再减去延迟时间。 随后按图慢慢调整数值,一定要有耐心。 第二题中,Step 的属性不能忘改,否则横轴(0,1)处恒为 1。 分母出 S 前的系数必须小于 1(阻尼比小于 1) ,之后改改分子,调整 调整 S 前的系数并保持 S^2 前的系数不变 (因为分子分母都可约分) , 曲线即可得出。

《自动控制原理》实验报告(线性系统的根轨迹)

《自动控制原理》实验报告(线性系统的根轨迹)

实验四 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4. 掌握系统参数变化对特征根位置的影响。

基础知识及MATLAB 函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。

这个参数一般选为开环系统的增益K 。

课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。

而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。

假设系统的对象模型可以表示为nn n n m m m m a s b s a s b s b s b s b K s KG s G ++++++++==--+-11111210)()(ΛΛ 系统的闭环特征方程可以写成: 0)(10=+s KG对每一个K 的取值,我们可以得到一组系统的闭环极点。

如果我们改变K 的数值,则可以得到一系列这样的极点集合。

若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。

1)绘制系统的根轨迹rlocus ()MATLAB 中绘制根轨迹的函数调用格式为:rlocus(num,den) 开环增益k 的范围自动设定。

rlocus(num,den,k) 开环增益k 的范围人工设定。

rlocus(p,z) 依据开环零极点绘制根轨迹。

r=rlocus(num,den) 不作图,返回闭环根矩阵。

[r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。

其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。

K 为根轨迹增益,可设定增益范围。

例3-1:已知系统的开环传递函数924)1()(23++++=*ssssKsG,绘制系统的根轨迹的MATLAB的调用语句如下:num=[1 1]; %定义分子多项式den=[1 4 2 9]; %定义分母多项式rlocus (num,den)%绘制系统的根轨迹grid%画网格标度线xlabel(‘Real Axis’),ylabel(‘Imaginary Axis’) %给坐标轴加上说明title(‘Root Locus’) %给图形加上标题名则该系统的根轨迹如图3-1所示:若上例要绘制K在(1,10)的根轨迹图,则此时的MATLAB的调用格式如下,对应的根轨迹如图3-2所示。

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结

自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。

它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。

【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。

-主要用于分析系统稳定性和设计控制器参数。

2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。

-利用角度判据和幅值判据确定根轨迹。

【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。

-极点在左半平面表示系统稳定,右半平面表示不稳定。

2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。

-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。

【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。

-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。

【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。

-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。

【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。

-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。

编制人:_____________________
日期:_____________________。

自动控制原理实验报告

自动控制原理实验报告

一、结构图简化方法(梅森公式)举例说明用Matlab如何实现例1:书本P653,例C-1 已知多回路反馈系统的结构图如图所示,求闭环系统的传递函数() ()C sR s。

图-1Matlab的M文件为:%%%%%%%%%%%%%%%%G1=tf([1],[1 10]);G2=tf([1],[1 1]);G3=tf([1 0 1],[1 4 4]);numg4=[1 1];deng4=[1 6];G4=tf(numg4,deng4);H1=zpk([-1],[-2],1);numh2=[2];denh2=[1];H3=1;nh2=conv(numh2,deng4);dh2=conv(denh2,numg4);H2=tf(nh2,dh2);sys1=series(G3,G4);sys2=feedback(sys1,H1,+1);sys3=series(G2,sys2);sys4=feedback(sys3,H2);sys5=series(G1,sys4);sys=feedback(sys5,H3)%%%%%%%%%%%%%%%%在Matlab中M文件运行后的执行结果为:Zero/pole/gain:0.083333 (s+1) (s+2) (s^2+ 1)----------------------------------------------------------------------(s+10.12) (s+2.44) (s+2.349) (s^2+ 1.176s + 1.023)二、系统时域分析与设计方法(动态、稳态性能)1) 改变零点与极点位置对系统模态、动态性能、稳态性能的影响。

极点确定系统的运动模态,和稳定性。

零点决定模态在输出中的比例关系。

例2:设系统闭环传递函数为Φ(s)=26s+3)22s ++(ζs ,其中,ζ=0.707。

求二阶系统的单位阶跃响应。

执行M 文件: close all;clear all;num=[6 18];den=[1 2*0.707 2]; H=tf(num,den); sys=tf(num,den); p=roots(den) t=0:0.05:10; figure(1)step(sys,t);gridxlabel('t');ylabel('c(t)');title('单位阶跃响应'); 则,系统的单位阶跃响应为:图-2闭环极点为p= -0.7070+1.2248i -0.7070-1.2248i设具有相同极点但零点不同的传递函数为:Φ1(s)=26s+3)(1)22s s +++(ζs 增加的一个零点为s= - 1求其单位阶跃响应 M 文件为:%%%%%%%%%%%%%%% close all;clear all;clcnum=[6 24 18];den=[1 2*0.707 2]; H=tf(num,den); sys=tf(num,den); p=roots(den) t=0:0.05:10; figure(1)step(sys,t);gridxlabel('t');ylabel('c(t)');title('单位系统阶跃响应'); %%%%%%%%%%%%%%%如下图所示为Φ1(s)的单位阶跃响应:图-3由此可知:①、改变闭环传递函数的零点位置会影响系统的动态性能,当加了零点后,超调量变大,上升时间变短。

控制系统的根轨迹分析实验报告

控制系统的根轨迹分析实验报告

一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。

2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。

3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。

4. 培养实验操作能力和数据处理能力。

二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。

通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。

三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。

(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。

(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。

2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。

(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。

(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。

3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。

(2)重新绘制根轨迹,观察根轨迹的变化规律。

(3)分析系统参数变化对系统性能的影响。

自动控制理论实验报告

自动控制理论实验报告

实验五线性系统的时域分析一、实验目的1、学会使用MATLAB绘制控制系统的单位阶跃响应曲线;2、研究二阶控制系统中、对系统阶跃响应的影响3、掌握系统动态性能指标的获得方法及参数对系统动态性能的影响。

二、实验设备Pc机一台,MATLAB软件。

三、实验举例已知二阶控制系统:C(s)/R(s)=10/[s2+2s+10]求:系统的特征根 、wn 系统的单位阶跃响应曲线解:1、求该系统的特征根若已知系统的特征多项式D(),利用roots()函数可以求其特征根。

若已知系统的传递函数,可以利用eig()函数直接求出系统的特征根。

在MATLAB命令窗口提示符下键入:(符号表示回车)num=[10] 分子多项式系数den=[1 2 10] 分母多项式系数sys=tf(num,den);建立控制系统的传递函数模型eig(sys)求出系统的特征根屏幕显示得到系统的特征根为:ans = -1.0000 + 3.0000i ; -1.0000 - 3.0000i2、求系统的闭环根、和函数damp()可以直接计算出闭环根、和den=[1 2 10]damp(den) 计算出闭环根屏幕显示得到系统的闭环根、和Eigenvalue Damping Freq. (rad/s)-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000-1.00e+000 - 3.00e+000i 3.16e-001 3.16e+000 既系统闭环跟为一对共轭复根 -1+j3与-1-j3,阻尼比,无阻尼振荡频率 rad/s.3、求系统的单位阶跃响应曲线函数step()可以直接计算连续系统单位阶跃响应,其调用格式为:step(sys):对象sys可以是tf(),zpk()函数中任何一个建立的系统模型。

step(sys,t):t可以指定一个仿真终止时间。

在MATLAB命令窗口提示符下键入:(符号表示回车)num=[10] den=[1 2 10]step ( num , den ) 计算连续系统单位阶跃响应 grid 绘制坐标的网络屏幕显示系统的单位阶跃响应曲线: 从图中获得动态性能指标的值为:上升时间: 0.42 (s ) 峰值时间: 1.05 (s ) 超调量: 35% 调整时间: 3.54 (s )Step ResponseTim e (sec)A m p l i t u d e01234560.20.40.60.811.21.4System : sysSettling Tim e (sec): 3.54System : sysP eak am plitude: 1.35Overshoot (%): 35.1At tim e (sec): 1.05System : sysRise Tim e (sec): 0.427动态性能指标的获取方法:方法一:用鼠标点击响应曲线上相应的点,读出该点的坐标值,然后根据二阶系统动态性能指标的含义计算出动态性能指标的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 根轨迹分析
一、实验目的:
1.熟悉零、极点对根轨迹的影响
2.组合典型环节按照题目完成相应曲线
二、实验内容
鱼鹰型倾斜旋翼飞机V-22既是一种普通飞机,又是一种直升机。

当飞机起飞和着陆时,其发动机位置可以使V-22像直升机那样垂直起降,而在起飞后,它又可以将发动机旋转90度,切换到水平位置,像普通飞机一样飞行。

在直升机模式下,飞机的高度控制系统如图所示。

要求:
(1) 概略绘出当控制器增益K1变化时的系统根轨迹图,确定使系统稳定的K1值范围; (2) 当取K1=280时,求系统对单位阶跃输入r(t)=l(t)的实际输出h(t),并确定系统的
超调量和调节时间(Δ=2%);
(3) 当K1=280,r(t)=0时,求系统对单位阶跃扰动N (s )=1/s 的输出h n (t); (4) 若在R (s )和第一个比较点之间增加一个前置滤波器 G p (s)=
5
.05.15
.02
++s s
Matlab 指令如下 fenzi=[1 1.5 0.5]; fenmu=[1 0];
G1=tf(fenzi,fenmu) fenzi=[1];
fenmu=conv(conv([20 1],[10 1]),[0.5 1]); G2=tf(fenzi,fenmu) sys1=series(G1,G2) rlocus(sys1)
sys2=feedback(280*sys1,1) step(sys2)
sys3=feedback(G2,280*G1) step(sys3)
G3=tf([0.5],[1 1.5 0.5]) sys4=series(G3,sys2) step(sys4)
(1)
(3)
(2)
(4)
三、结果分析
1.根在左半平面,系统稳定;
根在虚轴上临界稳定;
根在右半平面系统不稳定。

2.当k>1时,特征方程为一对共轭复根,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,振荡幅度或超调量随k值的增加而增大,但调整时间不会有显著变化。

相关文档
最新文档